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Suppression of chaos and stabilization of an unstable steady state in a dissipative nonlinear system are
demonstrated numerically by means of large-amplitude slow~nonresonant! modulation of a control parameter.
A wide domain of modulation amplitudes and frequencies is allowed. The steady state becomes influenced by
the slow modulation, although in some cases this influence is very small. It can be said that suppression of
chaos occurs, naturally, without any further action, in slowly modulated systems.@S1063-651X~96!03106-6#

PACS number~s!: 05.45.1b, 42.50.Mi, 42.50.Lc, 42.60.Fc

INTRODUCTION

Much attention has been devoted recently to the possibil-
ity of converting deterministic chaos appearing in nonlinear
systems to regular behavior. The basic idea is to stabilize
unstable periodic orbits embedded in chaos, which is per-
formed by feedback@1# or nonfeedback@1~b!,2# techniques.
In the case of nonfeedback control methods a small periodic
perturbation of the chaotic system is usually introduced
@2,3#. On the other hand, it has been shown that control of
chaotic behavior can also be achieved by stabilization of an
unstable steady state. This has been performed, in particular,
by means of the occasional proportional@4~a!# and continu-
ous @4~b!# feedback techniques. In this work we show that
suppression of chaos can also be achieved by large-
amplitude slow periodic modulation of a control parameter
of the system. In a wide domain of operating conditions, we
show that by slowly modulating a chaotic system it can be-
come anchored to an unstable fixed point in phase space,
following quasistatically its slow forced periodic motion, in-
stead of remaining on the chaotic attractor of the unperturbed
system. A lower bound for the allowed domain of modula-
tion amplitudes is found, which in some cases can be very
low.

We show this phenomenon by considering three different
examples taken from the field of laser dynamics, although
the main conclusions that will be drawn can also apply to
other nonlinear dissipative systems. These examples are of
increasing complexity, and in each case modulation is ap-
plied to a different parameter of the system. In this way, each
example will correspond, as will become evident below, to
different conditions from the point of view of nonlinear dy-
namics.

I. RESONANT LORENZ-HAKEN LASER

The conceptually most fundamental class of laser is the
so-called two-level Lorenz-Haken laser model, which is

ruled by the following set of equations~see, for instance
@5–9#!:

Ė52sE~11 id!1sAP,

Ṗ52P~12 id!1ED,

Ḋ52b~D21!2~b/2!~P*E1E*P!, ~1!

where the dimensionless complex variablesE andP and the
real variableD represent the laser field amplitude, medium
polarization, and population inversion, respectively.A is the
pump strength,d5dCA /(11s), and the dimensionless pa-
rameterss, b, anddCA represent the cavity losses, atomic
~or molecular! longitudinal relaxation rate, and cavity
detuning—the difference between the cavity and atomic
resonance frequencies—respectively, which are normalized
with respect to the transverse relaxation rateg' ~time is
expressed in units ofg'

21).
On resonance, i.e., ford50, Eqs.~1! reduce to the well-

known real Lorenz-model equations@6# through the transfor-
mation x5AbE, y5AAbP, and z5A(12D), with r[A.
For A.1, Eqs. ~1! have a nontrivial stationary solution
Ē5(A21)1/2, which, in cases.b11 ~‘‘bad cavity’’ con-
dition!, becomes unstable through a subcritical Hopf bifurca-
tion when the pump reaches the value
AHB5s(s1b13)/(s2b21), which is known as the sec-
ond laser threshold. Above this threshold the system falls
into a chaotic attractor~the well-known Lorenz attractor!,
which exists in phase space above a certain pump threshold
ACH , smaller thanAHB . For pumping betweenACH and
AHB , the stable fixed point corresponding to the steady-state
solution and the chaotic attractor coexist in phase space, the
passage from the first to the second being possible only
through hard-mode excitation. It is known, for example, that
in case of an NH3 far-infrared laser@10#, typical values of
the system parameters ares52.0 andb50.25, for which
ACH'11 andAHB514.

Let us now modulate, in the cased50, the pump param-
eterA in the formA(t)5A01mcos(Vt1w), whereA0 , m,
V, andw denote the average pump value and the modulation
amplitude, frequency, and phase, respectively. We choose
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V to be well below the natural relaxation rates of the system
s, b, andg' ~i.e.,V!1), and the values ofA0 andm are
taken in such a way thatA(t) crosses up and down the
thresholds for chaos,ACH andAHB ~dotted straight lines in
Fig. 1!, at each modulation period. For instance, we take
A0514 andm59. Figure 1 shows the time evolution of the
modulated pumpA(t) ~dashed line! and of the laser field
intensityE2(t) corresponding to this case~continuous line!,
when V50.005 ~in units of g') and w50. It can be ob-
served that, at each timet, E2(t) coincides almost exactly
with the intensity of the stationary solution corresponding to
the instantaneous value of the pump parameterA(t); i.e.,
E2(t)5Ē2(t)5A(t)21. This equality is verified with an ac-
curacy of at least five significant digits, or even more for
smaller modulation frequencies. This means that the system
prefers to remain at any time very close to the steady-state
solution, instead of falling into chaos when the pumpA(t)
surpasses the threshold valuesACH andAHB . This result is
independent of the value ofw and, more interesting, of the
initial conditions of the system. This means that, even in the
case when the system has already fallen on the chaotic at-
tractor, application of pump modulation drives the system
out of chaos and stabilizes it, tracking the steady-state solu-
tion ~this is shown below, with the next example, Fig. 4!.
There is a wide domain of values ofA0 , m, andV for which
stabilization occurs. As a rule,V must be of the order of
1023–1022, although the modulation frequencies and ampli-
tudes strongly depend on the value ofA0: the closerA0 to
AHB , the largerm and the smallerV must be. For instance,
for A0512 andV50.01 the modulation amplitudem has to
be equal to or larger than 3 (50.25A0), whereas for
A0514 and the same value ofV, m must be about 6
(50.43A0) or above~more detailed analysis will be given
elsewhere!.

