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Calculation of the noninertial space-charge force and the coherent synchrotron radiation force
for short electron bunches in circular motion using the retarded Green’s function
technique

Bruce E. Carlsten
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 8 March 1996

The space-charge forces for short electron bunches in circular motion can be very different from the
space-charge forces for short electron bunches undergoing straight-line motion. The two major effects intro-
duced by the circular motion are an off-axis, so-called “noninertial space-charge” effect, in which there is
essentially no net energy loss of the bunch, and a coherent synchrotron radiation effect, in which the bunch
radiates coherent energy. The consequence of these effects is a potentially large growth in the electron bunch’s
transverse emittance. We derive an expression for these forces from a Green’s function approach, starting with
the definitions of the retarded scalar and vector potentials. In particular, we find an expression for the total
electric field along the direction of motion from a short line of charge in circular motion. These expressions in
turn can be used in numerical particle simulations to estimate the amount of emittance growth, including the
effects of suppressing the coherent synchrotron radiation by reducing the beam pipe dimensions.
[S1063-651%96)10607-3
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[. INTRODUCTION and scalar potentigldoes not easily include the effect of
radiation. Conversely, the technique used to find the radia-
The space-charge forces on an electron bunch are a majien effect (explicit calculation of the retarded fields along
consideration in accelerator design. Forces along the diredhe bunch’s trajectopydoes not lead to off-axis effectsuch
tion of motion can lead to a significant energy redistributionas the noninertial space-charge forde addition, the earlier
of the particles, which, in turn, can lead to a large growth intechniques cannot easily be used to quantify the emittance
the bunch’s transverse emittance. For an electron bunch th@foWth in typical accelerator bend systems. In this paper, we
is not being accelerated, these forces scale inversely with tHgs€ the retarded Green’s function for the scalar and vector
square of the relativistic mass factr Because of this fact, potentials to establish a formallsm that allows us to numeri-
space-charge forces are often ignored in accelerator desigfig!ly evaluate both the noninertial space-charge effect and

Where e beam i at igh energyeter han 1 Ge ow- ¢ adialon ffecteveryunre e il calcuele e nonin
ever, recent wor{1-3] has identified two space-charge- P 9 9

induced forces for beams in circular motion that are mostl (to eliminate the additional single-particle radiation fgrce
independent of enerav. Th for n anifi ywte can construct the forces for arbitrary distributions simply
ependent of energy. 1hese Iorces can cause a sig Caﬁy superimposing the solutions for many such lines, dis-

effects is considered a space-charge curvature effect and (8, pe easily incorporated in particle-tracking simulation
known as the noninertial space-charge force, in which thgqges where line-by-point space charge calculations are
energies of the particles are modified with little total 10ss bycommon [4]. Using this technique in a suitably modified
radiation. The second effect is known as the coherent synsimylation code, we calculate the transverse emittance
chrotron radiation force, in which the bunch radiates coheryrowth of the beam as it passes through an achromatic bend.
ently. The coherent synchrotron radiation depends on thgye present the emittance growth scalings with respect to
beam energy only through the normalized beam velogity energy, bunch length, transverse bunch size, bend radius, and
and does not diverge for large beam energies as does tignd angle, and explore the effect of suppressing the coher-

single-particle synchrotron radiation. For sufficiently largegnt synchrotron radiation by reducing the beam pipe size.
bunch charges and short bunch lengths, the coherently radi-

ated energy will be much larger than the incoherently radi-
ated energy.

Both the noninertial space-charge force and the force
from the coherent synchrotron radiation will lead to a redis- In this section, we will find an expression for the total
tribution of the energy of those particles that are in circularspace-charge force from a line of charge in circular motion
motion within an achromatic bend in a high-brightness acthat (1) includes both the noninertial space-charge force and
celerator. This redistribution in turn can lead to an unacceptthe coherent synchrotron force, a(® can be included in a
able increase in the beam’s emittance that would be roughlyumerical particle-tracking code.
independent of beam energy. Previously, the analytic tech- Consider the case of a short line of charge traveling in a
nique used to calculate the noninertial space-charge effecircle, where we define the direction to be along the direc-
(perturbation expansion of the wave equation for the vectotion of motion, and where we use cylindrical coordinates.

