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The synchrotron sideband spin resonances are shown to arise from the kinematic effect of spin phase
modulation with resonance strengths proportional to that of the primary spin resonance. We develop a method
to analyze overlapping spin resonances and apply it to fit polarization data of SPEAR and data recently
obtained from polarized beam experiments at the IUCF cooler ring. The implication of our analyses is that
synchrotron sidebands can only be corrected by correcting its principle resonance. Furthermore, the effect of
synchrotron sidebands in proton synchrotrons is to change the resonance phase without affecting the magnitude
of the strength.@S1063-651X~96!04907-0#

PACS number~s!: 29.27.Bd, 41.75.2i, 03.20.1i, 05.45.1b

I. INTRODUCTION

The study of the proton spin structure function has be-
come an important topic in high energy physics experiments,
which require acceleration and storage of polarized protons
in synchrotrons. However, many depolarizing spin reso-
nances may be encountered when accelerating a polarized
beam. Thus understanding spin dynamics for polarized
beams in synchrotrons is an important topic in accelerator
physics.

The spin equation of motion, governed by the magnetic
interaction between the magnetic dipole moment of the par-
ticle and the electro-magnetic fields of synchrotrons, is given
by the Thomas-Bargmann-Michel-Telegdi~BMT! equation
@1#
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whereG5g/221 is the anomalous magneticg factor,g is
the relativistic Lorentz factor,BW' andBW i are the transverse
and longitudinal components of the magnetic field with re-
spect to the velocity vectorbW , andEW is the electric field.
Hereafter, we will neglect the electric field contribution. For
synchrotrons with planar geometry, vertical magnetic fields
are needed to guide the orbiting particle for a closed path.
Taking the cyclotron frequency into account, the spin vector
precesses about the vertical axis at a frequency ofGg f 0 ,
where f 0 is the revolution frequency. The quantityGg, rep-
resenting the number of spin precession per revolution, is
called the spin tune.

In synchrotrons, strong quadrupole fields are also needed
to focus the beam to a small size. Those particles moving off
center vertically in quadrupoles will experience horizontal
fields, which can perturb the spin vector away from the ver-
tical axis. Using the Thomas-BMT equation, the spin reso-
nance strength is given by the Fourier amplitude of the spin
perturbing fields in synchrotrons@2,3#, i.e.,
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whereu is the orbital bending angle,DBx is the radial per-
turbing field,DBi is the longitudinal perturbing field, and
Br is the magnetic rigidity of the beam. In synchrotrons,
there is little or no longitudinal field and the transverse radial
field arises mainly from dipole rolls and the vertical displace-
ment in quadrupoles. Neglecting the effect of dipole rolls,
the radial perturbing field is given by

DBx5
]Bz

]x
z1M, ~3!

whereM stands for higher order multipoles. In general, the
vertical displacement is given by@4#

z5zco1zb1Cxxb1
Dp

p
Dz , ~4!

wherezco,zb are, respectively, the closed orbit and the beta-
tron coordinate,Cxxb arises from linear betatron coupling,
andDz is the vertical dispersion function resulting from non-
planar accelerator geometry and/or linear betatron coupling.
Substituting Eq.~4! into Eq. ~2!, zco gives rise to imperfec-
tion resonances located atK5 integers,zb produces intrinsic
resonances atK5nP6nz , whereP is the superperiod of the
machine andnz is the vertical betatron tune,xb generates
linear coupling spin resonances and the vertical dispersion
function term can produce synchrotron sidebands located at
K5n6nsyn, wherensyn is the synchrotron tune. Including
M, the spin resonance tunes are generally given by

K5n1knz1 lnx1mnsyn, ~5!

wherek,l ,m,n are integers.
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Defining a two-component spinorC with SW 5^CusW uC&,
the Thomas-BMT equation can be casted into the spinor
equation

dC

du
52
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wherej can be expanded in a Fourier series

j5( e
K
e2 iKu. ~7!

Here e
K
is the resonance strength given by Eq.~2!. If spin

resonances do not overlap with each other so that the spin
motion is under the influence of at most one harmonic in
j, the spinor equation can be solved analytically@2,3#.

However, overlapping resonances occur often in high en-
ergy accelerators. Numerically integrating the spinor equa-
tion, we find that overlapping spin resonances can sometimes
be expressed as a single resonance with an effective reso-
nance strength attainable from a linear combination of all
spin resonances@3#. In high energy storage rings which use
snakes to overcome spin resonances, we find that the over-
lapping imperfection and intrinsic resonances also produce
even order snake resonances and generate spin tune shift so
that each snake resonance~both odd and even order! split
into two @5,6#.