II. DETUNED LORENZ-HAKEN LASER

We consider again Eqs.~1! but now pumping will be kept
constant and modulation will be applied to the detuning pa-

rameterd. Let us first recall that a detuned laser behaves
‘‘less chaotically’’ than a resonant laser@7,8,11#. For
A*ACH , the laser emission is stable for largeudu, and when
udu is decreased the steady-state solution undergoes a Hopf
bifurcation which is subcritical at small pump and supercriti-
cal at large pump@7# and leads to the appearance of a limit
cycle in phase space. By further decreasingudu this limit
cycle undergoes a sequence of period-doubling bifurcations
defining a complete Feigenbaum scenario toward chaos.
Chaos occurs within a domain of values ofd centered around
d50 and symmetric with respect to the sign ofd. Thus the
main difference between this case and the previous one is
that whereas in case 1 the fixed-point solution to be tracked
and the chaotic attractor to be avoided are well separated in
phase space, in the present case they are connected by a
sequence of local bifurcations.

Modulating detuning in the form d(t)5d0
1mcos(Vt1w), we find again that deep modulation at slow
frequenciesV!1 leads to suppression of chaos and stabili-
zation of the steady state. The condition for this is that de-
tuning, along its sinusoidal time evolution, must cover all the
domain of instability of the steady-state solution. For in-
stance, Fig. 2~a! shows the minimum values thatmmust take
in order to stabilize the steady state, as a function of pump-
ing, in a specific case withd050 and for two different val-
ues ofV ~continuous line!. For the sake of comparison Fig.
2~a! also shows the values ofudu at which the steady-state
solution undergoes a Hopf bifurcation whenudu is decreased
~dots!, as well as the values ofudu at which the limit cycle
originating at the Hopf bifurcation point undergoes the first

FIG. 1. Time evolution of the field intensityE2(t) in the
Lorenz-Haken model ~continuous line! for s52, b50.25,
A0514,m59,V50.005, andw50. Also shown are the modulated
pump A(t)5A01mcos(Vt1w) ~dashed line!, the threshold for
chaosACH , and the Hopf bifurcation thresholdAHB .

FIG. 2. ~a! Continuous line: minimum allowed value for the
detuning modulation amplitudem, in the Lorenz-Haken laser
model, fors52, b50.25,V50.05, and 0.01, as function of pump-
ing rateA. Dots: values of detuningudu at which the steady-state
solution undergoes a Hopf bifurcation whenudu is decreased.
Dashed line: values ofudu at which the first period-doubling bifur-
cation occurs~see text!. ~b! Minimum values ofV leading to
steady-state stabilization, form50.95, as a function ofA.
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period-doubling bifurcation whenudu is decreased~dashed
line!—the crossing between the two curves is due to the fact
that the Hopf bifurcation is subcritical for smallA and su-
percritical for largeA. Clearly, along its time evolution
d(t) crosses back and forth across all the instability domains.
Note, however, that in spite of this fact the detuning modu-
lation amplitudem can be quite small~below unity, i.e.,
below the natural widthg' of the lasing transition!. Note
also that for smaller modulation frequencies, smaller modu-
lation amplitudesm can be used.

Figure 2~b! shows, for a fixed value of the detuning
modulation amplitude (m50.95), the minimum values of
V that can be used to stabilize the steady-state solution, as a
function of pumping. A remarkable fact is thatV can be as
small as 1023–1024. One would have expected that at these
slow modulation frequencies the steady-state solution would
become perturbed by the sequence of period-doubling bifur-
cations affecting it when detuning is adiabatically varied, but
clearly this is not the case. For pumpingA<AHB514 the
system always tracks the steady state, even for extremely low
modulation frequencies~we observed stabilization down to
V5231025 which corresponds to ca. 20 Hz for
g'5631026 s21 @10,12#!. ForA>AHB and forV below the
curve of Fig. 2~b!, the system is not able to track the steady
state completely, as shown in Fig. 3. Within each modulation
period two bursts of irregular behavior appear. Note that
these bursts are affected by a dynamic delay, because instead
of appearing just at the maxima of the modulated signal@i.e.,
whend(t)50, the value ofd for which the unperturbed sys-
tem behaves chaotically#, they appear at later times. This
dynamic delay decreases whenV decreases. The behavior
shown in Fig. 3 is a manifestation of a type of intermittency
characterized by periodic alternations of regular and chaotic
motions, similar to the one found by Quet al. @2# in a non-
autonomous system with an additional harmonic perturba-
tion, called the ‘‘breathing effect’’ by these authors.

