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Particle dynamics in quasi-isochronous storage rings
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The synchrotron equation of motion in quasi-isochron@b storage rings is transformed to a universal
Weierstrass equation, where the solution is given by Jacobian elliptic functions. Scaling properties of the QI
Hamiltonian are derived. The effects of phase space damping and the sensitivity of particle motion to external
harmonic modulation are studied. We find that the rf phase modulation is particularly enhanced in QI storage
rings. Exact formula and sum rules for resonance strength coefficients are derived. When the QI dynamical
system is subject to harmonic modulation, it exhibits a sequence of period-2 bifurcations leading to global
chaos in a region of modulation tune. This means that the operators of QI storage rings should pay special
attention to rf phase nois€S1063-651X96)06707-4

PACS numbg(s): 29.20.Dh, 03.20ki, 05.45+b

I. INTRODUCTION Because the velocity difference between electrons in a stor-
age ring is very small, al;’s are equal tax;'s.

Very short electron bunches, e.g., submillimeter in bunch For nominal storage rings, whetey,; 8|<| 7|, the syn-
length, can be important for such applications as time reehrotron motion is dominated by thg, term, where particles
solved experiments, next generation light sources, cohereiatre grouped together into bunches inside stable rf buckets.
synchrotron radiation, and damping rings for the next lineafor small bunches inside the bucket, the bunch width is pro-
colliders. A possible method for producing short bunches iortional to \[7,| (see Appendix A Thus a short bunch
to reduce the phase slip factor or the momentum compactioregime is equivalent to the condition of a smigj,,|. Since
factor for electron storage rings. Because of its potential beny, is related to the the revolution frequency deviatieee Eq.
efit, interest in the physics of the low; lattice has recently (1.1)], the condition of smal| 7| is also called the isochro-
grown[1-7]. nous condition or quasi-isochrono(@l) condition. A lattice

The fractional path length difference between an off-which provides the QI condition is called a QI lattice. For
momentum particle and the synchronous particle is related telectron storage rings, the QI condition is equivalent to a

the fractional momentum deviation by small momentum compaction.
In the past few years, many low; experiments were
A_C —a 5= ﬂ performed 6]. These experiments showed that bunch lengths
Co e Po’ were smaller for lowe, lattices. However, the total stored

] beam current was also small. At the high current limit, these
whereC, andp, are the circumference and the momentumeyperiments also showed that the bunch lengths were deter-
of the synchronous particle, ang is called the momentum mined mainly by the potential well distortion resulting from
compaction factor. Here we neglect the change of orbiy proadband impedance. Although experiments have not yet
length due to betatron motion. determined the benefits of a QI lattice, a better understanding

For actual storage rings, the momentum compaction facof the particle dynamics in the QI Hamiltonian system may
tor is a function of the fractional momentum deViation, i.e., well be the source of future innovation. FurthermorE, in an
experiment at the advanced light sour€ALS) at the
Lawrence Berkeley National Laboratory, beams in the QI

ondition were observed to split into satellite bunchék

ac=agt ag ot -.

In most applications, the expansion can be truncated at t o .
second term because the higher order terms are small. | Vhat causes the beam to split into beamlets? What is the

cluding the velocity difference between the off-momentumse”SitiVity of the QI lattice to external perturbation such as rf

. . . o ise?
particle and the synchronous patrticle, the fraction dewaﬂorphase_ noise: . .
of the revolution frequency is given by This paper studies synchrotron motion at or near the QI

condition. We will study the sensitivity of the Hamiltonian

Aw system under harmonic modulation. In Sec. Il we will show
o 79, (1.)  that the QI synchrotron Hamiltonian can be transformed to a
0 universal Weierstrass equation, which is independent of the
with the phase slip factor rf voltage, synchronous phase angle, energy, and 7; .
The solution for the particle motion in this universal QI
n=no+t 716+, (1.2 Hamiltonian is given by the Weierstrags function or the

Jacobian elliptic functiori8,9]. Properties of this universal
where 7y and 7, are the first order and the second orderQl Hamiltonian will be discussed. The increase in the stable
phase slip factors. In realistic storage rings, the truncation gbhase space area due to phase space damping will also be
the phase slip factor at the, term is a good approximation. addressed. Section Il discusses the effect of rf noise on par-
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LENOOR e L0 e TABLE |. Parametric range of the Weierstrgsgunction.
Bucket Potential ] E 0 112 1/6
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ho [ Joo [ & 0 (1-\3)P2 ~1/2
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1 natex. We usex to represent the normalized coordinate of
1 L | Eq. (2.2) because it is related to the radial closed orbit.
—o bl Lo IS Y Y O I P TV ~ The equation of motion for a particle with energyis
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. dx\? 2
FIG. 1. The rf bucketleft plot) and the potentialright plot) for | =—x3—x%+2E. (2.9
the normalized QI Hamiltonian. Three turning poimts, e,, and dt 3

e; are also marked. Note here that the coordinaie associated ) . o
with the momentum deviatiod and the ordinate is proportional ~ Letting u=t/\/6 andp=x, the equation of motion is trans-

to the phase coordinaig. formed to the standard Weierstrass equaf@jn
2
ticle motion. In the presence of harmonic phase modulation, dp(u) _ _ B _
parametric resonances will be identified. We will show that du 4w —ei)(p—e)(p—6), 29

the phase space can become chaotic with relatively weak
modulation. In the presence of strong damping with moderwhere the turning point®g,=e,>=>e;, are given by
ate harmonic modulation, the system undergoes a sequence

of period-2 bifurcation en route towards strange chaotic at- o
tractors. Based on our systematic study, some beam dynam- e1=§+cos(§), 82:§+C°5(§_120 ),
ics experiments will also be suggested in Sec. IV. The con-
clusion is given in Sec. V.

1
e3=§+cos(§+ 120°),
Il. PARTICLE HAMILTONIAN IN QI STORAGE RINGS

For synchrotron storage rings operating near the isochro-
nous condition, the phase slip factor is given by Ef2),
and the small amplitude synchrotron tune is given by

1
&= §arcco$1 —12E).

Table | lists the ranges of interest for relevant parameters of

heV nocosp,| this dynamical system. Figure 1 shows the bucket area and
Vs™ 27B%E, (2.D)  the potential energy as a functionxfwhich is proportional
° to the fractional momentum deviation of the synchronous
whereh,V, and, are the harmonic number, rf voltage, and Particle.