II. CALCULATION OF THE TOTAL SPACE-CHARGE
FORCE FROM A LINE OF CHARGE
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The electric field along the direction of motion is given by

~4————— position of observer

particle

present position of
source particle

R M

whereA, is the azimuthal component of the vector potential
and ¢ is the scalar potential. If the vector potentil is
written asA=(5A,,(B/c) ¢+ 6A,,0), it was shown in Ref.

[1] that retarded position of
source particle

X .
Ey= Eusua(l—yzﬁz R/t inwoh,, (2

for the line of charge, wheréA, , is the deviation of the
azimuthal component of the vector potential from the nor-
malized scalar potential for theth harmonicR is the radius
of curvature of the beam’s circular motior, is the trans-
verse displacement of the observer location from the line’s
trajectory(in the bending plane w=pBc/R, andE g, is the

component of the force that scales inversely proportional to g 1. Geometry defining the observer position, the present

¥’ The second term represents the contribution from theingle of the source particie and the retarded angle of the source
noninertial space-charge effect, and the third term leads tarticle ¢ for circular motion.

the coherent synchrotron radiation. It has been shfWn

;c/f:tt;cjrtgr-zofntc;]rgncehrg«ral esgige;?zgft}sg: d;isuétjngﬁirgntshgfctﬂr'l) demonstrates that we only have to know the derivatives
g y . ._of the potentials to find the electric field in the direction of

%notion. Note that the integrands for both the scalar and the
azimuthal components of the vector potentials are only func-
tions of the separation of the source and observer locations,
and the radius of curvature, and not of the absolute azimuthal
%osition or time as long as the path of the integral is defined
relative to the source particle. Thus the derivatives indicated
in Eq. (1) are trivial and are equal to the integrand evaluated
at the limits of integration times the respective derivatives of
Fhe limits themselves.

Now note that the position of the front of the bunch rela-

potential, but this is hard to do because the solutiorsfey ,
must be extended far away from the line of charge in order t
establish the outgoing boundary condition.

Another approach to fin&, induced from a line of uni-
form charge of length is to start with the scalar potential
and the azimuthal component of the vector potential usin
the retarded potential formalism given [i]

R 4 A tive to an observer point at an azimuthal anglis given by
d=— J — d¢ (3) ;= {o— BCt/R+ 6, for some(,, and the position of the rear
4me )i TrerTrer Uret/C of the bunch is given by, = {,— Bct/R+ 6+ 6/R. The dif-
ferentiation in Eq.(1) for the azimuthal electric field results
and in (to lowest order ix/R)
R & ANBcog’
Aa— 4mec L, lret™ I?ret' Ljret/C dg, (4) A 1

1 5 X
7 R

e

" 4me I ret™ l:)ret' l:iret/C

where the variable/ is the azimuthal angle relative to
the observer location, the path of the integral is over the + B2 [1—cos{g’)])
line of charge(at the present time A=Q/é is the current
density,r . is the vector from the source poif@t positions)
at the retarded time to the observer locatigg=|re{, Ure IS
the retarded velocity of that point at the retarded tigfels  Each of the three terms in parantheses is easily identified
the retarded angle of the point’s velocity, all shown in Fig. 1,with a physical mechanism: the first term is the usual space-
and ¢; and ¢, are the present azimuthal angles of the frontcharge term, and vanishes if the beam is ultrarelativistic; the
and rear of the bunch, respectively. Note tjatand { are  second term is the noninertial space-charge term; and the
considered positive if they lie behind the observer positionthird term is the coherent synchrotron radiation term. It is
Recall thatx is the transverse displacement of the observeclear that the second and third terms vanish if the radius of
point from the circular trajectory in the plane defined by thecurvature of the circular motion becomes infinitely large;
trajectory. We can also define a transverse displacegneft thus the noninertial space-charge force and the coherent syn-
the observer point out of the plane of the trajectory, and ahrotron radiation force exist only when the beam is in cir-
total transverse displacement x>+ y?2. cular motion.

