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Stochastic phenomena occurring within charged particle beams can be handled using the Vlasov-Fokker-
Planck generalization of the Vlasov equation. In particular, this nondeterministic approach can deal with
effects due to Coulomb scattering between the beam particles. Moreover, stochastic phenomena also occur in
computer simulations of charged particle beams. Both processes—although different in their physical nature—
can be described by the Vlasov-Fokker-Planck equation, since in both cases the underlying stochastic process
can be classified as a Markov process. This description is applied to beams in periodic focusing systems. We
derive an equation relating the change of them-phase space entropy to the change of rms emittance and
‘‘temperature weighted excess field energy.’’ This equation enables us both to improve our capability to
interpret the results of computer simulations, as well as to identify the conditions needed to minimize scattering
induced degradation of the quality of beams circulating in storage rings.@S1063-651X~96!06907-3#

PACS number~s!: 41.85.2p, 05.70.Ln, 05.40.1j

I. INTRODUCTION

Analytical approaches to particle motion that are based on
the Vlasov equation require that Liouville theorem—though
strictly valid only in the 6N-dimensionalG-phase space—
also applies to the six-dimensionalm-phase space, at least to
a good approximation. This is obviously correct in a regime
where the motion of single particles can be treated as being
independent of each other. In the more realistic case of in-
teracting particles, the Liouville theorem remains fulfilled in
them-phase space as long as the space charge fields can be
regarded as smooth macroscopic functions. This is no longer
true for cases where forces between individual particles play
a role. One example for this ‘‘non-Liouvillean’’ behavior is
the scattering induced emittance growth effect within ion
beams~‘‘intrabeam scattering’’!. A second example is the
appearance of numerical noise phenomena in computer
simulations of charged particle beams. As will be demon-
strated in this article, the main source for this computer arti-
fact originates in the modeling of a real beam, for perfor-
mance reasons, by a ‘‘simulation’’ beam containing several
orders of magnitude fewer particles.

In order to analyze non-Liouvillean phenomena, a gener-
alization of the Vlasov equation becomes necessary. In this
article we follow the approach applied earlier by Chan-
drasekhar@1#, who modeled the non-Liouvillean contribu-
tions to the dynamics of particles by the Fokker-Planck equa-
tion @2#. The basis as well as the limitation of this model is
the assumption that the process governing the non-
Liouvillean effects is Markovian. The conditions under
which the Fokker-Planck approach can be applied to the
realm of ion optics has been discussed in earlier papers@3,4#.

We will try to extend this ansatz in the following by in-
troducing an entropy@5# in a way that directly relates it to
the m-phase space density function. This quantity will then
serve as a means to identify beam dynamics phenomena that
are inherently irreversible and are hence associated with an
increase of entropy. It will be shown in Sec. III that the
so-defined entropy remains conserved as long as the
m-phase space Liouville theorem is fulfilled. Entropy

changes thus directly reflect the occurrence of non-
Liouvillean effects–which in turn will be described by the
Fokker-Planck equation. This is the basis on which, in Sec.
IV, the time derivative of the entropy will be calculated as-
suming that the beam’s velocity distribution is Maxwellian.

For a special class of Markov processes—namely, for so-
called Ornstein-Uhlenbeck processes@2#—this expression
may be considerably simplified. As demonstrated in Sec. V,
only constantFokker-Planck coefficients are then contained
in the equation for the change of entropy. We may restrict
ourselves to the Ornstein-Uhlenbeck model if the non-
Liouvillean part of the dynamics is small compared to that
conserving them-phase space volume. This is always true
for charged particle beam optics.

If the Fokker-Planck coefficients appertaining to each de-
gree of freedom do not differ significantly from each other so
that the diffusion and friction processes can be regarded as
approximately isotropic, we may set up the fluctuation-
dissipation theorem in its simplest form. This was first done
by Einstein@6#, in his work on the Brownian motion of par-
ticles. It is obviously valid in situations not too far from a
fictitious thermodynamic equilibrium. We will show that en-
tropy growth is then directly related to heat transfers between
different degrees of freedom within the beam.

