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Tracking unstable steady states by large periodic modulation of a control parameter
in a nonlinear system
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Suppression of chaos and stabilization of an unstable steady state in a dissipative nonlinear system are
demonstrated numerically by means of large-amplitude $fewresonantmodulation of a control parameter.
A wide domain of modulation amplitudes and frequencies is allowed. The steady state becomes influenced by
the slow modulation, although in some cases this influence is very small. It can be said that suppression of
chaos occurs, naturally, without any further action, in slowly modulated sys{&h863-651X96)03106-§

PACS numbg(s): 05.45:+b, 42.50.Mi, 42.50.Lc, 42.60.Fc

INTRODUCTION ruled by the following set of equationsee, for instance
[5-9)):
Much attention has been devoted recently to the possibil- .
ity of converting deterministic chaos appearing in nonlinear E=—-0oE(1+id)+cAP,
systems to regular behavior. The basic idea is to stabilize
unstable periodic orbits embedded in chaos, which is per- P:—P(l—i5)+ED,
formed by feedbackl] or nonfeedbackl(b),2] techniques.
In the case of nonfeedback control methods a small periodic D=— b(D—1)—(b/2)(P*E+E*P), 1)

perturbation of the chaotic system is usually introduced

[2,3]. On the other hand, it has been shown that control ofyere the dimensionless complex variatieand P and the
chaotic behavior can also be achieved by stabilization of ap.5 variableD represent the laser field amplitude, medium

unstable steady state. 'I_'his has bee|_’1 performed, in p?‘rticmaﬁolarization, and population inversion, respectivelyis the
by means of the occasmn_al proportlo_rﬁal[a)] and continu- pump strengths= Sca/(1+ ), and the dimensionless pa-
ous[4(b)] feedback techniques. In this work we show thatrameter&r, b, and S, represent the cavity losses, atomic

suppression of ch_ao_s can als_o be achieved by Iarg%r moleculaj longitudinal relaxation rate, and cavity
amplitude slow periodic modulation of a control parameterdetuning—the difference between the cavity and atomic

of the system. In a wide domain of operating conditions, W&eqonance frequencies—respectively, which are normalized
show that by slowly modulating a chaotic system it can be-

: >0 with respect to the transverse relaxation r time is
come anchored to an unstable fixed point in phase spacg pec . -1 ate (
. o . S - xpressed in units o, 7).
following quasistatically its slow forced periodic motion, in-

stead of remaining on the chaotic attractor of the unperturbeEnc?v\r/]nrresaolnlinrcei’z'_ﬁ]'c’);jz Oﬁalzt%sfé]l)tr:foduucr? tLOe ttk:vag/%Ir-_
system. A lower bound for the allowed domain of modula- d 9

tion amplitudes is found, which in some cases can be ver ation x=\bE, y=AbP, andeA(l—D), with rEA'.
low. or A>1, Egs. (1) have a nontrivial stationary solution

We show this phenomenon by considering three differenE =(A—1)"% which, in caser>b+1 (“bad cavity” con-
examp|es taken from the field of laser dynamiCS, a|thoug}‘gition), becomes unstable through a subcritical HOpf bifurca-
the main conclusions that will be drawn can also apply toion ~ when  the ~ pump  reaches  the  value
other nonlinear dissipative systems. These examples are 8fs=0(o+b+3)/(c—b—1), which is known as the sec-
increasing Comp|exity, and in each case modulation is apond laser threshold. Above this threshold the System falls
plied to a different parameter of the system. In this way, eacito a chaotic attractofthe well-known Lorenz attractpr
example will correspond, as will become evident below, toWhich exists in phase space above a certain pump threshold

different conditions from the point of view of nonlinear dy- Acx, Smaller thanAyg. For pumping betweemc and
namics. Ayg, the stable fixed point corresponding to the steady-state