There is also an upper bound for the modulation fre-
quencyV. Tracking of the steady-state solution fails when
V approaches unity, because in these conditions resonance
effects between the modulation frequency and the natural
response frequencies of the system change the dynamics.

As in case 1, the stabilization effect occurs for any value

of w and for any initial conditions of the laser system. For
instance, Fig. 4 shows what occurs when the system is ini-
tially in a chaotic state~corresponding tod50) and modu-
lation is applied at the time indicated by a vertical dashed
line. Clearly, chaos is suppressed and the steady state is ac-
curately stabilized. The time needed by the system to stabi-
lize depends on the initial value of the modulation signal,
i.e., on the phasew @compare Fig. 4~a! with Fig. 4~b!#, as
well as on the instantaneous value of the system’s variables
when the modulation is switched on.

Figure 4 shows another interesting feature. Since the de-
tuning modulation amplitude is small (m50.7) its influence
on the stabilized laser emission intensity is very weak, result-
ing in an intensity modulation of only62%, barely percep-
tible in Fig. 4. Thus this technique provides a method to
stabilize up to a good degree the chaotic output of a resonant
laser: it suffices to slightly modulate the cavity length around
its resonance value to get quasi-steady-state behavior. This
allows one to greatly extend the domain of steady-state emis-
sion of a bad-cavity laser toward larger values of the pump-
ing parameterA, far beyond the instability thresholdAHB .
For instance, for a far-infrared (l581mm! gas laser 1 m
long the cavity-length modulation necessary to get detuning
modulation withm;1 andV;0.001 @Fig. 2~b!# should be
of amplitude;0.3 mm and frequency;1 kHz, which is
very easy to implement.

III. OPTICALLY PUMPED LASER
WITH PUMP-FIELD POLARIZATION MODULATION

We have tested also the present method of controlling
chaos in a model for an optically pumpedJ50→J51

FIG. 3. Laser field intensityE2(t) as a function of time for
s52 , b50.25, A520, detuning modulation amplitudem50.95,
V50.0012, w50, and d050. The detuning modulation period
T52p/V is twice the laser intensity modulation period.

FIG. 4. Laser field intensityE2(t) as a function of time for
s52 , b50.25, A516, detuning modulation amplitudem50.7,
V50.002, andd050. ~a! w52.9; ~b! w51.57.
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→J50 three-level laser sensitive to field polarization
@13,14#. For linearly polarized pump and laser fields the au-
tonomous system is ruled by a system of 14 real first-order
differential equations, and is known@14# to exhibit very dif-
ferent dynamics for different~fixed! values of the angleu
between the polarization directions of the pump and laser
fields. By modulatingu in the formu(t)5u01Vt ~rotation
of the pump polarization plane at constant angular velocity
V) we have again observed inhibition of chaos and stabili-
zation and tracking of the steady state for any value ofu0
and frequenciesV in the range from 1025g' to 0.2g' ~a
detailed account of these results will be reported elsewhere!.

In conclusion, we have shown in this paper that control of
chaos resulting in accurate stabilization of an unstable steady
state can be accomplished by large-amplitude slow modula-
tion of a control parameter for a wide domain of modulation
amplitudes and frequencies. Although our analysis has been
concentrated on laser systems, the fact that the method works
for different laser models and different parameters to which
modulation is applied, allows us to conjecture that it could be
applied to many different nonlinear dissipative systems. This
method is easy to apply and, unlike feedback techniques, it
does not require any feedback loop. Its disadvantage is that
the slow modulation applied to the system influences the
steady state, so that the system gives a modulated output.
Thus it can be concluded that the present method allows one

to extend control of chaos to modulated~nonautonomous!
systems, with the remarkable fact that, in this case,nothing
elsehas to be done: by the simple fact of applying the exter-
nal modulation chaos disappears and the steady state be-
comes stabilized.

Another remarkable feature is that in some cases—as in
our example 2—the lower bound for the allowed domain of
modulation amplitudes is very low; in these cases, as well as
in cases where the modulation affects only weakly the main
variables of the system, the system’s behavior is approxi-
mately constant in time. In these conditions, the present
method can be considered as able to stabilize the autono-
mous system.

We think this method could be easily tested experimen-
tally on, for instance, a far-infrared ammonia laser or an
electronic circuit, among other possible systems. Further
characterization of the method, and mathematical interpreta-
tion, as well as study of its possible extension to control of
chaos in conservative systems, are interesting issues that
could be addressed in the immediate future.
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