These equations for the scalar and vector potentials are In order to evaluate the effects of the noninertial space-
hard to solve, but fortunately we will not have to. Equationcharge force and the coherent synchrotron radiation force,

(5

&
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position of observer only if the source point is in front of the observer point, and

retarded position of particle present position of the retarded position can become extremely large if it is not.
source particle source particle If the radius of curvature of the circular motion is large com-
pared to all retarded positions, the circular motion can be

0 considered essentially linear.
In this limit, the retarded distance denominator in Eq).
B ——— becomes/(RZ)%+ p?/v?, and the azimuthal electric field is
A -R¢ given by
) N 1 1 X
_ . E€= > T _2_32_+B2
FIG. 2. Geometry defining the observer position, the present 41re VRO +p2ly% \ Y R
position of the source particle, and the retarded position of the
source particleR{ +z for straight-line motion. &
X[1-cog{-7)] 9
we need to find the retarded angle and evaluate the denomi- &
nator in the second fraction. The retarded anfjleatisfies ) ] .
the transcendental equation The noninertial space-charge force is the same as the space-
charge force for straight-line motion, multiplied byx/R,
ﬁZRZ(g/ — §)2:p2+ 2R(R+x)(1—cog"), (6) and leads to no net energy loss of the bunch. Its characteristic

magnitude(ignoring theQ/4me facton is a/Ré?, wherea is
which is, in general, hard to solve. Later, we will find solu- the bunch radius and is the bunch length. The coherent
tions in certain limits that yield interesting results. Note thatsynchrotron radiation force term is only non-negligible for
the retarded times depend strongly on the radius of curvasource particles behind the observer pdiwhere the re-
ture. What is referred to above as the “usual” space-chargeéarded position can become lajgand its characteristic mag-
term is not, in general, the same as the space-charge temitude for those particles is (#—1)%R? Because both
that a bunch in straight-line motion would experience; onlyy"/R?<1/8* (the straight-line assumption aboyeand

the scaling with beam energy is the same. a/R<1, either term could dominate; however, if the radius of
Using the geometry in Fig. 1, we find that the denomina-curvature is increasegeeping everything else constarthe
tor of the second fraction in E@5) is given by coherent synchrotron radiation effect integrated over a given
bending angle vanishes, whereas the effect from the nonin-
I ret— Fret Uret/ €= V2R(R+X)(1—cog’) +p*~ BR siny’ ertial space-charge force remains a constant.
— Bx(1—co¥’)sinl’. (7)

IV. ULTRARELATIVISTIC MOTION
If the retarded angle is very smdflor example, if the re- o . o
tarded distance is very small or the radius of curvature is In this limit, we assumes equals unity. This is a much

very largs, the denominator i§Z2R%+ pZ 2, where( is the more interesting limit, and leads to coherent synchrotron ra-
unretarded position of that end of the burj&. diation that actually becomes largé@ntegrated over a given

bending angleas we increase the radius of curvature of the
circular motion.
IIl. RELATIVELY STRAIGHT-LINE MOTION LIMIT There are two regimes within this limit where we can