The Weierstrass elliptip function is a single valued dou-
bly periodic function of a single complex variable. For par-
ticles inside the separatrix, the discriminant is positive, i.e.,
Qz 648E(1—6E)>0, and the Weierstrags function can be
expressed in terms of the Jacobian elliptic functisee Ap-

the synchronous phase angle, respectively, gadand E,
are the velocity and the energy of the beam. Using .0 as
the time variable, wher@=s/R is the orbiting angle, and
using X,p) as the conjugate phase space coordinates, whe

71 Ap dx pendix B:
=——=—, p=—, (2.2
7o Po dt 81_63
x(t)=e3+ (e,—eg)srt 5 tm/. (2.6)
the synchrotron Hamiltonian for particle motion in QI stor-
age rings is given bysee Appendix A Ceey sing
m= =— —=<1. 2.7
1 1 1 e —e3 sin({+60°)
H=§p2+ EXZ— §X3. (23)

Here the Jacobian elliptic function is defined as

The “energy” E of the autonomous Hamiltonian is a con-

stant of motion withE e[ 0,3] for particles inside the bucket. sin(v|m)=sinw, v= WL_
Figure 1 shows the potential energy and the stable bucket ’ 0 V1—msirfz
area for the Hamiltonian. The bucket is plotted sideways so

that the corresponding potential energy has a similar coordifhe period and the tune of the elliptic function are given by

(2.8
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1.0

FIG. 2. Q(E) vs E. The first
06 - B order and the second order detun-
ing terms of Eq.(2.18 are also
. ‘ | shown. Because of the sharp drop
o I . of the synchrotron tuneQ(E)
around the separatrix, parametric
04 ] resonances of all orders overlap
with each other near the separatrix
trajectory and give rise to stochas-

ticity.
02 .
0.0 A 1] n 1 n 1 "
0.00 0.05 0.10 0.15 0.20
E
H 0\11/2 J— J— 1
T 2[ sz_“: {3 si(¢+607)] , Fo(d,0)=J¢+ — (2J)3’2( sin3y+3 sm«p)
J —e;’ T JBK (m)
(2.9 (213
. . we obtain

Figure 2 show®)(E) as a function of energy. At the center
of the bucket, wher&=0, we haveQ=1 and at the sepa- f?Fz(J_,lJf) 1
ratrix, whereE = 1, we haveQ=0. In the original accelerator J= —au =J+ §(2J)3’zco§¢, (2.149

coordinate system, the synchrotron tune becomes

and the new Hamiltonian becomes

[ /3 sin(¢+60°)]"2
Qs=vs . (2.10 1 1
VBK(m) H=J+3(2)¥%cosy— 5 (2)¥coSy. (219
Thus the small amplitude synchrotron tunevis In particu- gy 5anding the Hamiltonian to the second order in the new

lar, we note that the synchrotron tune decreases to zero very
ction variable], the time averaged Hamiltonian becomes

sharply near the separatrix. Because of the sharp decrease’ini

synchrotron tune near the separatrix, parametric resonances a4 o

induced by the time-dependent perturbation overlap one an- (Hy,;=J— _32<C0§¢>;:J_ —J2, (2.16

other and give rise to chaos. 3 2

where a=2 is the detuning parameter. It is worth pointing
A. Nonlinear detuning parameter out that the detuning parameter is Iarger than that of the
Substituting the ansatz for a small amplitude expansion hominal rf Hamiltonian, wherea=35 (see, e.g., Refs.
[12,13). The most important difference between the tunes of
2Jcosy (2.11 the QI Hamiltonian system and the nominal rf pendulum
Hamiltonian is the behavior of the tunes at large amplitude
oscillations near the separatrix.
Performing canonical perturbation calculation to the next
order, the detuning parameter becomes

into the Hamiltonian, whereJ(«) are approximate action-
angle variables, we obtain

1
— 17—
H=J— =(2J3)%%cosy. (2.12 _ 22 3
3 H=J- J s6a (2.17

Using the generating function or equivalently, the tune is given by
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5— 77—
Q=1-5J- “agd’

Tk (2.18

Figure 2 plotQ(E) vs E, where the first order detuning and
the second order detuning are shown. Note here that the first
order detuning is a good approximation to the synchrotron
tune forE<1/12, yet the second order detuning paramete

does not improve the approximation beydad-1/12.

B. Action-angle variables

The action of a Hamiltonian torus is defined as

_ 1 _1\/5 €2
J‘Zﬁgpdx—; 3., V(er—x)(e;— x) (x—ez)dx.
(2.19

Since the Hamiltonian
x=e3+ (e,—e3) sirftw, we have (Formula 3.671 of Ref.

[10])
2 /2
J= ;\/;(ez_ e3)%(e,—e3)?

2
X J sirfw cogw+/1—msirfwdw

0

1 2 , nel3 1
=3 5(62—63) (e1—e3)"“F 5,—5;3;m :

(2.20
where hypergeometric functidn is given by[9]
(31, V1t 5, T o,
2 M T M g™ e
(2.2
Using the generating function
X
Fz(x,J)=f pdx (2.22
€3

the angle variable is given by

_dFy 6 B
=3 Ve g QFWIm=Qt, (223

where Q(J)=dH/dJ is the amplitude-dependent synchro-

tron tune given by Eq(2.9), andF(w|m) is the incomplete
elliptic integral given by

X—€;3

w=arcsi

w dz
F(wjm)= Jo J1—msirtz’

2~ €3

(2.249

with modulom of Eq. (2.7).

r

torus can be described b
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C. The separatrix orbit and the bucket area

The maximum action of the bounded motion is given by

Jsep= ! jg dx= > 2.2
sep_z sepp X_a- (2.29

Thus the bucket area of theb(5) phase space is given by
(see Appendix A

_6(|77o|5/2
B 5| |7

27Th,32E 1/2

eV|cosp|

In contrast to the nominal synchrotron Hamiltonian, the
bucket area of the QI Hamiltonian increases widttreasing

rf voltage V and |cospy. Note also that the bucket area is
proportional to| 75|%% | 7,|2. For a lattice with a smal,, a
proper correction fom; becomes necessary in order to pro-
vide a stable phase space for the beam bunch.