Indeed, polarized beam experiments showed that overlap-
ping synchrotron sideband resonances were important in
electron storage rings@7#. Similarly, overlapping synchrotron
sideband resonances were found to be important at the Indi-
ana University Cyclotron Facility~IUCF! cooler ring@9–12#.
Why were overlapping synchrotron sidebands not observed
in the polarized proton acceleration at the alternating-
gradient synchroton~AGS! @8#? How do synchrotron side-
bands arise? What happens when all synchrotron sidebands
overlap with the principle resonance?

This paper examines the physics of synchrotron sideband
spin resonances and analyze the existing data in terms of an
overlapping resonance model. Section II examines the origin
of synchrotron sideband spin resonances, Sec. III reviews the
effect of overlapping resonances on spin motion. Section IV
analyzes some experimental data. The conclusion is given in
Sec. V.

II. SYNCHROTRON SIDEBAND RESONANCES

It is tempting to attribute the synchrotron sidebands to the
vertical dispersion function term in Eq.~4!, where the mo-
mentum deviationDp/p for an off-momentum particle is
given by

Dp

p
5âcosnsynu. ~8!

Here â is the amplitude of synchrotron oscillations. Indeed,
the termDz (Dp/p) can produce first order synchrotron side-
bands, located atK5n6nsyn, around imperfection reso-
nances. Because the resonance strength is proportional to the
product of the synchrotron amplitudeâ and the vertical dis-
persionDz , it would be too small to fit any experimental

data. Note particularly that the dispersion function
cannotgenerate synchrotron sidebands around intrinsic de-
polarization resonances.

Since the spin resonance driving term (11Gg) DBx/Br
from the transverse error fields, depends only weakly on
Dp/p0 at high energy, the resonance strength is nearly inde-
pendent of the momentum deviation of the particle. In other
words, the resonance strength at synchrotron sidebands due
to the transverse perturbing fields is small. In particular,
there are no synchrotron sidebands around intrinsic reso-
nances. Although the longitudinal perturbing fields can pro-
duce synchrotron sidebands, longitudinal fields are usually
weak in synchrotrons. A possible mechanism to generate
synchrotron sidebands around intrinsic resonance is the feed
down from higher order multipoles. This effect is again very
small.

So far, we conclude that the resonance strengths of syn-
chrotron sidebands induced by the vertical dispersion func-
tion are small and there are no synchrotron sidebands around
intrinsic resonances. However, synchrotron sidebands were
observed to be very important in the Stanford Positron Elec-
tron Accelerator Ring~SPEAR! polarization data@7#. What
is the mechanism for synchrotron sidebands? In the follow-
ing, we will show that the enhancement of synchrotron reso-
nances arises mainly from the kinematic effect.

We consider the spin equation of motion for a single pri-
mary spin resonance
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where K is the resonance tune ande
K
is the resonance

strength. For an off-momentum particle withlinear synchro-
tron motion given by Eq.~8!, the spin tune is given by
Gg5Gg0(11 b2Dp/p0), whereg0mc2 is the energy of the
synchronous particle. Now, we transform the spinor wave
function into the spin precessing frame with

C5e2 i /2E
0

u

Ggdus3C I , ~10!

and obtain
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Using Eq. ~8!, the spin precessing phase for an off-
momentum particle becomes

E
0

u

Ggdu5Gg0u1
b2Gg0

nsyn
âsinnsynu. ~12!

In particular, we note that the spin precessing phase has been
greatly enhanced by the smallness of the synchrotron tune.
The effective spin phase modulation amplitude is
g5 (b2Gg0/nsyn) â.
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Expanding the spin precessing phase in Fourier harmon-
ics, the effective resonance driving term in the spinor equa-
tion becomes

e
K
e2 i ~Ku2*Ggdu!5(

2`

`

e
K
Jm~g!e2 i ~K2Gg02mnsyn!u. ~13!

If the condition ue
K
Jm(g)u,nsyn is satisfied, each synchro-

tron sideband behaves as an isolated resonance with reso-
nance strengthe

K
Jm(g), wherem50,61,62, . . . , i.e., the

off-momentum particle experiences spin resonances atall
synchrotron sidebands. Using the small argument expansion
for Bessel functions, Table I lists effective resonance
strengths for synchrotron sidebands.

The physics of synchrotron sidebands can be understood
as follows. The spin phase modulation due to a linear syn-
chrotron motion can generate many sidebands around the
spin tune. If one of the sidebands falls on the principle reso-
nance, the spin is strongly perturbed. Thus the resonance
strength of synchrotron sidebands is proportional to the
strength of the principle resonance. Because the synchrotron
tune is relatively small so that the particle stays at the spin
resonance condition for a long time, the effect of the spin
resonance is particularly enhanced.