If v?R¢ is much less than the radius of curvature of theS0IVe Eqs(5) and(6): (i) a pencil beam with no transverse
bunch’s circular motion, for all positionswithin the bunch,  €Xtent, andii) a pancake beam with no longitudinal extent.
the motion between the retarded time and the present time is (i) Péncil beamNow we are assuming that the beam has
essentially straight line. Let us consider a very large radius off® transverse sizéa~0). The transcendental expression for

curvature relative to the dimensions of the beam, so that thi1€ retarded position to fourth order in the retarded angle is

motion is essentially straight over the dimensions of the 5 ) '
beam. Now let us consider an observer point at a ragius {°=2L0'=-7""112, (10
from the line, and a source point at a positiRii behind the
observer point on the line, shown in Fig. 2. If the motion is Which has the solutiog’={/2 for source particles in front of
straight, the retarded position of the source point is given byhe observer point{ negative, and ¢'=(24%)"* for source
R+ z where the retarded distance is particles behind the observer poiigtpositive). By consider-
ation of the other terms in Ed6), we see that this limit is
2=R{B2y2+ v2\RE2B*+ BA(R2Z+ pd)l42.  (8)  valid if a/R<(240)?%6, which can always be made valid for
a large enough radius of curvatumecall that{~ §/R). This
The retarded distance is a strong function of the separatiolimit is valid for most of a 1-ps-long, 1-mm-radius bunch in
R¢ between the source point and the observer point. Foa bend with a radius of curvature greater than 20 cm.
example, if the beam is highly relativistie=2R¢B%y? if The particles in front of the observer point lead to small
the observer point is in front of the source poititis posi-  contributions ofa/R&? for the noninertial space-charge force
tive), z=— B2(R?{2+ p?)/2R¢ if the observer point is be- and 1R? for the coherent synchrotron radiation force. Like-
hind the source poinf/ is negative, andz=Byp if they are  wise, the noninertial space-charge force from source particles
at the same positiof¢=0). The retarded position is small behind the observer point is aboat3Ré6%. However, the
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force from the coherent synchrotron radiation due to the par- 02 ——— — — —
ticles behind the observer point scales as = »
c P
0.15
1-cog’ &) 2 3 .
- = 3 = 3IBsR B g /
SR({'—sing'—¢)  SR({'°16—¢) 37°6R¢ o 0.1 /
k=) /
2 S ¥ /
= 3SR (11 3 0.05 |
B i
which in fact becomes larger if the radius of curvature is % 0r ]
increased, keeping all other parameters fixed. This depen- & : 3
dence on the radius is the same as reported in R&fand -0.05 ——— bt —t— ——
[6]. -0.0004  -0.0002 0 0.0002  0.0004
(i) Pancake beam. In this limit, we assume thab is Present angle (radians)

very small. From Eq(6) this means that the bunch length
2 ’ H H
obeys§<a’/R¢’. Keeping the expression for the retarded FIG. 3. Comparison of the predicted retarded ar(gtgid line)

angle to fourth-order again, we now find that using the approximations after E¢L0) and the actual retarded
6 angle(dashed lingfound by solving Eq(6).
8'2= (x+ X7+ p73), (12)
the maximum allowed emittance for many proposed applica-
for both x positive and negative. The requirement on thetions.
bunch length for this limit now becomes< a®%RY2. This It is straightforward to numerically evaluate the space-

limit is approached for bunch lengths less than 100 fs for &harge forces using the expressions in E§$.and (6) for

bunch radius of 1 mm and a bend with a radius of curvatureither a single line of charge or for a bunch assembled from
of 1 m. For longer bunch lengths or larger radii of curvature,a collection of such lines. The main issue in a simulation of
a smaller and smaller fraction of the beam is within thisthis sort is the calculation of the retarded angle relative to the

limit. For this case, the denominator in E&) becomes observer pointsee Fig. 1 Itis tempting to use the ultrarela-
tivistic, pencil-beam approximatiorigiven in the paragraph
R¢' —(R+x)sin "= x?+ p?I3. (13 after Eq.(10)] for the retarded angle, because in that case,