A

(2.26

Y The separatrix orbit, which correspondsnte-=1, is given

by

3 sinht

X(t)=1- p(t):m, (2.27)

coshi+1’

where the phase space for the bounded motion is limited by

1

Xe —5,1

1 1

7 E - = 7 =

S RN

This means that the maximum tolerable momentum width is
given by

~ |770|
o= .
2| 771|

However, we must keep in mind that the damping coeffi-
cient is also enhanced for a QI lattice. Due to the synchrotron
radiation damping, the equation of motion for QI storage
rings is given by(see Appendix A

(2.28

X"+ AX +x—x2=0,

(2.29
where

A M Yol

ve 2mEqvs

(2.30

is the effective damping coefficient with the damping decre-
ment\. Table Ill in Appendix A lists values for damping
coefficientA for some non-QI storage rings. For QI storage
rings, the effective damping coefficient is enhanced by the
corresponding decrease in the synchrotron tune, where the
value of A may vary from 0 to 0.5.

Including the damping term, the basin of attraction which
damps to a stable fixed poitSFP is enlarged. Figure 3
shows the basin of attraction for the damping coefficients
A=0,0.2,0.5, respectively. A practitionertefinition of the
“stable phase space aredbucket arepis the phase space
area that damps to the fixed point attractor and is bounded by
the linex<1 or Ap/po=<|nol/| 71|. The right plot of Fig. 3
shows the “bucket area” enhancement factor as a function
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FIG. 3. The stable phase space
area with the effective damping
u coefficients A=0, 0.2, 0.5 is
L 1 shown in the left graph with dif-
ferent shades. We define the op-
- m] 4 erational “bucket area” as the
r o -1 stable phase area bounded by the
- o 7 x=<1. The bucket area enhance-
B m 71  ment factor, defined as the ratio of

m] the stable phase space areas with
o and without damping, is plotted as
A=05 ° L o | the function of the damping coef-
-2 ' L g | ficient A on the right plot.

10—
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-2 -1 0 1 2 0 01 02 03 04 05 08
X A

area increase factor
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of the damping parametéY. Here the enhancement factor is 53
the ratio of the “bucket areas” with and without damping. F=1+ 5

The shape of the attractor basin can be understood as
follows. Consider the basin of attraction with the dampingyhich agrees with numerical simulations shown in the right
parameterA=0.5. The particle on the limiting trajectory piot of Fig. 3.
along the “separatrix,” clockwise inX,p) phase space, ex-
periences damping towards the center of the bucket. Its “en-
ergy” is gradually reduced along its trajectory. As it reaches
the “unstable fixed point” of the undamped Hamiltonian ~ EXxpansion of phase space coordinates in action-angle
system, its energy is equal to that of the separatrix orbivariables is important in obtaining essential characteristics of
without damping, i.e.E=4. This feature seems to be inde- Particle motion. Since(t) is an even function of or ¢, we
pendent of the magnitude of the damping parameter showfbtain
in the left plot of Fig. 3. Using this property, we can estimate w0
the increase in phase space area as follows. _

First, we launch a particle from the unstable fixed point x(t)—go+n§=‘,l gnCOSNY), (234
(UFP) at (p=0, x=1) and let the particle move along the
separatrix(limiting trajectory counterclockwise. Instead of Where
damping, the particle gains energy due to the reverse motion.

5

36 1/2
1+ —A) -1 15

16
1+ —A) , (2.33

D. Expansion of phase space coordinates and sum rules

ined is ai K(m)—E(m)
The amount of energy gained is given by Jo=€3+ (6,—€3) ) ’
° 6
AE%AI pA(t)dt= —A, (2.30) 27? (=1)"ng"
—® 5 gnz(el_eB)KZ(m) 1_q2n ’ (233
where the separatrix trajectory of HG.27) is used. Thus the with
equivalent energy of the limiting trajectory By,= ¢+ 2A. , .
We now estimate the bucket area of the limiting trajectory as _—akik_ M +8 m P m .
the area enclosed by the particle trajectory with an equivalent q=¢ 16 16 16)
energyEeg, i.e.,
au el_ e3
6 36 12 lﬂz R TVSQZQVSQZQL
A(Eeg~ 3Ex<1 pdx= ¢ + V3l 1+ EA) —1}
whereK(m) andE(m) are the complete elliptic integrals of
16 the first and second kind, respectively. Similarly, the expan-
x| 1+ EA)' (2.32 sion of p becomes
. : dx - _
Thus the bucket area enhancement factor is approximately p=—= —QE ng, sinny, (2.36
given by dt n=1
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whereQ=Q(J) is the tune of the system. It is worth noting 1
that the expansion of the coordinateontains all harmonics.
This differs from the similar expansion in the nominal rf
Hamiltonian, where only odd harmonics are present. Since 08
g,~ng" at smallq, all g,, coefficients are zero at the center
of the bucket wherel=0. Near the center of the bucket,
whereq is a very small number, the motion is dominated by
the n=1 andn=2 harmonics, i.e., the dipole and quadru-
pole modes. If external phase modulation is applied to the
system, the system will execute dipole and quadrupolelike
oscillations that will be discussed in the next section. Figure
4 shows the Fourier amplitudes,g4,9, and the parameter
g as a function ofe. Because thg,; andg, of nearby har-
monics are large, they may interact coherently to give rise to
higher order parametric resonances.

The expansion coefficients of E(R.34 satisfy the sum
rules(see Appendix €

o0

1
S0)=5 [ pau=Q1= 33, g3, (237

n=1

0 002 0.04 006 008 0.1 0.2 0.14 0.16

1 1 E
S0)= 5= | Xdu-g8+ 53 gi=gp. (238

FIG. 4. The strength functiongy,g,,9, and the parametey

or equivalently are plotted as a function d.
S o PP 1, 1,
> g3(3)=2g90(1—go). (2.39 H=5 4 5% 333+ wyBXcosopt, (3.0
n=1

Sincego=1 on the separatrix, the strength of all harmonicswhere the effective modulation amplitude is
must vanish on the separatrix orbit. Becag ,n’g? di-
verges atl=Jge, 0, decreases slowly with respect to the ma

mode numben near the separatrix. B= , (3.2
7oVs

Ill. PARTICLE DYNAMICS WITH PHASE MODULATION . . .
om=vm!vs is the normalized modulation tune, aadand

In the presence of the phase modulation, the Hamiltoniamw,, are the rf phase modulation amplitude and the modulation
in the normalized phase space coordinates is given by tune in the original accelerator coordinate system, respec-