In Sec. VI we switch back to a more general treatment
and we first of all review the idea of a moment analysis of
the Vlasov-Fokker-Planck equation@7,8,4#. We are then pre-
pared to set up the equation that relates entropy growth to
changes of the rms emittance in conjunction with changes of
the ‘‘excess field energy.’’ In this context, the known equa-
tion relating changes of the rms emittance to changes of the
‘‘excess field energy’’—first derived by Wangler
@9#—appears as a special case.

In the last section, the entropy equation is applied to one-
and two-dimensional~2D! beam models commonly used as
simplifying concepts in the theory of charged particle beams.
The well known phenomenon that simulations of periodic
quadrupoles channels always exhibit—in contrast to solenoid
channels—a specific increase of the rms emittance is then
easily explained and identified as a computer noise artifact.
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Furthermore, a scaling law for intrabeam scattering effects in
real ~three-dimensional! beams is obtained. It states that the
emittance growth rates are determined both by the general
beam parameters as well as by the particular optics of the
beam transport system.

II. THE ENTROPY CONCEPT

We start our analysis by defining the six-dimensional nor-
malizedm-phase space density function

f5 f ~x,y,z,px ,py ,pz ;t !.

The quantity f d3qd3p then represents the probability of
finding a particle inside a volumedt5d3qd3p around the
phase space point (x,y,z,px ,py ,pz) at time t. Following
Shannon@10#, the related information entropyS is given by

S~ t !52kBE f lnf dt, ~1!

with f the six-dimensionalm-phase space density function.
The change of the so-defined entropy, hence the time deriva-
tive of Eq. ~1!, then follows as:

dS

dt
52kBE ~11 lnf !

] f

]t
dt. ~2!

This definition of an entropy does not contain any resolution-
dependent features. If we could manage to measure directly
them-phase space entropy, we would obtain the value ofS
as defined in Eq.~1! only in the limit of perfect resolution. In
contrast, a real measuring device would provide us with a
reduced amount of information on them-phase space density
function. We could expect the measured coarse-grained en-
tropy Scg to be larger than the true entropyS. In any case,
the respective value ofScg depends largely on the specific
resolution of a measuring device. It is thus not suited for a
general purpose analysis. We will therefore use the entropy
definition ~1! throughout in this article, keeping in mind that
it only constitutes anidealizedentropy with regard to finite
resolution measuring devices.

III. LIOUVILLEAN DYNAMICS

It can easily be shown that the total time derivative of the
m-phase space density functionf vanishes, i.e., the
m-phase space Liouville theorem applies if the particles do
not interact and if the time evolution of their coordinates
follows Hamilton’s canonical equations. For charged particle
beams whose self-fields must be taken into account, Liou-
ville’s theorem for them-space f remains fulfilled if the
self-fields can be treated analogously to the external focusing
fields. Explicitly,d f /dt50 leads to

] f

]t
5(

i51

3 S ] f

]pi

]H

]xi
2

] f

]xi

]H

]pi
D . ~3!

Inserting Eq.~3! into ~2!, we obtain, after integration by
parts,

dS

dt
50.

Here we have made the reasonable physical assumption that
the phase space densityf as well as all its derivatives vanish
at the boundaries of the populated phase space. Conse-
quently, all integrated expressions evaluate to zero at the
integration boundaries. Summarizing the above result, we
may write

d f

dt
50⇒ dS

dt
50 , ~4!

i.e., the entropy change vanishes as long as Liouville’s theo-
rem applies forf . Liouville’s theorem for them-spacef does
not apply if, for example, particle-particle interactions~‘‘in-
trabeam scattering’’! take place. Thus if the actual ‘‘granu-
larity’’ of the charge distribution must be taken into account,
we can no longer assume that the ‘‘single-particle’’ distribu-
tion function f , i.e., the lowest order of the ‘‘Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy’’@11#, contains all
necessary data on the actual beam.

According to~4!, entropy changes are directly related to
violations of them-phase space Liouville theorem. An in-
crease of entropy just implies an increase of them-phase
space volume that the beam occupies and hence an absolute
degradation of the beam quality. Processes that cause a phase
space filamentation whileconserving the m-phase space
Liouville theorem donot change the entropyS, as defined in
Eq. ~1!. Surely, such a phase space filamentation means a
loss of beam quality in a practical sense due to a lack of
means to reestablish the original phase space state. Neverthe-
less, this process is not reflected by our definition of the
entropy since in the infinite resolution limit a filamentation
does not mean any loss of information.