] ) o the retarded angle is a very simple function of the present
Using this, we can show that the noninertial space-charggngies, In Fig. 3 we plot the retarded angle calculated in this
force scales as manner(the solid ling and the actual retarded angle calcu-

lated by direct solution of Eq(6) (the dashed ling as a
a/R - 1 (14) function of present azimuthal angiebetween the source and
8¢ X2+ 23 67°0R"a!” observer points, witk=1 mm,y=0 mm, a radius of curva-
ture of 1 m, and a beam energy of 100 MgRecall that a
and the force from the coherent synchrotron radiation scalegositive angle means that the observer point is in front of the
as source particlg.A 1-ps bunch extends over aboux 30~ *
rad. The approximate retarded angle is very accurate, with
1-cog’ L'%12 312 some deviation near a present angle of 0 rad. Since the force
55'\/X2+p2/35 8¢ \/X2+p2/3~ 212 sR12y172: (19 from the coherent synchrotron radiation vanishes.as the re-
tarded angle goes to zero, we would expect that this approxi-

Thus, in this limit, both forces have a similar magnitude, angmation for the retarded angle is fine for this force. In Fig. 4
scaling, and both can lead to a very significant degradation o€ plot the coherent synchrotron radiation force from one
the beam quality for large radii of curvature. However, as the2dge of a line of chargiy using one of the limits in Ed5)]
beam radius is increased, the amount of the bunch that cohsing the approximation for the retarded angfie solid
tributes to this force scales asRH2 and the forces inte- lin€) and using the actual retarded angiemerically solving

grated over the bunch distribution do not grow unbounded.Ed. (6)] as a function of the present angleln this and the
following figure, Fig. 5, the transverse offsets, the radius of

curvature, and the beam energy are the same as in the pre-
ceding figure, Fig. 3. There is no significant deviation, and
this approximation can predict the effect from the coherent
synchrotron radiation force to within 10%. However, the
In this section, we will incorporate the expression foundnoninertial space-charge force is only significant if the
for the total space-charge force from a line of charge in cirpresent angle is very close to zero, and we would expect that
cular motion into a numerical particle-tracking code. Thissmall errors in the approximation of the retarded angle can
will be used to quantify the emittance growth due to thebecome important. Note that the retarded angle enters into
noninertial space-charge force and the coherent synchrotradhis force only in the denominator, as described in &g.In
force for a typical accelerator bend system, over a widd~ig. 5 we plot the noninertial space-charge force using the
range of bunch and bend parameters. The emittance growHpproximation for the retarded andkhe solid ling and us-
calculated for typical parameters is large enough to exceeihg the actual retarded anglthe dashed line For this force,

V. NUMERICAL SIMULATIONS USING THE
NONINERTIAL SPACE-CHARGE AND COHERENT
SYNCHROTRON RADIATION FORCES
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-0.0004  -0.0002 0 0.0002  0.0004 emittance growth calculations.

Present angle (radian)

relative errors of 1% or less, typically only 5-10 iterations

fre needed, even with present angles very close to zero.
Using an existing line-to-point space-charge routine in the

particle-tracking simulation codearRMELA [7], we have in-

cluded the forces in Eq5) to determine the effect of the

noninertial space-charge and the coherent synchrotron radia-

éi_on forces for a short beam, a two-dipole “dogleg,” shown

in Fig. 6. We will quantify the amount of the beam quality

iggradation caused by these effects by calculating the trans-

FIG. 4. Comparison of the approximate coherent synchrotro
radiation force(solid line) using the approximation for the retarded
angle and the actual coherent synchrotron radiation fedeshed
line).

the actual retarded angle must be used in numerical simul
tions.

The retarded angle can be found by recursively solvin
Eq. (6). However, because the retarded angle must be foun
separately for each set of points in the simulation for eachf’
time step, the most efficient iteration scheme must be used. _ INNTR AV
An extrel?nely efficient scheme is defined by these stéps: S_BV‘KX HX5) = )%, (17

use the pencil-beam approximations after B) for afirst 4 \wherex’ is the angular divergence of a particle relative

rse normalized rms emittance growth in this system, where
e define the transverse normalized rms emittance by

guess of the retarded angfé®, (2) use to the centroid of the bunch and the brackets indicate en-
semble averages over the entire beam distribution. Note that
, V2R(R+X)(1—cog'*)+ p? there is no emittance growth in the absence of space-charge
= BR +¢ (16) forces for an initially monoenergetic beam in the two-dipole