0.8 08 ——
04 |
P oot
04 [
08—t ) gl
08 04 0.0 0.4 0.8 12 08 04 00 0.4 0.8 12

FIG. 5. The Poincaresurfaces of section for a QI Hamiltonian wif=0.003 andw,,=0.96 for the left plot andB3=0.0055 and
wn=1.97 for the right plot. Her® and w,, are rf phase modulation amplitudes and tunes, respectively. The separatrix trajectory is shown
in this case for marking the boundary of stable motion of the unperturbed Hamiltonian. In reality, the separatrix is destroyed by the harmonic
modulation.
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tively. BecausdB|~| 7| %2 the effective modulation am- Since the effective resonance strengd) = 20 ,Bg,(J) is

plitude B is greatly enhanced for QI storage rings. proportional tog,,, the expansion coefficients of the phase
Including the damping force, the equation of motion becomes space coordinate in Eq2.34 are called the resonance
strength function. There ane stable andn unstable fixed
X"+ AX +X—Xx2=— w,B coswt, (3.3 points for the resonance Hamiltonian Eg.5) given by
where the effective damping coefficieAtis given by Eq. . _ _ h,
(2.30. This section discusses the effects of rf phase modu- sim =0, wm_nQ(JlFP)inﬁh:Jle' (3.6
lation.

Figure 5 shows Poincasurfaces of section with parameters
(B,wy,) =(0.003,0.96) and0.0055, 1.97, respectively. Note
) o ) o here that the Poincamaurface of section ab,,~1 shows two

First, we will discuss the equation of motion in the ab- regonance islands. These two resonance islands rotate around
sence of the friction force, where the Hamiltonian with phasene center of the bucket with tur@(Jep). At w,~2, there

A. Parametric resonances and periodic solutions

modulation can be expressed as are two outer resonance islands and one inner resonance is-
oc land shown on the right plot of Fig. 5. These two outer
1 resonance islands rotate about the center of the phase space
H=Ho(J)+ = >, wmBgn(I)[ coiny—wyt)+ cogny p p
27=1 at a tune ofw /2.

In the presence of a weak damping force, SFPs of para-
metric resonances turn into attractors. Figure 6 shows the
) ) basin of attraction for the SFPs with parameters
When the modulation frequency is near a synchrotron harB=0.06, wn=0.86, andA=0.05 obtained from tracking
monic, e.g.wn~nQ(J), Hamiltonian tori will be coherently 150 150 particles with an initial uniform distribution in the
perturbed by the resonance term due to the stationary phag@ase space. Note that the boundary of the basin of attraction
condition. Transforming the Hamiltonian into the resonancesyibits fractal structure. Since orbits near the separatrix can
rotating frame with the generating function easily be destroyed, many phase space points near the sepa-
ratrix become unstable in the presence of weak modulation.

+ont)]. (3.9

Wm
Fa= ( v Tt)‘]l’ 1. Mechanism for higher order resonances

. o ) The Hamiltonian in Eq(3.4) is composed of a web of
the time averagedHamiltonian in the resonance rotating primary parametric resonances. If the strengths of these pri-
frame becomes mary parametric resonances are large, they can interact co-

herently to generate a series of secondary parametric reso-
_ _ O nanceq11]. Figure 7 shows the Poincasairface of section
(H)=H(J) n Ji+hn(Jy) cognyy). 39 for w,=1.45 andB=0.065. We note that there are three

1.0 T T T

FIG. 6. The basin of attraction
for a QI dynamics system with pa-
05 I : e | rameters A=0.05, B=0.06, and

’ SHRO om=0.86, obtained from numeri-
cal simulations with 158150
particles uniformly distributed in
the phase space. All lightly shaded
particles will damp to the outer at-
tractor, and all particles with the
darker shade will coverge to the
inner attractor. Other particles in
the phase space are lost. Note par-
ticularly that the fractal struture
appears at the boundary of the ba-
sin of attraction.

-1.0 : : : : :
1.0 0.0 1.0 2.0
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0-8 T T T T T T T T T T T T T T
06 -
04 -
02 r
FIG. 7. Poincaresurfaces of
=] 00 - section for a QI Hamiltonian with
: B=0.065, w,=1.45. The sec-
ondary resonance arises from the
02 - interaction of 1:1 and 2:1 primary
parametric resonances.
-04
-0.6 - .
_0.8 L ! s [ ' | 2 1 L 1 L 1 L [ " 1
-0.6 -0.4 -0.2 0.0 0.2 04 0.6 0.8 1.0
X
outer resonance islands and one inner resonance island which Wa(4h,d) = 4hd+Fp_(J) Sin(nygh— wpt)
should appear ab,,~3. To understand the origin of second- o
ary parametric resonances, we will study the truncated +F,.(3) sin(nyy— wpt), (3.9
2

Hamiltonian with two neighboring harmonics and discuss the
mechanism for secondary parametric resonances based
the canonical perturbation method.

We consider the case whemgQ(J) < w,=<n;Q(J). The
Hamiltonian of Eq(3.4) is dominated by;:1 andn,:1 reso-
nances and can be approximated by

it new action-angle variableg(J) are related to ,J) by
3=3+N3Fq,(J) cogny = )

+n5F o (J) COS Npyp— ),

H~E(J)+hy,(J) cognyp— wmt) + Ny (J) COIN240— wit), — — —
@7 ¥ =¢+Fa Q) sinnyg—ont) +Fq (3) sinNag—wpt).

(3.9
wheren, andn, are neighboring harmonics. Using the gen-
erating function The new Hamiltonian becomes
|
H=E()+{[(N1Q— ) Fn +hp (1] c0gN1 = wret) +[(N,Q— 0 F o+ (3)] COL N30 — )}
19Q — — &hnl — &hnz —
+ = —fn;,F, cogNip— o) +NF, cogNyth— opt) 1%+ | —=cog N ih— wpt) + ——=Ccog Nyt — wpt)
2 5] ! 2 4J 4J
X[N1Fp, COSN P— wret) +NoF o COSNoih— wi)], (3.10

where we used,bmz By settingF, = —hnl(J_)/(le—wm) andF, = —hnz(J_)/(an—wm), the Hamiltonian due to the
second order perturbation becomes