For electron storage rings, the synchrotron tune is usually
of the order 0.1, thus synchrotron sidebands may be well
separated. The single resonance dominant model used above
is applicable. There are many experimental data which have
confirmed the enhanced synchrotron sideband resonances
@7#.

For proton synchrotrons, synchrotron tunes are normally
about 1023, the enhancement factor can be large. This means
that all synchrotron sidebands overlap with the principle
resonance, and the single resonance dominant analysis used
above is not valid anymore. In this case, we will show, in
Sec. III, that the magnitude of the effective resonance
strength by combining all synchrotron sidebands is equal to
that of the principle resonance.

III. EFFECT OF OVERLAPPING RESONANCES

We consider a simple model of overlapping resonances
with

j5e1e
2 iK1u1e2e

2 iK2u, ~14!

where e1 ,e2 and K1 ,K2 are resonance strengths and reso-
nance tunes, respectively. LetD5K22K1 be the spacing of
these two spin resonances. We can classify multiple reso-
nances into three categories:

~1! Isolated resonance withuDu@ max(e1 ,e2),
~2! Overlapping resonances withuDu! min(e1 ,e2),
~3! Nearly overlapping resonances withuDu>

max(e1 ,e2).

The first case has been extensively studied in Ref.@2,3#.
In this section, we will examine the latter two cases.

A. Overlapping resonances

WhenK1 andK2 are nearly equal, two harmonics inj can
be combined to be

j5A~e1 ,e2 ,uDuu!e2 iK̄u, ~15!

where K̄5 (K11K2)/2 , D5K22K1 , and A is a slowly
modulating amplitude function. To study the physics of over-
lapping resonances, the spinor equation is solved numeri-
cally with a uniform acceleration rate through these reso-
nances.

Let Gg5k01au, where a5 dGg/du is the constant
acceleration rate. Letu0 be the orbital angle where the spin
tune of the particle is equal to the spin resonance tune, i.e.,

Gg5k01au05K̄.

Now we define an asymptotic orbiting angleua such that
aua533 max(e1 ,e2), so that when the orbiting angle sat-
isfy uu2u0u.ua , the spinor wave function is in the asymp-
totic region and the spin resonance has little effect on spin
motion. The factor of 3 for the asymptotic region has been
derived from numerical simulations and analytic solution of
a single resonance model@3#.

In general, the effective resonance strength experienced
by the polarized beam is the integrated effect of the effective
amplitudeA. However, if the conditionuDuua!1 is fulfilled,
the effective resonance strength is simply given by

eeff5A„e1 ,e2 ,uDu@u01~u2u0!#…'A~e1 ,e2 ,uDuu0!,
~16!

which is time independent. The polarization after passing
through these two overlapping resonances is given by the
Froissart-Stora formula@13#

Pf

Pi
52e2pueeffu

2/2a21. ~17!

This means that two overlapping resonances may be replaced
by a single resonance with an effective resonance strength
given by Eq.~16!.

To verify the model, the spinor equation has been numeri-
cally integrated with a simplified two resonance model@3#

j5ee2 iK1u1ee2 i ~K11D!u

with K153.2, K̄53.21 (D/2) , a54.8631025. The effec-
tive resonance strength for this simplified model is

eeff52e cosFD2 u01
D

2
~u2u0!G . ~18!

Furthermore, if two nearby spin resonances satisfies
D/2 ua!1, the effective spin resonance strength becomes

eeff52e cosS D

2
u0D , ~19!

TABLE I. Effective strengths for synchrotron sidebands.

Resonances K K6nsyn K62nsyn K63nsyn

Effective strength e
K

1
2geK

1
8g

2e
K

1
48g

3eK
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which is independent of time. The final polarization becomes

S~D!52 expH 2
2pueu2

a
cos2S D

2
u0D J 21. ~20!

The top plot of Fig. 1 taken from Ref.@3# shows the final
polarization obtained from numerical solutions of the spinor
equation as a function ofD with e50.0023, which was cho-
sen such that a resonance strength 2e would fully depolarize
the beam. Cancelation of these two spin resonances occurs at

uDuu05uDu
K̄2k0

a
5~2m11!p, m51,2,3,. . . ,

~21!

whereS(D)51 was confirmed by numerical calculations up
to D<0.005.