IV. ENTROPY CHANGE ASSOCIATED WITH A
MARKOV PROCESS

A precise analysis of effects that are due to the ‘‘granu-
larity’’ of the charge distribution requires taking into account
the phase space coordinates ofindividual particles. Obvi-
ously this kind of problem can never be tackled on the basis
of the deterministic approach embodied in the Vlasov equa-
tion. On the contrary, astochasticcontribution to the net
forces acting on a particle must be added. In analogy to the
Fokker-Planck description of the Brownian motion of par-
ticles, we may model the action of random forces within a
beam by a process whose state at timet1Dt depends only
on its state at timet andnot on earlier times. HereDt de-
notes a characteristic time interval that must be small as
compared to the time scale of macroscopic changes of the
system. A stochastic process possessing this property is usu-
ally referred to as a Markov process. It is easily shown@12#
that the equation of motion of such processes is given by the
Fokker-Planck equation. The description of particle dynam-
ics including stochastic forces can thus be based on the com-
bined Vlasov-Fokker-Planck equation@1#
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] f

]t
1

pW

m
•¹W xf1~FW ext1qEW sc!•¹W pf5F] f]t G

FP

, ~5!

with

F] f]t G
FP

52(
i

]

]pi
@Fi~pW ,t ! f #

1m2(
i , j

]2

]pi]pj
@Di j ~pW ,t ! f #.

In this notation,FW ext stands for the applied external focusing
forces,qEW sc for the macroscopic electric space charge forces,
Fi(pW ,t) for the ‘‘drift vector’’ components of the Fokker-
Planck equation, andDi j (pW ,t) for its ‘‘diffusion tensor’’ el-
ements. As shown in the preceding section, the Vlasov terms
do not contribute to any entropy production. Therefore, Eq.
~2! can be rewritten as

dS

dt
52kBE ~11 lnf !F] f]t G

FP

dt. ~6!

Explicitly this means

dS

dt
5kBE ~11 lnf !H(

i

]

]pi
@Fi~pW ,t ! f #

2m2(
i , j

]2

]pi]pj
@Di j ~pW ,t ! f #J dt. ~7!

Integrating the terms of the first sum twice by parts, we
obtain

E ~11 ln f !
]

]pi
@Fi f # dt5E ]Fi

]pi
f dt.

Again we take advantage of the fact that for real beams the
phase space densityf as well as all its derivatives vanish at
the integration boundaries.

It has been shown by Reiser@13# that the Maxwell-
Boltzmann distribution is the only one that provides a
steady-state solution of both, the time-independent Vlasov
equation and the time-independent Fokker-Planck equation.
We conclude that this distribution is best suited for the de-
scription of a ‘‘steady-state beam,’’ i.e., a beam which has
adapted itself to the focusing structure. Since the applied
external forces vary along that structure, a charged particle
beam can never completely settle down to equilibrium.
Therefore, the instantaneous velocity distribution of a real
beam must be approximated by a nonisotropic Maxwell-
Boltzmann distribution that generalizes the steady-state ide-
alization

f5g~x,y,z;t !expS 2
px
2

2mkBTx
2

py
2

2mkBTy
2

pz
2

2mkBTz
D ,

~8!

with g(x,y,z;t) as the self-consistent charge density and the
exponential function describing the distribution of the inco-
herent part of the kinetic particle energy. The coherent part

of the kinetic energy of the beam particles—which originates
in the ‘‘breathing’’ of the beam envelopes—can be elimi-
nated since it does not cause any entropy changes. We may
therefore restrict ourselves in Eq.~8! to a principle axes for-
mulation even for the case of a strong focusing and disper-
sive system.

With the phase space density function~8!, the terms of the
second sum of Eq.~7! evaluate to

m2E ~11 lnf !
]2

]pi]pj
@Di j f #dt52

m

kBTi
d i j E Di j f dt.

In summary, the change of entropy caused by a Markov pro-
cess can be expressed in terms of the Fokker-Planck coeffi-
cients as

dS

dt
5kB(

i51

3 S K ]Fi

]pi
L 1

m

kBTi
^Dii & D , ~9!

wherein the angle brackets denote the respective averages
over them-phase space density functionf .