system shown in Fig. 6, if the dipoles are identical. For these
, ) simulations, the beam path in the dipoles was assumed to be
[from Eq. (6)] to make a refined first guess for the retarded; 5 cm and the dipoles are separated by 1.8 cm. In addition,
angle,(3) solve Eq.(6) for the present_angle frqm the guess he bunch was nominally assumed to contain 1 nC of charge
for the retarded gngle and for a slightly shifted retarde nd to have a Gaussian longitudinal distribution with a full
angle, and use a linear extrapolation to make a new guess fWidth at half maximum{FWHM) of 1 ps, to have a uniform
the retarded angle that will lead to the desired present angl‘?adial distribution with a 1-mm radius. and to be at 400
Step(3) can be iterated until the relative error between theMeV. and the bend angle was assumed’to bétse radius of
actual present angle and the prese_nt ang_le_ corresponding éﬁrvéture of the circular motion was then about 115.chme
the guess for the retarded angle is sufficiently small. FOfniia| heam divergenceand consequently the initial emit-
tance was assumed to be zero. The emittance growth from
01 L L _ the “normal” space-charge force in E¢) (proportional to

g i ! ] 1/’ was about 0.02 mm mrad for these parameters, for
o 008 | ! comparison to the following results.
g i . PARMELA was modified to include separately both the
5 5 06 | : noninertial space-charge f(_)rce and the force fr_or_n thg coher-
g T ! ] ent synchrotron radiation, in order to clearly distinguish the
8 L ! ] effects from each force. In the next seven figures, the emit-
o 0041 . ] tance growth from each force will be presented separately,
-‘é’ [ 1 with the solid line for the noninertial space-charge force and
2 002 K 1 the dashed line for the force from the coherent synchrotron
S i R 1 radiation. By including both effects in a simulation, we have
= 0 — == — verified that the overall emittance growth is roughly the sum
-0.0004  -0.0002 0 0.0002 00004 of the individual emittance growths in quadrature. In Fig. 7
Present angle (radian) we plot the emittance growths from these effects as a func-

tion of the number of particles included in the simulation.
FIG. 5. Comparison of the approximate noninertial space-chargd he emittance growths do not depend strongly on the num-

force (solid line) using the approximation for the retarded angle andber of particles, which was expected for the coherent syn-
the actual noninertial space-charge fofdashed ling chrotron force but not necessarily for the noninertial space-



54 CALCULATION OF THE NONINERTIAL SPACE-CHARE . .. 843

1
&
|

0 200 400 600 800 1000 0 1000 2000 3000 4000 5000 6000
Number of particles in the simulation Beam energy (MeV)

Normalized rms emittance (mm mrad)
w

Normalized rms emittance (mm mrad)
S

FIG. 7. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-  FIG. 8. Emittance growth for a 1-ps, 1-kA, 1-mm-radius bunch
MeV bunch in the 5°, two-dipole system as a function of the num-in the 5° two-dipole system as a function of beam energy. The
ber of particles used in the simulations. The emittance growth fromemittance growth from the noninertial space-charge force is shown
the noninertial space-charge force is shown as a solid line and th&s a solid line and the emittance growth from the coherent synchro-
emittance growth from the coherent synchrotron radiation force igron radiation force is shown as a dashed line.
shown as a dashed line.