The lower plot shows similar results withe50.05, where
each individual resonance can cause a complete spin flip. In
this case, Eq.~20! remains valid up toD<0.002. Because of
very large resonance strength, the range ofD in which these
two resonances cancel each other becomes very narrow. It is
also worth pointing out that the spin has flipped twice at
D.0.3'3(e11e2) as shown in the lower plot. Thus the
factor of 3 used in defining the asymptotic region is a rea-
sonable approximation for polarized beam acceleration
through a resonance.

Now we can discuss the effect of overlapping synchrotron
sidebands in proton synchrotrons. When the spacing between
two spin resonances is smaller than 1023, the effective spin
resonance strength becomes the sum of all resonances. For
synchrotron sidebands of proton synchrotrons, the effective
resonance strength of Eq.~13! becomes

eeff'e
K( Jm~g!eimnsynu05e

K
eigsinnsynu0. ~22!

This means that the synchrotron motion changes merely the
phase of the principle resonance strength without affecting
its magnitude.

B. Nearly overlapping resonances

In the nearly overlapping resonance regime withD> max
(e1 ,e2), the Froissart-Stora formula may not be applicable.
This is evidently shown in Fig. 1 in the regionD
P@0.01,0.3#. We will analyze the two resonance model of
Eq. ~14! as follows:

Let us transform the spinor equation onto the resonance
precession frame ofK1 , i.e.,

CK15ei
1
2 K1us3C ~23!

and obtain

dCK1

du
5
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2
l1~nŴ 1•sW !CK11
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2 S 0 e2e
2 iDu

e2* e
iDu 0 D CK1 ,

~24!

where

l15@d1
21ue1u2#1/2, d15K12Gg,

nŴ 15
1

l1
~d1eŴ z1e1reŴ x2e1ieŴ s),

e15e1r1 i e1i .

HereeŴ x, eŴ s, andeŴ z are base vectors for the particle coordi-
nate in the Frenet-Serret coordinate system.

The first term of Eq.~24! describes the precession of
any arbitrary polarization vector around the spin closed

orbit nŴ 1 , which precesses around the vertical axis with the
tuneK1 . The second term describes the perturbation due to
the nearby resonanceK2 . If ud11Du@ue2u, then the reso-

FIG. 1. The vertical polarization obtained
from solving the spinor equation with two nearby
resonance atK153.2 andK25K11D as a func-
tion of the spacing parameterD. The resonance
strengths aree15e250.0023 for the upper plot
and 0.05 for the lower plot. Note here that if
uDu<331023, these two resonances can be com-
bined into one resonance with effective strength
obtained from linear superposition.
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nanceK2 can be treated perturbatively. We however will
discuss the situation whend11D'0 with uDu>
max(e1 ,e2).

Now we transform the spinor into the spin precession
frame ofK1 with

C̃K15e2 ~ i /2! l1unŴ 1•s
W
CK1 ~25!

to obtain

dC̃K1

du
5e2 ~ i /2! l1u nŴ 1•s

W S i2D e2
i
2 Dus3

3S 0 e2

e2* 0 D e~ i /2! Dus3e~ i /2! l1unŴ1•s
W
C̃K1 . ~26!

If ud1u'uDu.ue1u, we transform the spinor into theK2 reso-
nance frame with

CK25e~ i /2! d2us3C̃K1 ,

where d25K22Gg, and obtain an approximation to Eq.
~26! with

dCK2

du
'

i

2
l2~nŴ 2•sW !CK2 , ~27!

wherel25@d2
21ue2u2#1/2 is the spin precession tune around

the spin closed orbitnŴ n̂2 given by

nŴ 25
1

l2
~d2eŴ z1e2reŴ x2e2ieŴ s!,

which precesses about the vertical axis at a tuneK2 . Finally,
the evolution of the spinor wave function fromu0 to u can
be expressed as

C~u!5e2 ~ i /2! K1us3e~ i /2! l1unŴ1•s
W

3e2 ~ i /2! d2us3e~ i /2! l2~u2u0!nŴ2•s
W
e~ i /2! d2us3

3e2 ~ i /2! l1u0nŴ1•s
W
e~ i /2! K1u0s3C~u0!. ~28!

This series of precession frame transformation is sche-
matically shown in Fig. 2. If the spacing between two spin
resonances are larger than the resonance strengths~or
widths!, each resonance can be visualized as having a spin
closed orbit precessing about the vertical axis with preces-

sion tunesK1 andK2 , respectively. For a beam of polarized
protons with vertical polarization injected into a storage ring,
the polarization vector will precess about these spin closed
orbits. We consider first the the resonanceK1 , the survived
polarization is given by

SWK15
d1
l1

nŴ 1 , ~29!

which is schematically shown in the left plot of Fig. 2.