V. ORNSTEIN-UHLENBECK PROCESSES

The Fokker-Planck model, as expressed mathematically
in Eq. ~5!, is based on the assumption that the action of the
stochastic components of the interaction forces can be de-
scribed in terms of a diffusion process in velocity space that
is opposed by a dynamical friction force. If these stochastic
contributions to the dynamics of a system are small, we may
restrict ourselves to a subset of Markov processes, referred to
as Ornstein-Uhlenbeck processes@14#. The latter are defined
by the property that its Fokker-Planck equation contains a
linear drift coefficient together with a constant diffusion co-
efficient

Fi52b f ; i pi , b f ; i ,Dii5const. ~10!

This ansatz corresponds to Stokes’s friction law in classical
mechanics. It applies to cases where the friction forces are
small in comparison to all other forces relevant for the dy-
namics of the system. This is true in our context, since taking
into account friction effects among the beam particles always
plays the role of a small correction. Therefore Eq.~9! sim-
plifies to

dS

dt
5kB(

i
S 2b f ; i1

m

kBTi
Dii D . ~11!

Equation~11! forms the basis for establishing a relation be-
tween entropy and rms emittance, as will be shown in the
next section.

At this point it is interesting to consider the special case
of isotropic Fokker-Planck coefficients. This is surely correct
for situations not too far from a fictitious thermodynamic
equilibrium where the diffusion as well as the friction pro-
cesses can be treated as being approximately isotropic. Equa-
tion ~11! then becomes

dS

dt
5kB(

i
S 2b f1

m

kBTi
D D .
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The diffusion process arising from the fluctuations of the
self-fields and the friction effects associated with particle-
particle interactions arenot independent of each other. On
the contrary, the diffusion coefficientsDii are related to the
friction termsb f ; i via a fluctuation-dissipation theorem. In
the simplest case of an isotropic process, this theorem is
embodied in the Einstein relation@6#

D5b f

kBT

m
,

wherein T5 1
3( iTi stands for the equilibrium temperature.

The entropy change due to a temperature balancing process
may then be written as

dS

dt
5kBb f(

i
S TTi 21D , ~12!

or, explicitly

dS

dt
5
1

3
kBb fF ~Tx2Ty!

2

TxTy
1

~Tx2Tz!
2

TxTz
1

~Ty2Tz!
2

TyTz
G .

~13!

Obviously, the entropyS(t) remains unchanged in the case
of temperature equilibrium while increasing during tempera-
ture balancing:

dS

dt H 50 for temperature equilibrium

.0 during temperature balancing.

The total heat exchangedQ/dt vanishes, as is easily seen
from Eq. ~12!

dQ

dt
[(

i
Ti
dSi
dt

5kBb f(
i

~T2Ti ![0. ~14!

If we exclude effects such as radiation damping or dissipa-
tion of electro-magnetic energy in the surrounding structure
and assume that no external heating or cooling devices are
active, this vanishing of the total heat exchange is not sur-
prising since a charged particle beam cannot exchange heat
with the focusing lattice. Within the beam, heat exchange
between the degrees of freedom may occur, leading to an
entropy growth as described by Eq.~13!. We conclude that
equipartitioning effects occurring within initially thermally
unbalanced charged particle beams are always associated
with an irreversible degradation of the beam quality as a
whole. Furthermore instantaneous temperature differences
may exist even if the beam is perfectly matched in all its
moments on the average over one focusing period. In beam
transport systems with quadrupole focusing, apart from iso-
lated locations, the instantaneous transverse temperatures are
always different. Therefore a certain growth rate—depending
on the size of the temperature differences—can never be
avoided.

The time scale for this process is determined by the fre-
quencyb f . As the result of averaging procedures@12,13#,
this follows from the global beam parameters as:

b f5
16Ap

3
ncS q2

4pe0mc2D
2S mc2

2kBT
D 3/2lnL. ~15!

In this equation,n stands for the real space average particle
density and lnL for the Coulomb logarithm.