should be noted that the retarded angles are spread over a
charge force. For all the subsequent figures, 500 particlesmaller fraction of the bend as the bend angle is increased,
were used in the numerical calculations of the emittanceoughly to the: power. Also, as the bunch length decreases
growth from the coherent synchrotron radiation force; be-or the radius of curvature of the bunch trajectory increases,
cause the simulations of the noninertial space-charge forcis error will decrease, and will eventually vanish for a very
took roughly ten times more computer timi@sulting from  short bunch in a bend with a very large radius of curvature.
the iterations of the retarded timesve used only 200 par- These errors should be kept in mind; despite them, the scal-
ticles for the numerical calculations of the emittance growthings seen in the following figures should be valid. Note that
from the noninertial space-charge force. The error in thdor the nominal case described above, the normalized rms
emittance growth from the noninertial space-charge force inemittance growths are nearly equal in size and about 5
troduced by using so few particles was estimated by compamm mrad for the noninertial space-charge force and 3
ing the results of simulations of only a single time step withmm mrad for the coherent synchrotron radiation force. Even
up to 4000 particles. The results with 200 particles overestiwith these modest paramete@ 1-ps, 1-kA, 1-mm-radius
mate the emittance growth by about 20—25 %. The error inbean), these emittance growths are larger than the target
troduced by the transitions at the start and at the end of themittances of many future, high-brightness accelerators, and
dipoles is not significant because only particles very near théhese emittance growths must be avoided. For the nominal
observer point contribute a large noninertial space-chargease, the coherent synchrotron radiation leads to a fractional
force. However, the transitions can influence the forces fronenergy loss of the total bunch energy ok20™* and the
the coherent synchrotron radiation significantly. In the simu-oninertial space-charge force to a smaller fractional energy
lation, all particles are assumed to be in circular motion if theloss of 5<10 °.
center of the bunch is in the dipole. As a result, during the In Fig. 8, we plot the emittance growths from these effects
starting transition, some particles are considered to be in cims a function of beam energy, and see that both emittance
cular motion while they are actually undergoing straight-linegrowths approach a limit as the energy is increased. It is
motion (which leads to no noninertial space-charge force oiinteresting to note that the emittance growths from these ef-
coherent synchrotron radiation fojceDuring the ending fects for energies below 50 MeV are about an order of mag-
transition, these same particles are considered to hawgtude smaller than their asymptotic values.
straight-line motion while they are actually still in circular  In Fig. 9 we plot the emittance growth as a function of the
motion. The actual coherent synchrotron radiation force inbunch radius. Earlier estimates of the noninertial space-
duced by these particles on the rest of the bunch during theharge forcd 1] predicted an emittance growth that scales as
ending transition is somewhat less than the assumed coherghe square of the bunch radius, which appears to be only true
synchrotron radiation force during the starting transition befor bunch radii<l mm.
cause the retarded angle is underestimated. Considering the In Fig. 10 we plot the emittance growth as a function of
form of the coherent synchrotron radiation force in Fig. 4,bunch length. Earlier estimates of the noninertial space-
we see that a larger retarded angle leads to a lower force, baharge forcd 1] predicted an emittance growth that scales
also that the force is fairly flat. Estimates indicate that theinversely as the square of the bunch length, which appears
coherent synchrotron radiation forces calculated in this manvalid at the longer bunch lengths. Detailed analyses of the
ner are on the order of 25% too large for our nominal 1-pssimulations indicate that the nonzero bunch radius leads to
bunch and a 5° bend-angle dogleg, which directly translatean appreciable bunch lengthening while the bunch is in the
into an error of the same size for the emittance growth. ldipoles, and this could be influencing the results for very
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FIG. 9. Emittance growth for a 1-ps, 1-kA, 400-MeV bunch in  FIG. 11. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-
the 5°, two-dipole system as a function of the bunch radius. Thé/€V bunch in the two-dipole system as a function of the bend
emittance growth from the noninertial space-charge force is show@ndle. The emittance growth from the noninertial space-charge
as a solid line and the emittance growth from the coherent synchrd®rce is shown as a solid line and the emittance growth from the
tron radiation force is shown as a dashed line. coherent synchrotron radiation force is shown as a dashed line.

short bunch lengths. Recall that the error in the calculation of’® €mittance growth from the noninertial space-charge force
the coherent synchrotron radiation force increases as tHecreases. Note that the sum of the two emittance growths in
bunch length is increased. quadratqre leads to a total groyvth of abgut 6 mm mrad,