— — (14Q , , — 19Q , , hn, — aQ
= + 2= 4+ — +l 2= = _ I
H=E(J) (2 &J_nl':nl pr N1Fn, | COS(N1g— wpt) 2 " 2F o, pr N2Fp, | COS(Npgh— wpt) =N 1nF o Fo,

dhy, dhn, ) _ _
+ —n,F,.+ —=n;F, | cogn;¢y— wt) cogn,iy— wqt). (3.11
53 N2Fn,t P, N1~ wpt) COYN2 P~ wpy
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o 04
is the effective resonance strength for the secondary®

(n1+ny):2 resonance. Possible secondary resonances from oz
parent 1:1 and 2:1 parametric resonances are listed as fol- »
lows: 0.0 &7 1 2 3

Near the resonance condition @f,~ 1/2(n,+n,)Q(J), the 08 ——— — ]
Hamiltonian can be approximated by - ]
0] i
—_—  — ~ — 2 06 |- —
H~E(J)+h(n +ny CO$(N1+N2) ¢~ 20nt], (3.12 5 ¥ ]
a, L ]
O o4 - —
where o r ]
h NP T A N -
(n+n)= 5 —=MiN2Fy Fo + 5 —=nF, -

1 2 2 [?J 1 2 2 (9‘,] 2 0.0 & I ,_n
0.8 [— —
1 9N, S F A=0.5 ]

+ E —nl n, g 06 —

(0N C

a r

N 1

3:2 53 7:4 9:5-.
(1:1)+(2:1)— 4:3 6:4 85 10:6--

FIG. 8. The amplitude of the steady state solution, called re-
54 7:5 9:6-.. Pt y -

sponse, obtained numerically is plotted as a functionwgf for
A=0.1 (upper ploj, with modulation amplitudeB=0.1 (rect-

Here, the 3:2 resonance shown in Fig. 7 is the lowest Ordeéngles, B=0.3 (circles, respectively, and foA=0.5 (lower plob

secondary parametric resonance. Because these paramelfith g=o.5. Solid lines correspond to the solutions of E&j13.
resonances overlap with each other, they can be easily dgyq characteristic features shown in this figure @rethe bifurca-
stroyed by the strong damping. However, they provide a storion threshold of the 2:1 parametric resonance is lowered by the
chastic background for this dynamical system. friction force, and(2) a very strong stop band appears around
w,=1.
2. Harmonic linearization method and periodic solutions "

The Hamiltonian formalism is not applicable when the X(t) =Xo+ Xy cofwmt — x1) + X2 €0 2wmt — x2),

damping parametek of Eq. (3.3 becomes large. The attrac- (3.149
tor solutions or the periodic solutions can be obtained by the

harmonic linearization methofl4]. Let the ansatz of Eq. X(1) =X+ X+ CO t— +X cos(ﬁt— )
(3.3 be given by (t) 0 1COSwmt—x1) 1/2 2 X1/2|s

(3.19

respectively. For example, the subharmonic amplitude is

Substituting the ansatz into E¢3.3) and keeping only the diven by
first harmonic in the expansion, we obtain

X=Xg+ X1 oL wmt + x1)-

X
X,= .
wmB’=A20l Xi+ (0h—V1-2X9)?XE, (313 2 D[ (4wd— X2 \1-2X2)2+ 4P A2] 2

with  tany;= — onAl (03— \/1—2X21) and Xy=(1  Such a procedure has been extensively tested in the study of

—J1-2X?)/2. In the weak damping and small modulation many dynamical systenid4,15.
amplitude approximation, the modulation amplitude is re-
lated to modulation tune by,,~1— %Xi. This result agrees
well with that of Eq.(3.6) for then=1 mode. Amplitudes of
attractors obtained from numerical simulations are shown in A close relation exists between parametric resonances of
the upper plot of Fig. 8, wher&=0.1 andB=0.1 (squar¢  the Hamiltonian system and periodic solutions of the damp-
and 0.3(circle), respectively. The lower plot shows the am- ing system. When a friction term is added to the Hamiltonian
plitude of attractors foB= 0.5 andA=0.5. Solid lines show system, the particle moves slower in the phase space and the
the solution of Eq(3.13, which matches with the attractor tune of the system is lowered. At the same time, the 1:1
amplitude obtained from numerical simulations. In particu-parametric resonance becomes more important so that the
lar, if the modulation amplitude is large, there are regions ofamplitude of particle oscillations becomes larger. This will
tune space where attractors will cease to exist and subhaaiso lower the bifurcation tune of the 2:1 resonance. The
monic and higher-harmonic excitations will appear. decrease of the threshold 2:1 resonance bifurcation tune is
The amplitude of a subharmonic at,~1/2,..., and a evident in the lower plot of Fig. 8, where the bifurcation tune
higher harmonic ab,~2, ... can bebtained by the ansatz of the 2:1 resonance i®,,~1.515 for A=0.5 instead of

3. Relation between the periodic solution
and the parametric resonances
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on=~2.1 for A=0.1. Because the Mathieu instability has a 0.9
finite width in the tune space, the bifurcation tune occurs at
on=2.1 instead of 2 for a small damping parameier~ur-
thermore, SFPs of dominant parametric resonances become
attractors while SFPs of weak parametric resonances are de-
stroyed. In other words, periodic solutions of damped differ-
ential equations can be associated with the correspondingr
SFPs of strong parametric resonances in equivalent Hamil-
tonian systems, where a few strong parametric resonances
survive to become attractors. If attractors exist, particles will
damp to periodic solutions, or equivalently, SFPs of para-
metric resonances.

The characteristic phase oscillation tune for the attractor
associated with a 2:1 parametric resonancejg2. More ‘ .
generally, the attractor associated with tien parametric I Ry Ty e TR Y S Y Ry Ry A
resonance will have an orbiting tune ah(n)/w,,. For ex- Modulation frequency
ample, although the Poincasairfaces of section for the 3:2
secondary resonance and the 3:1 primary resonance are simi- |G, 9. The phase space coordingteof the attractor in the
lar, their time-dependent function is different. The primary poincaresurface of section is plotted as a function of the modula-
3:1 resonance has a time-dependent function of@gs  tion frequency(tune w,, near the region of global chaos for param-
while the 3:2 secondary resonance has a time-dependegtersA=0.5 andB=0.5. Note that the phase space attractor bifur-
function of cogwt. In the Poincaresurfaces of section, the cates into two at the modulation tune of about 1.515. It follows a
difference can be visualized as follows: Particle motion inseries of period-2 bifurcations before reaching global chaos at
the 3:1 primary resonance will jump from an island to thew,=(5—5)/2.
immediate neighboring island consecutively. However, par-
ticles jump from one island to the next neighboring island at 1
the secondary 3:2 resonance condition. Using such a signa-  + 5 ®@mB02(J1)CO82¢n)+AH2.4(1),
ture, the role of parametric resonances in chaos can be iden-

tified. Since secondary resonances arising from 1:1 and 2:1 o 5
primary resonances overlap with each other, they provide the ~( 1- 7) Ji— 1—2J§+ wmfadi cos2y+AH,. (1),
stochastic background for global chaos. (3.17