solution and the chaotic attractor coexist in phase space, the
passage from the first to the second being possible only
through hard-mode excitation. It is known, for example, that
The conceptually most fundamental class of laser is thén case of an NH far-infrared laseff10], typical values of
so-called two-level Lorenz-Haken laser model, which isthe system parameters ave=2.0 andb=0.25, for which
Acy~11 andA,g=14.
Let us now modulate, in the cage=0, the pump param-
“Permanent address: Institute of Molecular and Atomic Physicseter A in the form A(t) = Ag+ mcosQt+¢), whereAy, m,
Academy of Sciences, Minsk, F. Scaryna prospect 70, 22007%), and¢ denote the average pump value and the modulation
Minsk, Russia. amplitude, frequency, and phase, respectively. We choose

I. RESONANT LORENZ-HAKEN LASER
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FIG. 1. Time evolution of the field intensitfE2(t) in the
Lorenz-Haken model (continuous ling for o=2, b=0.25, L
Ap=14,m=9,0=0.005, andp=0. Also shown are the modulated
pump A(t)=A,+mcosQt+¢) (dashed ling the threshold for 0 L I A N N R
chaosAcy, and the Hopf bifurcation thresholl,g - 11 13 15 17 A 19 21
—

Q) to be well below the natural relaxation rates of the system ) ) o

o, b, andy, (i.e., Q<1), and the values ok, andm are FIG. 2. (a) Continuous line: minimum allowed value for the
taken in such a way tha(t) crosses up and down the detuning modulation amplituden, in the Lorenz-Haken laser
thresholds for chaosicy and A (dotted straight lines in  Medel, fore=2,b=0.25,0=0.05, and 0.01, as function of pump-
Fig. 1), at each modulation period. For instance, we take"d rate A. Dots: values of detunings| at which the steady-state
A :14 andm=9. Fiqure 1 shows tr;e time evoluti(;n of the solution undergoes a Hopf bifurcation whew@| is decreased.
m(z)dulated pumbA(t? (dashed ling and of the laser field Dashed line: values dfs| at which the first period-doubling bifur-

cation occurs(see te b) Minimum values of () leading to

intensity E2(t) corresponding to this cageontinuous ling ( X (b 9

) : steady-state stabilization, fon=0.95, as a function oA.
when =0.005 (in units of y,) and ¢=0. It can be ob-

se_rved that, at each tine E_Z(t) commqes almost exa_ctly rameterd. Let us first recall that a detuned laser behaves
with the intensity of the stationary solution corresponding t04|ass chaotically” than a resonant lasdi7,8,11. For

the instantaneous value of the pump paraméi); i.e.,  A=A_,. the laser emission is stable for larg®, and when
E?(t) = E2(1) = A(t) — L. This equality is verified with an ac- || is decreased the steady-state solution undergoes a Hopf
curacy of at least five significant digits, or even more forpifyrcation which is subcritical at small pump and supercriti-
smaller modulation frequencies. This means that the systergy)| at large pump7] and leads to the appearance of a limit
prefers to remain at any time very close to the steady-statgycle in phase space. By further decreasjay this limit
solution, instead of falling into chaos when the pulft)  cycle undergoes a sequence of period-doubling bifurcations
surpasses the threshold valugs, and Ayg. This resultis  defining a complete Feigenbaum scenario toward chaos.
independent of the value @f and, more interesting, of the Chaos occurs within a domain of valuesdéentered around
initial conditions of the system. This means that, even in thes—g and symmetric with respect to the sign&fThus the
case when the system has already fallen on the chaotic ghain difference between this case and the previous one is
tractor, application of pump modulation drives the systemihat whereas in case 1 the fixed-point solution to be tracked
out of chaos and stabilizes it, tracking the steady-state soligng the chaotic attractor to be avoided are well separated in

tion (this is shown below, with the next example, Fig. 4 phase space, in the present case they are connected by a
There is a wide domain of values Af, m, and() for which sequence of local bifurcations.

stabilization occurs. As a rul€) must be of the order of Modulating detuning in the form &(t)=6,