VI. ENTROPY AND RMS EMITTANCE

A second order moment analysis of the generalized Liou-
ville equation~5! yields the following set of coupled equa-
tions of motion@4# for each phase space planei51,2,3:

d

dt
^xi

2&2
2

m
^xipi&50,

d

dt
^xipi&2

1

m
^pi

2&2^xiFi
ext&2q^xiEi&5^xiFi&, ~16!

d

dt
^pi

2&22^piFi
ext& 22q^piEi&

52^piFi&12m2^Dii &,

with Fi
ext the components of the external focusing forces.

Again, the angle brackets enclose the respective averages
over the phase space density function:^a&5*a fdt. Using
canonical variables, the rms emittance in the beam system is
usually defined as

« i ,rms
2 ~ t !5^xi

2&^pi
2&2^xipi&

2. ~17!

Since no other definitions of emittance are used throughout
this article, we will skip the index ‘‘rms’’ in the following.
On calculating the time derivative of« i

2(t), we readily obtain

d

dt
« i
2~ t !52@^xi

2&^piFi
ext&2^xipi&^xiFi

ext&#12q@^xi
2&^piEi&

2^xipi&^xiEi&#12@^xi
2&^piFi&2^xipi&^xiFi&#

12m2^xi
2&^Dii &. ~18!

The terms containing the external field components cancel if
these fields can be regarded as linear

Fi
ext}xi⇔^xi

2&^piFi
ext&[^xipi&^xiFi

ext&. ~19!

The so-called ‘‘excess field energy,’’ namely, the difference
between the field energyW of an arbitrary charge distribu-
tion and the field energyW u of auniformcharge distribution
of the same rms size, is given by@9,15#

d

dt
~W2Wu!52

Nq

m (
i

S ^piEi&2
^xipi&

^xi
2&

^xiEi& D .
~20!

We observe that the terms of the sum in Eq.~20! exactly
correspond to the moments involving the electric self-fields
Ei in ~18!.

Assuming again that the non-Liouvillean process can be
approximated by an Ornstein-Uhlenbeck process, we may
simplify the Fokker-Planck coefficients according to Eq.
~10!. Together with Eqs.~19! and ~20!, the equation of mo-
tion for the rms emittance~18! can be rewritten as
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1

^xi
2&

d

dt
« i
2~ t !522b f ; i

« i
2~ t !

^xi
2&

12m2Dii2
2m

N

d

dt
~Wi2Wi

u!,

~21!

with Wi2Wi
u denoting formally thei th component of the

sum ~20!.
The global ‘‘temperature’’Ti of the i th degree of freedom

of a charged particle beam can be expressed in terms of
second order beam moments

kBTi5
1

m

« i
2~ t !

^xi
2&

, ~22!

provided that the projections of the phase space density func-
tion f onto two-dimensional subspaces (xi ,pi) are homoge-
neously populated. To a good approximation, this expression
can be applied to arbitrary phase space density functionsf
since the respective error always vanishes at the extremities
of the beam envelopes@4#.

With the help of this approximation, the temperatureTi
contained in the equation for change of entropy~11! can be
replaced by the corresponding beam moments

dS

dt
5(

i

dSi
dt

,
dSi
dt

5kBS 2b f ; i1m2
^xi

2&

« i
2~ t !

Dii D . ~23!

Inserting Eq.~23! into ~21!, we obtain an equation relating
emittance, entropy and excess field energy

1

^xi
2&

d

dt
« i
2~ t !5

2

kB

« i
2~ t !

^xi
2&

dSi
dt

2
2m

N

d

dt
~Wi2Wi

u!. ~24!

As the last step, the summation overi must be performed

(
i

1

^xi
2&

d

dt
« i
2~ t !1

2m

N

d

dt
~W2Wu!

52m(
i
Ti

dSi
dt

50 for isotropic FP coefficients.

~25!

As stated before in Eq.~14!, the right hand side of~25! sums
up to zero under the precondition of isotropic Fokker-Planck
coefficients. Equation~25! then constitutes the known rela-
tionship between the changes of the rms emittances and the
change of the excess field energy, first derived by Wangler
@9,16,15# in a pure Vlasov approach. As we learn now, this
equation even holds if Liouville’s theorem in them-phase
space does not apply as long as the non-Liouvillean effects
can approximately be described by isotropic Fokker-Planck
coefficients.