In Fig. 11 we plot the emittance growth as a function of "0Ughly independent of bend radius over this range.
bend angle. For very small bend angles, the emittance A very nice feature of this simulation technique is that it
growth appears to scale as the square of the bend angle, §sVery €asy to include the effect of image charges in the
predicted beforgl], but the growth becomes more linear for P€am box walls by including image lines of charge. In this
bend angles of 5° and beyond. Again, this is probably due t§"@nner, we can quantify the effect of suppressing the coher-
a distortion of the bunch shape as the bunch becomes curv&ft Synchrotron radiation by making the beam box dimen-
in the dipoles. The bunch is distorted more at the higher beng!©ns such that the microwave radiation from this effect can-
angles. not propagate, as suggested in REZs3,6]. The major effect

In Fig. 12 we plot the emittance growth as a function of " the bunch is that the image charges from th_e bea_m box
the bend radius of curvature, while maintaining 5° bends ifProduce a counterforce on the observer particles in the
the dipoles. As predicted, the emittance growth from the coPUnch; however, even if the radiation is suppressed it is not
herent synchrotron radiation does indeed increase with afi€ar that the forces leading to the emittance growth are sup-
increased bend radidand roughly as thé powep, whereas pressed. For simplicity, we will consider the case where
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FIG. 10. Emittance growth for a 1-kA, 1-mm-radius, 400-MeV FIG. 12. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-
bunch in the 5°, two-dipole system as a function of the bunchMeV bunch in the 5° two-dipole system as a function of the bend
length. The emittance growth from the noninertial space-chargeadius. The emittance growth from the noninertial space-charge
force is shown as a solid line and the emittance growth from theorce is shown as a solid line and the emittance growth from the
coherent synchrotron radiation force is shown as a dashed line. coherent synchrotron radiation force is shown as a dashed line.
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) decrease in the emittance growth from the coherent synchro-
o . s . .

£ 6 tron radiation force. We can observe that this suppression
£ E 3 technique would only be useful fail) very large radius

E o bends where the emittance growth from the noninertial
g g space-charge force vanishes af@) very small radius

S 4 E _ bunches(<0.1 mn) where the bunch can be placed very
.’é ' — T T T o =] close to the beam box wallwell within 1 mm for bunch

3 = ] lengths<1 ps.

£ 2f

5 : ] VI. CONCLUSION

O » ]

}% : ] We have developed a formalism that describes the nonin-
g ot ‘ . k] ertial space-charge force and the force from the coherent
2 0 0.5 1 1.5 2 25 synchrotron radiation. This formalism can be used in numeri-

Conducting plane position (cm) cal simulations of accelerator-bending systems in order to
: determine the emittance growth of a high-brightness beam in
FIG. 13. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400- @ bend. For the nominal bunch-dipole system we considered,
MeV bunch in the 5°, two-dipole system as a function of the sepafhe emittance growth is very significant, and roughly scales
ration between the bunch center and a conducting plane in order @S theoretically predicted. Over the range of the numerical
determine the effect of suppressing the coherent synchrotron radigimulations, the emittance growth from both effects together
tion. The emittance growth from the noninertial space-charge forcés roughly independent of the radius of curvature of the
is shown as a solid line and the emittance growth from the coherertunch in the dipoles. In addition, very little effect on the
synchrotron radiation force is shown as a dashed line. emittance growth was observed by suppressing the coherent

synchrotron radiation. These effects may be very important

there is only a single conducting plane near the bunch, pakg, fytyre, high-brightness accelerators with very short bunch
allel to the bend trajectoryin this case there is only one lengths.

image line of charge, instead of an infinite number as there
would be with two planes In the final figure, Fig. 13, we
plot the emittance growth from these forces as a function of
the separation between the bunch center and the conducting This work was supported by the Los Alamos Laboratory
plane. There is essentially no change in the emittance growtbirected Research and Development Program, under the aus-
from the noninertial space-charge force, and only a modegtices of the U.S. Department of Energy.
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