B. The 2:1 parametric resonance wheref,~ :B(/2K)?, and we have used a small amplitude

The period-2 parametric resonance is known to play @pproximation for the unperturbed time-independent Hamil-
crucial role in chaos. The route of chaos is usually presentetpnian. The right plot of Fig. 5 shows an example of the
by a vivid portrait of sequences of period-2 bifurcation. ThePoincaresurface of section for the 2:1 parametric resonance.
period-2 bifurcation is related to the 2:1 parametric reso-Since the time averaged HamiltonigH,.,) of Eq. (3.17)
nance or the Mathieu instability in a dynamical systgrf]. ~ has been extensively studied in REf2], we will not repeat
For the nominal rf system with rf phase modulation, the resoit here. It is worth mentioning that the remnant time-
nance strength for the=2 parametric resonance is zero dependent termhH,.,(t) plays the role of harmonic modu-
[13]. If the modulation frequency is near 2, i.e,,~2, the lation to the tori of the primary 2:1 parametric resonance.
n=2 parametric resonance is important for a QI Hamil-Since the island tun®,.; of the 2:1 primary parametric

tonian. The Hamiltonian in the zero friction approximation is resonance has a characteristic similar to that of Figse2
given by Ref.[12] for analytic expression of the island tynsecond-
ary parametric resonance islands within the primary reso-
1 nance island can be created. This self-similar phenomenon
H=Ho(J)+ E“’mBg?(‘])COS{Z‘ﬂ_ wnt) +AH(), provides the richness of the portrait of chaos.
(3.1

where all incoherent time-dependent terms are lumped into
AH(t). Using the resonance strength function of E235),
and the generating function

C. Chaos through period-2 bifurcation

The path that dynamical systems undergo in order to de-
velop global chaos is a fascinating subject. Figure 9 shows
the phase space coordingteof the Poincaresurface of sec-
tion as a function of modulation frequency near the region of
Ji, period-2 bifurcation with parametefs=0.5 andB=0.5. For
wn=1.515, there is only one attractésee Figs. 8 and)9
o When o, is varied below 1.515, two attractors suddenly
the Hamiltonian can be expressed as appear in the phase space. Decreasingfurther, we find
that four attractors appear in the phase space. The sequence
of period-2 bifurcation continues until global chaos at
wm~(5—/5)/2=1.3819 66 is reached.

Fol¢, )=

Wm
Y=t

Wm
Hy.1=Ho(J1) — 731
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FIG. 10. The FFT spectra of
steady state solutions with param-
eters A=0.5, B=0.5, and
wn=1.39 (top), 1.4204 (middle),
1.436(bottom are plotted.

Figure 10 shows the fast Fourier transfofRFT) spectra cross each other, the dynamical system becomes homaoclinic,
of steady state solutions forA=0.5, B=0.5, with  an indicator of chaotic motion. Calculating the distance be-
wn=1.39(top plod, 1.4204(middle plo), and 1.436bottom  tween the stable and unstable orbits perturbatively, the

plot). The first period-2 bifurcation is associated with the Melnikov integral becomefl4]

occurrence of g harmonic in the FFT spectrum. This can be
identified as the primary 2:1 parametric resonance. The sec-
ond period-2 bifurcation corresponds to the appearance of a
1 harmonic(see the bottom plot of Fig. 200ccurrence of a

% harmonic in the route of global chaos is also evident from
the FFT spectrum shown in the middle plot of Fig. 10. The
FFT spectrum of global chaos has a characteristic of white-
noise-like structure shown in the top plot of Fig. 10.

Figure 11 shows Poincarsurfaces of section with
A=0.5, B=0.5, andw,,=1.39, 1.436, 1.48, and 1.54, re-
spectively. Atw,=1.54, the system has a single attractor
associated with a 1:1 parametric resonance.wit=1.48, P
the attractor bifurcates into two attractors, which are con-

D= —f [wnBp(t—tg)coswnt—Ap?(t—tg)]dt.

0.8f

0.6

0.41

(3.18

C=1.390
C=1.436
C=1.480
C=1.540

firmed to be SFPs of the 2:1 parametric resonance. At
on=1.436, each SFP of the 2:1 parametric resonance bifur-
cates into two attractors within the basin. &,=1.39, par- 0.2f
ticles damp to attractors composed of fractal lines with no
definite tune. This corresponds to the breakdown of the fixed L
point attractors within the basin of attraction for the 2:1 para- '
metric resonances. It is also interesting to note that periodic . . . .
attractors are located near the band of chaotic attractors -0.4 0.2 0 0.2 0.4 0.6 0.8
shown in Fig. 11. X

FIG. 11. The phase space mapX) of the Poincaresurface of
section for steady state solutions wil+0.5B=0.5 is shown. The

. . . parameterC is the modulation tunew,,. The diamond symbol
We observed in the last few sections that the QI dynamicgnoys a single attractor at,=1.54 which is associated with the

system would encounter global chaos when the modulatioR.; parametric resonance. Rectangular symbols show the period-2
amplitude was large. What is the critical modulation ampli-pjfurcation, which is related to the 2:1 parametric resonance or
tude for the onset of global chaos? A method of handling thigvathieu instability. Triangular symbols show attractors for the sec-
estimation is the evaluation of the Melnikov integral. ond period-2 bifurcation, which is unambiguously identified as the

The Melnikov integral method has often been applied t0(2:1) secondary parametric resonance within the pringary) reso-
study the chaotic transition of many dynamical systems. lhance island. Dots correspond to the strange attractor with global
the stable and unstable orbits from a hyperbolic fixed pointhaos aiw,,=1.39.