Multiplying Eq. ~24! with ^xi
2&/2« i

2(t) leads to the
equivalent form

1

kB

dSi
dt

5
d

dt
ln« i~ t !1

m

N

^xi
2&

« i
2~ t !

d

dt
~Wi2Wi

u ! . ~26!

Summing now Eq.~26! over i , the time derivative of the
entropy functionS(t) becomes

1

kB

dS

dt
5

d

dt
ln«x~ t !«y~ t !«z~ t !1

m

N(
i

^xi
2&

« i
2~ t !

d~Wi2Wi
u!

dt

5
d

dt
ln«x~ t !«y~ t !«z~ t !2q

3(
i

^xi
2&^piEi&2^xipi&^xiEi&

« i
2~ t !

. ~27!

This equation constitutes a general relation between entropy
change, the change of the rms emittances, and the tempera-
ture weighted change of the excess field energy for the realm
of ion optics. It thus confirms the heuristic approach pre-
sented earlier by Lawson, Lapostolle, and Gluckstern@17#,
who showed the close relation between the entropy and beam
emittance.

With the heat differentialdQi defined as

dQi5kBTidln« i1
1

N
d~Wi2Wi

u!,

Eq. ~27! reads

dS5(
i

dQi

Ti
,

using the temperature definition of Eq.~22!. For the special
case of isotopic Fokker-Planck coefficients, the emittance to
the excess field energy relation~25! then takes on the simple
form

(
i
dQi50.

We note that Eq.~24! as well as Eq.~26! do not contain any
Fokker-Planck coefficients—although they are derived on
the basis of the Fokker-Planck approach~5!. Recalling Eq.
~21!, we see that the Fokker-Planck related moments exactly
agree with those appearing in Eq.~9!, provided that we re-
strict ourselves to Ornstein-Uhlenbeck processes, and the
global temperature definition~22!. Under these precondi-
tions, the insertion of Eq.~23! into Eq. ~21! leads to a com-
plete replacement of all terms containing Fokker-Planck co-
efficients by the function for the change of entropy. The
Fokker-Planck approach is thus included in Eqs.~24! and
~26! just by allowing for changes of the entropy~1!, andnot
by eliminating entropy changesdSi a priori, as it is done in
a Vlasov approach.

In the course of this derivation, the temperaturesTi , as
defined in Eq.~22!, are understood as global temperatures
pertaining to thei th degree of freedom. Implicitly, we thus
assumed that no heat is transferred within each degree of
freedom. In other words we only treat cases where the beam
has already adapted itself to the focusing lattice, i.e., cases
where no transient effects are observed. This condition is not
necessarily fulfilled. It has been shown numerically by vari-
ous authors~cf. @7,18,19#, for example! that a redistribution
of the populated phase space—occurring if a beam is
launched with a non-self-consistent phase space filling—also
constitutes an irreversible process. These effects are not cov-
ered by our approach since for non-self-consistent phase
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space densities, a transfer of heat also takes place within
each degree of freedom. A global temperature description is
not sufficient under these circumstances. On the contrary, a
local, i.e., spatially dependent ‘‘temperature’’ definition
must be used instead.

VII. DISCUSSION

A. 1D beam model

For the sake of mathematical simplicity, the sheet beam
model is sometimes applied, since it allows analytical solu-
tions for cases where more realistic models depend on nu-
merical methods. Of course, the one-dimensional beam
model is oversimplified in the sense of not allowing heat
transfer to other degrees of freedom. With regard to the deri-
vations of the last section, this means that no summation
over i must be performed. In other words, because of this
model, Eqs.~25! and ~27! are equivalent

1

kB

dS

dt
5

^x2&
2«x

2~ t !
F 1

^x2&

d

dt
«x
2~ t !1

2m

N

d

dt
~W2Wu!G[0.

Consequently, all solutions of the Vlasov-Fokker-Planck
equation~5! are reversible if the initial phase space density
function is intrinsically matched. This behavior of sheet
beams has been described and numerically simulated earlier
by Anderson@19#, who showed the existence of strictly re-
versible changes of the rms emittance.

B. 2D beam model

The two-dimensionalx-, y-beam model is widely used in
analytical as well as in numerical approaches to the study of
the transformation of unbunched~‘‘coasting’’! beams. With
the equilibrium temperatureT5 1

2(Tx1Ty) for the 2D beam
model, Eq.~12! for the entropy change near thermodynamic
equilibrium can be rewritten as

dS

dt
5
1

2
kBb f

~Tx2Ty!
2

TxTy
. ~28!