10°-10"?, although the modulation frequencies and ampli- + mcos(t+¢), we find again that deep modulation at slow
tudes strongly depend on the value Af: the closerAg to  frequencied)<1 leads to suppression of chaos and stabili-
Ang, the largemn and the smallef) must be. For instance, zation of the steady state. The condition for this is that de-
for Ag=12 and()=0.01 the modulation amplitud®@ has to  tuning, along its sinusoidal time evolution, must cover all the
be equal to or larger than 3=0.2%A,), whereas for domain of instability of the steady-state solution. For in-
Ap=14 and the same value d2, m must be about 6 stance, Fig. @) shows the minimum values that must take
(=0.437,) or above(more detailed analysis will be given in order to stabilize the steady state, as a function of pump-
elsewherg ing, in a specific case witd,=0 and for two different val-
ues ofQ) (continuous ling For the sake of comparison Fig.
2(a) also shows the values ¢b| at which the steady-state
solution undergoes a Hopf bifurcation whp# is decreased
We consider again Eqgl) but now pumping will be kept  (dots, as well as the values ¢b| at which the limit cycle
constant and modulation will be applied to the detuning paoriginating at the Hopf bifurcation point undergoes the first

Il. DETUNED LORENZ-HAKEN LASER
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FIG. 3. Laser field intensityE?(t) as a function of time for b

o=2 ,b=0.25, A= 20, detuning modulation amplituda=0.95, )
(1=0.0012, ¢=0, and §,=0. The detuning modulation period . i )
T=2=/Q) is twice the laser intensity modulation period. 50 \ ‘ ;
period-doubling bifurcation whehs| is decreaseddashed ‘ ‘
line)—the crossing between the two curves is due to the fact
that the Hopf bifurcation is subcritical for small and su-
percritical for largeA. Clearly, along its time evolution o —IR— i T
o(t) crosses back and forth across all the instability domains. 4000 time
Note, however, that in spite of this fact the detuning modu-
lation amplitudem can be quite smallbelow unity, i.e., o _ _ _
below the natural widthy, of the lasing transition Note FIG. 4. Laser field lntenSlF)Ez(t) as a function of time for
also that for smaller modulation frequencies, smaller modug=2 , b=0.25, A=16, detuning modulation amplitude=0.7,
lation amplitudesm can be used. =0.002, ands,=0. (&) ¢=2.9; (b) ¢=1.57.

Figure 2b) shows, for a fixed value of the detuning
modulation amplitude ri=0.95), the minimum values of
Q) that can be used to stabilize the steady-state solution, a
function of pumping. A remarkable fact is thét can be as
small as 10°-10"4. One would have expected that at these
slow modulation frequencies the steady-state solution woul
become perturbed by the sequence of period-doubling bifurﬁ
cations affecting it when detuning is adiabatically varied, but]-
clearly this is not the case. For pumpidgsA,z=14 the
system always tracks the steady state, even for extremely lo
modulation frequencieéwe observed stabilization down to
0=2x10"° which corresponds to ca. 20 Hz for
v, =6%x10®s71[10,17). ForA=A; and forQ below the

of ¢ and for any initial conditions of the laser system. For
instance, Fig. 4 shows what occurs when the system is ini-
Stﬁj\lly in a chaotic statécorresponding ta5=0) and modu-
lation is applied at the time indicated by a vertical dashed
line. Clearly, chaos is suppressed and the steady state is ac-
urately stabilized. The time needed by the system to stabi-
ze depends on the initial value of the modulation signal,
e., on the phase [compare Fig. &) with Fig. 4(b)], as
well as on the instantaneous value of the system’s variables
When the modulation is switched on.