D. Transition to global chaos and Melnikov integral
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FIG. 12. The critical modula-
tion amplitudeB, is shown as a
function of w,, for A=0.05 (left
plot), andA=0.2 (right plot). The
symbols are obtained from nu-
merical simulations, and the lines
are obtained from the Melnikov
integral method. Note that a cusp
occurs at the transition of the 2:1

Usingx andp of the separatrix orbit given by E.27), the
Melnikov integral for the Weierstrags equation becomes

D=30 Bsi J'w sinhsinwmtd conl” sinkPt
—3onBsio | Teoshr1)2 ! - (cosh+1)* t
6rwiBsint, 6A 319
ST — (3.19
The condition for global chaos becomes
A sinhrop,
(3.20

Be= 5, — o3
m

parametric resonance.

ellite buncheg7]. Although detailed measurements of these
satellite frequencies are not yet available, we believe that
these satellite beamlets may arise from the 1:1 parametric
resonance shown in the left plot of Fig. 5.

Based on our analysis, we would like to make the follow-
ing suggestions for future lows experiments. Since the
bucket area of the QI Hamiltonian is proportional to
(Vo| cospd) Y2, QI experiments should study the beam sta-
bility at a lower rf voltageV with a large synchronous angle.

In addition, since the effective damping coefficient is in-
versely proportional tovg, i.e., A=Avg, and the stable
phase space area increases with the damping paradgeter
future experiments should examine the actual stable area.
The stable phase space area can be studied through generat-

Based on the Melnikov integral method, the critical modula-iNg @ phase kick to the beam and observing the survival of
tion amplitudeB,, for the chaotic condition is proportional to the beam particles. The rf phase noise is enhanced by the

the damping parametéy. Since the ratid. /A is at a mini-

factor 7, /|70|*% and is hence a nuisance for QI storage

mum aroundo,,~ 1, the system is most sensitive to external rings. Howev_er, it is im.portant to understand the effect of
harmonic modulation near the first order synchrotron harn0ise on particle dynamics. Carefully controlled experiments

monic.

To verify the validity of the Melnikov integral estimation,
we will perform some numerical simulations. Figure 12

shows the critical modulation paramety; for the onset of

global chaos as a function af,,,, where the onset of global
chaos isdefinedas the condition that the entire bucket is

with rf phase modulation can be a step towards gaining more
insight into the QI Hamiltonian system.

V. CONCLUSION

In conclusion, we have transformed the synchrotron equa-

unstable. The estimation obtained from the Melnikov inte-tion of motion in the QI regime into a universal Weierstrass
gral is also shown for comparison. We observe that theequation with the solution expressed in Jacobian elliptic
Melnikov integral provides a reasonable prescription for glo-functions. The phase space coordinates have been expanded
bal chaos in the phase space. This agreement may result from action-angle variables. The expansion coefficients, com-
the sharp drop ofQ(E) near the separatrix. However, the monly known as the strength function, play an important role

critical modulation amplitudeB., obtained from numerical
simulations shows a cusp at,~2.

IV. SUGGESTIONS FOR EXPERIMENTAL
OBSERVATION

in determining the strength of parametric resonances result-
ing from rf phase or voltage noise. We have also shown that
the strength function vanishes at the center of the bucket and
the separatrix, and that higher-harmonic parametric reso-
nances in the QI dynamical system are much more important
near the separatrix. Thus it is easier to attain chaos for this

There have been several low momentum compaction facdynamical system.

tor (low-a;) experiments in synchrotron radiation light

sourcessee Ref[6] for a review. Experiments in UVSOR

We have also found that the effective damping force for
the QI Hamiltonian is inversely proportional fig,|*/?, hence

in Japan and the SUPER-ACO in France have shown that ihaking the effective damping force larger in QI storage

the second order momentum compactigpp was reduced,
the first momentum compaction factag, could be reduced

rings. The damping force can increase the stable phase space
area and distort the “phase space ellipse.” However, we

by a factor of 100, resulting in a factor of 10 reduction in thehave also shown that the effective rf phase modulation am-

bunch length at a low beam current. However, at high curplitude is proportional td 7|~

32 and thus particularly en-

rents, experimental results seemed to indicate that the potehanced in the QI regime. The effects of rf phase modulation
tial well distortion dominated the bunch length even in thecan induce many parametric resonances. When a weak
low-a., or negativea., regime. The experiments at the damping force is included, the stable fixed point of the para-
ALS further demonstrated that a bunch could split into satimetric resonance becomes an attractor which is also the
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TABLE IlI. Fixed points of the nonlinear synchrotron Hamil- . 2eV [/ o 172
tonian. o= == sings—co . A4
onian (77770E (2 ¢s> ps— COS ) (A4)
) Ch teristi . .
¢ aracterisies Transition from the nominal rf bucket to thed'bucket”
Nominal fixed points 0 0 SFP occurs when the separatrix of these two buckets merge into
T2 0 UFP one[2], i.e.,
Nonlinear compaction w—2¢s —nol/n; SFP
Fixed points 0 — ol UFP Mol o 5 (A5)
7

steady state solution of the differential equation. The beanm the QI regime, whergn,/ 71| <3, the Hamiltonian can be

particles will damp to attractors and form multiple bunchesapproximated by

orbiting about the center of the bucket. It is possible that the

satellites observed in R€ff6] correspond to beamlets in the 1 , 1 s €eVcosps

1:1 parametric resonance islands. H= §h770‘S + §h7715 - m‘f’ ' (AB)
As the damping force gets stronger, the phase space be-

comes distorted. We have demonstrated that the steady stai@ere Hamilton’s equation of motion becomes

solution can be well approximated by the harmonic linear-

ization method. When the modulation amplitude was also . eVcospg . 5

large, our numerical simulations showed that the system ex- = m¢, ¢=hned+hn 5% (A7)

hibited chaos through a series of period-2 bifurcations, where

a strange attractor occurred near the onset of global chaogy

The Melnikov integral method was also found to provide a

reasonable but not accurate prediction for the onset of chaos.