Beam transport without an increase of entropy~i.e., revers-
ible beam transformations! are thus possible if either

~1! b f[0, which means that no non-Liouvillean effects
are present, or if

~2! Tx[Ty , i.e., the beam stays round throughout its
propagation.

The first case just describes the pure Vlasov approach,
which is, by our definition of the entropy in Eq.~1!, always
associated with a vanishing entropy growth, as already stated
in Sec. III.

The second case states that no degradation of the beam
quality occurs, as long as no heat is transferred between the
transverse degrees of freedom. This condition is met in the
2D beam model if we transform a matched beam through a
continuous or interrupted solenoid channel.

We note that with regard to intrabeam scattering effects,
the heat exchange with the longitudinal degree of freedom
cannot be neglected. In other words, the 2D beam model is
not adequate for the estimation of emittance growth rates due
to intrabeam scattering. This topic will be discussed in the
next subsection.

Nevertheless, Eq.~28! can help us to interpret results of
computer simulations that are based on the 2D beam model.
The upper three curves in Fig. 1 show the evolution of the
rms-emittance growth factors along a quadrupole channel as
they are obtained for different numbers of macroparticles
used in the simulation, while keeping all other simulation
parameters unchanged. In all cases, the beam is launched
with a self-consistent water-bag distribution@20,21,15# for
the initial phase space population. The external focusing has
been approximated by strictly linear forces and the hard edge
lens model. The space charge fields have been determined
using a fastx,y Poisson solver with 128 by 128 mesh nodes.
Under these circumstances only the space charge fields can
contribute to a growth of the rms emittances. Since the
growth rates obtained as well as the amplitude of the emit-
tance fluctuations are approximately inversely proportional
to the number of macroparticles used in the simulation, it is
obviously the inaccuracies in calculating these fields that are
responsible for the growth of the rms emittance. With regard
to Eq. ~28!, we conclude that these inaccuracies induce a
positive ‘‘simulation friction coefficient’’b f

sim, which is to
first order inversely proportional to the number of simulation
particles.

Using Eq.~28! to explain simulation results means, after
all, to use the Fokker-Planck equation~5! as the basis for the
description of purely numerical noise phenomena. The valid-
ity of this approach becomes obvious if we recall that the
gradual loss of information due to simplifications and round-
off errors itself constitutes a Markov process which in turn
can be modeled by the Fokker-Planck equation.

This statement is confirmed by the simulation results dis-
played in the lower curve of Fig. 1. It shows the evolution of
the rms-emittance growth factors during the propagation of a
matched beam through a periodic solenoid channel. Since the
beam stays round along the entire channel, no transverse
temperature gradient exists, hence no entropy change is ex-
pected according to Eq.~28!. We observe that the emittance
fluctuations are similar in amplitude to those in the quadru-

FIG. 1. Emittance growth factors versus number of cells ob-
tained by 2D particle-in-cell simulations of beam transport channels
at s0560°, s515°. s denotes the propagation distance of the
beam,S denotes the period length. The upper three curves display
the results of quadrupole channel simulations with different num-
bers of simulation particles. For comparison, the lowest curve
shows the emittance growth factors of a periodic solenoid channel
simulation.
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pole channel simulation performed with the same number of
macroparticles. This means that in both cases the fluctuating
part of the self-fields impose a similar ‘‘simulation friction
coefficient’’ b f

sim. Yet, due to the lack of temperature differ-
ences, these fluctuations donot produce an overall increase
of the rms emittance.

C. 3D beam

We first consider the hypothetical case of a beam that is
thermally balanced in all three dimensions, i.e.,
T5Tx5Ty5Tz . As is easily seen, Eqs.~25! and ~27! are
again equivalent in this case, which in turn means that the
entropy remains constant. If we imagine this beam is
‘‘breathing’’ isotropically in all three directions, a com-
pletely reversible exchange between the rms emittances and
the excess field energy~20! would take place. In this sense
we may state that

~1! a change of the rms emittance due to a change of the
excess field energy is areversibleprocess, whereas

~2! a change of the rms emittance due to a flow of heat is
always anirreversibleprocess.