Figure 4 shows another interesting feature. Since the de-
tuning modulation amplitude is smalin=0.7) its influence

. . on the stabilized laser emission intensity is very weak, result-
curve of Fig. Zb), the system is not able to track the steadymg in an intensity modulation of only- 2%, barely percep-

state completely, as shpwn in Fig. 3. Within each mOdUIatior{ible in Fig. 4. Thus this technique provides a method to
period two bursts of irregular beha\_nor appear. Note. tha tabilize up to a good degree the chaotic output of a resonant
these bur§ts are affected by.a dynamic delay, beca.u_se Instealer: it suffices to slightly modulate the cavity length around
of appearing just at the maxima Of. the modulated sigiel, its resonance value to get quasi-steady-state behavior. This
when () =0, the vglue 0 for which the unpertl_ered SYS” allows one to greatly extend the domain of steady-state emis-
tem be_haves chaoticallythey appear at later times. Th's sion of a bad-cavity laser toward larger values of the pump-
dynaml_c d?'ay (_jecrease_s Whé.h decreases. The behawor ing parameterA, far beyond the instability thresholdlyg .
shown in Fig. 3 is a manifestation of a type of intermittency instance, for a far-infrared\(81 um) gas laser 1 m

characterized by periodic alternations of regular and chaotipong the cavity-length modulation necessary to get detuning

tonomous. system with an additonsl harmonic. perturba[ioduIaion wihm -1 and() ~0.00L [Fig. 2] shouid be
tion, called the “breathing effect” by these authors. of amplitude 0.3 um and frequency-1 kHz, which is

i . ver to implement.
There is also an upper bound for the modulation fre- ery easy fo impieme

quency{. Tracking of the steady-state solution fails when

) approaches unity, because in these conditions resonance

effects between the modulation frequency and the natural

response frequencies of the system change the dynamics. We have tested also the present method of controlling
As in case 1, the stabilization effect occurs for any valuechaos in a model for an optically pumpeb=0—J=1

Ill. OPTICALLY PUMPED LASER
WITH PUMP-FIELD POLARIZATION MODULATION
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—J=0 three-level laser sensitive to field polarizationto extend control of chaos to modulatédonautonomoys

[13,14. For linearly polarized pump and laser fields the au-systems, with the remarkable fact that, in this cashing

tonomous system is ruled by a system of 14 real first-ordeelsehas to be done: by the simple fact of applying the exter-

differential equations, and is know4] to exhibit very dif-  nal modulation chaos disappears and the steady state be-

ferent dynamics for differentfixed) values of the angle comes stabilized.

between the polarization directions of the pump and laser Another remarkable feature is that in some cases—as in

fields. By modulating in the form 6(t) = 6+ Qt (rotation  our example 2—the lower bound for the allowed domain of

of the pump polarization plane at constant angular velocitynodulation amplitudes is very low; in these cases, as well as

1) we have again observed inhibition of chaos and stabiliin cases where the modulation affects only weakly the main

zation and tracking of the steady state for any valu®@f variables of the system, the system’s behavior is approxi-

and frequencie€) in the range from 10°y, to 0.2y, (@ mately constant in time. In these conditions, the present

detailed account of these results will be reported e|SeWheremeth0d can be considered as able to stabilize the autono-
In conclusion, we have shown in this paper that control ofmous system.

chaos resulting in accurate stabilization of an unstable steady we think this method could be easily tested experimen-

state can be accomplished by large-amplitude slow modulaglly on, for instance, a far-infrared ammonia laser or an

tion of a control parameter for a wide domain of modulationelectronic circuit, among other possible systems. Further

amplitudes and frequencies. Although our analysis has beegharacterization of the method, and mathematical interpreta-

concentrated on laser systems, the fact that the method worlign, as well as study of its possible extension to control of

for different laser models and different parameters to whictchaos in conservative systems, are interesting issues that

modulation is applied, allows us to conjecture that it could bezguld be addressed in the immediate future.

applied to many different nonlinear dissipative systems. This

method is easy to apply and, unlike feedback techniques, it

does not require any feedback loop. Its disadvantage is that ACKNOWLEDGMENT
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