5+ 126+ % R282=0, (A8)
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is the small amplitude synchrotron tune. Now, we define the
phase space coordinateand the new time coordinateas

Using (¢, 6) as conjugate phase space coordinates, where
¢ is the rf phase angle andl is the fractional momentum _ ™M _

) | X= S, t=vdb. (A10)
deviation from the synchronous particle, synchrotron map- Mo
ping equations are given by

APPENDIX A: THE SYNCHROTRON HAMILTONIAN

Then the synchrotron equation of motion becomes

eV )
5n+1:5n+lﬁ[sm(¢n+l+¢s)_ SiNgs] —2mN\ 6y, X"+X—X2:O, (A11)
Al
(A1) where the prime corresponds to the derivative with respect to
Brs1= bt 270 (7080 1+ 7715§+1), (A2) the time coordinaté. Letting
where the subscript stands for the revolution numbeis p=x'= 771;/3(1) (A12)
the rf voltage h is the harmonic numbegp, is the synchro- o

nous phaseyg, 7, are linear and nonlinear phase slip fac- . ) )
tors, and\ is the damping decrement. Neglecting the friction b€ the conjugate momentum to the coordinatehe Hamil-
term, the difference equation can be cast into the Hamiltonian for the QI storage rings becomes

tonian given by
H—E 2y 12 Ly A13
1 1 eV _ DL (AL3)
H= §h77052+ §h77153+ m[005(¢+ $s) + ¢ sings],
(A3) where §,p) are conjugate phase space variables.

Defining the action variable as
where #=s/R serves as the time coordinate, aRdis the
mean radius of the storage ring. The fixed point of this J:i § pdx
Hamiltonian is given by Table II. 2 '
For a regular rf bucket, the maximum bucket height is
given by the area in §,0) phase space is given by

(A14)
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CESR, and ALS stand respectively for the large electron
positron collider at CERN, the high energy ring of the B
factory design at SLAC, the advanced photon source at Ar-
gonne National Laboratory, the Cornell electron storage ring,
and the advanced light source at the Lawrence Berkeley Na-
tional Laboratory

Expressing the equation of motion in the normalized
phase space coordinates, we obtain

X" +x—x2+Ax =0, (A18)

oz | where the normalized damping coefficient is given by

0.0 . : . . A=—. (A19)
0.0 0.2 04 0.6 0.8 1.0 Vs
E/Eger

_ The parameteA for some non-Ql-electron storage rings is
FIG. 13. The normalized synchrotron tun@=Qg(E)/vs for |isted in Table Ill. We note thaf is relatively small for
the QI Hamiltonian(thin line) and the nominal synchrotron Hamil- ominal momentum compaction lattices. On the other hand,
tonian(thick line with dotg are shown as a function of the normal- it the momentum compaction factat,, is lowered by a
ized energyE/Esep. factor of 100, the effective damping parameter will increase
2whB’E

5 by a factor of 10. We thus choose to stuély[0,0.5.
o
e §aas-| 5] Ze0E
¢ 7{ eV cospy| 3. rf phase modulation Hamiltonian

The bucket area is obtained by substituting the action of the When the synchrotron tune of a QI lattice becomes

1/2
) 27).  (A15)

separatrix orbit which gives smaller, the system may become much more susceptible to
the rf phase noise. In the presence of the phase modulation,
4 6 ( | 70]%/2 ( 27hB%E )1’2 ALe the equation of motion is given by
+"5| /)| eVicoss (A1) o
_ 5+ 126+ —1282= pa covyf, (A20)
Note here that the bucket area increases as the rf voltage o

and|cospy decreases. The constragi/ sing,=U, is needed _ _ _
to compensate energy loss due to synchrotron radiation. wherev,, is the modulation tune, and is the phase modu-
lation amplitude. Using the normalized phase space coordi-

1. Synchrotron tunes of the QI and nominal rf Hamiltonian nates, the equation of motion becomes

The difference in the amplitude dependence of the syn-
chrotron tunes for the QI Hamiltonian and the nominal rf
Hamiltonian plays an important role in the particle dynamics.
Figure 13 shows the normalized synchrotron t@hgE)/ v

X"+ X—X°= — wy,B coswt, (A21)

where w,,= v, /v, and the effective modulation amplitude

vs the normalized enerdy/ E.pfor the QI Hamiltonian(thin becomes

line) and the nominal synchrotron Hamiltonidthick solid

line with dotg. In particular, we note that the synchrotron B= 1t o (A22)
tune for the QI Hamiltonian drops sharply to zero at the MoVs

separatrix, which causes many parametric resonances to _ _ _ _
overlap one another. Thus the QI dynamical system is mucfhus the eﬁ_‘ecnve phase modulation amplitude, proportional
more sensitive to harmonic modulation than the nominal rtto | 70|~ is greatly enhanced due to the smallness of the

Hamiltonian. first order phase slip factdm|.
2. Phase space damping TABLE lll. Typical parameters of electron storage rings.
In the presence of the phase space damping, the equation LEP HERB APS CESR ALS
of motion is given by
Eqy (GeV) 55 9 7 6 1.5
o M e Uo/Ep (units of 100%) 48 039 078 0.32 0.074
oFvsot 7 V56" +A6=0, (AL7) . (units of 10°%) 39 244 24 152 14
Vg 0.085 0.05 0.0066 0.064 0.0082
whereN=JgUq/(27Ey) is the damping decremeniz~2 A (damping 0.018 0.0024 0.037 0.002 0.003
is the damping partition number for synchrotron phase space,, (kHz) 11.2 136 283 390 1524
andU, is the energy loss per revolution. Table Ill lists somef_ (kHz) 0956 6.8 1.9 25 12.5

typical parameters of storage rings, where LEP, HERB, APS
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APPENDIX B: RELATION BETWEEN THE APPENDIX C: SUM RULES
WEIERSTRASS ¢ FUNCTION AND JACOBIAN . . . .
ELLIPTIC EUNCTION Using the generating function of E(R.22), we obtain the

The Weierstrass function satisfies the equation coordinate transformation

dp(u)|?
du =4(p—e)(p—ey)(p—es). (B1) dx
dz//=QF. (CY)
Letting p = e+ (e,— €3) Sirfz, the Weierstrass equation be-
comes
s Thus the sum rule of Eq2.37) becomes
vei—ezdu= \/ 3t, B2
f J1- msmzz J’ s B2)
1 Q
= —_— 2 = — =
where S(J)= 27-rJ’ p<dy 5 3& p dx=QJ. (C2
€~ €3
m= ——.
€1~ €3

Substituting the equation of motiax’ +x—x?=0 into Eq.

By the definition of the Jacobian elliptic function, the solu- (2.38, one obtains
tion ¢ is given by

€163
6

t

1 1 1
m). Sﬁzj x?dy= ﬂf (X" +x)dy= fodzﬂ:go.
(B3) (C3

9 =e3+(e,—e3) sifw=e;+(e,— e3) snz(
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