In real beam guiding systems, we must always cope with
a specific amount of temperature anisotropy and hence al-
ways deal with a positive growth rate of the entropy. The
elementary mechanism responsible for the transfer of inco-
herent kinetic energy from one degree of freedom to another
is constituted by the effect of Coulomb scattering of indi-
vidual beam particles. This effect forms the basis for deriv-
ing Eq.~15!. We may therefore use it in order to estimate the
time scale for heat flow effects, or, equivalently, the scatter-
ing induced irreversible emittance growth rates. In order to
gain a better physical insight, the frequencyb f can be ex-
pressed alternatively as

b f5A2

p
~ t scattering!

-1G2lnL,

with t scattering
21 denoting the number of scattering events

within the beam per time~‘‘scattering rate’’!, andG the di-
mensionless coupling constant of the beam plasma.

If we neglect the~reversible! changes of the rms emit-
tance due to changes of excess field energy, on the basis of
Eqs. ~16! we may easily establish a closed coupled set of
generalized envelope and temperature change equations
@22,4# which can be directly integrated. The results of an
integration of this set of equations based on the geometry of
the Gesellschaft fu¨r Schwerionenforschung~GSI! experi-
mental storage ring~ESR! are plotted in Fig. 2. It includes
the dispersion function@23# for the particular tuning of the
ring. The ratios of the initial emittances have been optimized
to yield the same growth rates in all three dimensions. The
upper dashed curve thus displays the minimum entropy
growth (S2S0)/kB during one turn.

Integrating Eq.~13! we find

1

kB
@S~ t !2S0#5

1

3
b f t@ I xy~ t !1I xz~ t !1I yz~ t !#,

with

I xy~ t !5
1

t Et0
t @Tx~ t8!2Ty~ t8!#2

TxTy
dt8,

and with I xz(t) and I yz(t) to be defined likewise. If the glo-
bal beam data, thusb f , is given, we can only reduce the
entropy production by minimizing the dimensionless sum

I ~ t1!5I xy~ t1!1I xz~ t1!1I yz~ t1!,

wheret1 denotes the time the beam centroid needs to propa-
gate over one focusing period. For a given structure, this
implies minimizing the average temperature gradients and
hence perfectly matching the beam to the guiding structure in
all three dimensions. In our example~Fig. 2!, simulating the
transformation of a coasting beam through one turn of the
ESR—this has been performed by rms matching the trans-
verse beam parameters while at the same time adjusting the
initial emittance and momentum spread ratios.

If we are in the design phase of an ion optical system, we
may include minimizing ofI (t1) as part of the optimization

FIG. 2. Envelopes~solid lines!, emittance
growth functions («x /«x;021: dotted line,
«y /«y;021: dashed line,«z /«z;021: dashed-
dotted line!, and entropy function (S2S0)/kB
~upper dashed line! of a thermally matched beam
passing through one turn of the GSI experimental
storage ring~ESR! at Qh52.31 andQv52.25.
The scale on the right hand side applies to the
dimensionless emittance and entropy growth
functions.
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of the structure under consideration. This is just an alterna-
tive formulation of Reiser’s suggestion of a thermodynamic
accelerator design@24#.

VIII. CONCLUSIONS

We have used a resolution-independent entropy that fol-
lows directly from the six-dimensionalm-phase space den-
sity function f . This entropy possesses the property of re-
maining constant as long as Liouville’s theorem applies for
f . Since in reality as well as in computer simulations of
charged particle beams this is not true in a strict sense, we
always have to cope with a certain rate of dilution of the
m-phase space density and hence always accept some in-
crease of entropy. For the estimation of this growth, a new
equation has been derived on the basis of the Fokker-Planck
approach. It relates the change of entropy to the joint

changes of the rms emittance and the temperature weighted
excess field energy. From this equation, we can conclude that
the exchange of rms emittance and excess field energy may
be performed without a change of entropy and hence in a
reversible manner. In contrast to this, it has been shown that
all heat transfers within the beam—feeding thermal energy
from one degree of freedom to another—are always associ-
ated with an increase of beam entropy and thus always lead
to an irreversible degradation of beam quality.
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