Since nŴ 1 precesses about the vertical axis with precession
tuneK1 , the polarization vector is given by

SWK15
d1
l1

S ue1u
l1

cos~K1u1x1!,
ue1u
l1

sin~K1u1x1!,
d1
l1

D ,
where x15arctan(e1i /e1r) is the phase of the resonance
strength. IfK1 is not an integer, spin tune spread within the
bunch will cause spin decoherence and the remaining polar-
ization is the vertical componentd1

2/l1
2 .

Including the effect of the second resonance atK2 , the
survived polarization is

SWK1K25
d1
2

l1
2

d2
l2

nŴ 2 , ~30!

which is schematically shown in the right plot of Fig. 2.

Now nŴ 2 precesses about the vertical axis with precession
tuneK2 , the polarization vector becomes

SWK1K25
d1
2

l1
2

d2
l2

S ue2u
l2

cos~K2u1x2!,
ue2u
l2

sin~K2u1x2!,
d2
l2

D ,
wherex25arctan(e2i /e2r).

Thus the vertical polarization of nearly overlapping spin
resonances can be expressed as the product of the projection
of each resonance, i.e.,

Sz5)
i

d i
2

l i
2 , ~31!

and the radial polarization is given by

Sr5(
i

)
j5” i

d j
2

l j
2

d i ue i u
l i
2 cos~Kiu1x i !. ~32!

The vertical and the horizontal polarization of the beam can
then be obtained byaveraging Sz andSr over the particle
distribution of the beam.

FIG. 2. Schematic drawing of spin closed or-
bits of nearly overlapping spin resonances. The
left plot shows the survived spin vector in the
presence of a spin resonance atK1 , and the right
plot shows the effect of the spin resonanceK2 on
the final polarization vector.
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As the polarized beam travels along the ring, its polariza-
tion vector precesses about the vertical axis with a spin phase
advanceKu. Sinceu advances by 2p every revolution, the
radial polarization observed at one location in the ring will
oscillate with a zero average if all resonance tunesKi are not
integers. On the other hand, if one of the resonances is an
imperfection resonance, whereKi is an integer, the spin
closed orbit is stationary and the radial polarization may not
be zero.

IV. DATA FITTING

To verify the overlapping resonance model and the syn-
chrotron sideband enhancement, we will analyze the well-
known SPEAR data@7# and some synchrotron sideband data
of the IUCF cooler ring@9–12#.

A. SPEAR data

The firstsystematicstudy of spin resonances in a storage
ring was the polarization data of SPEAR@7#. Many reso-
nances were presented in Fig. 8 of Ref.@7#, where one notes
that there are

K58, 31nz , 31nx

principle resonances with many synchrotron sidebands, and
nonlinear resonances at 81nx2nz ,nx1nz22. The polariza-
tion data had been extensively studied by Chao@14#, Mane
@15#, and Buon@16# with spin tracking programs.

Instead of repeating the spin tracking, we will use Eq.
~31! of the weakly overlapping resonance model to fit the
data and extract some relevant spin resonance information.
Since synchrotron sidebands are particularly enhanced re-
sulting from large spin chromaticity@17# and small synchro-
tron tune, the resonance strengths of synchrotron sidebands
at K6mnsyn are given bye

K
Jm(g) with g5b2Gg0â/nsyn,

where â is the synchrotron amplitude. The number of free
parameters aree8 , e31nx

, e31nz
, ande81nx2nz

, etc.
For an electron storage ring, the synchrotron amplitude is

not a free parameter. The rms beam momentum spread for
SPEAR at 3.6 GeV is given by

sDp/p5S Cq

JEr D 1/2g'8.731024,

where the damping partition number isJE52, r is the bend-
ing radius,Cq53.84310213 m. If we chooseâ5A6sDp/p ,
we obtaing50.42. Using Eq.~31! with the parameters listed
in Table II, the solid line in Fig. 3 fits the synchrotron side-
bands reasonably well, which are generated by its principle
resonance with spin phase modulation. The resonance
strength derived from the data fitting can be tested by Eq.~2!

with the SPEAR lattice. Unfortunately, the process involves
closed orbit error and linear betatron coupling, which may
not be known with certainty.

B. Synchrotron sidebands near an imperfection resonance

Synchrotron sidebands around an imperfection resonance
had also been observed in the snake experiments at the IUCF
cooler ring @10#. Figure 4 shows the measured vertical and
radial polarization vs the longitudinal field strength of the
compensating solenoids at the IUCF cooler ring@10,11#. The
vertically polarized protons at 104.5 MeV with 77% polar-
ization were injected into the cooler ring and the radial and
the vertical components of the beam polarization were mea-
sured as a function of the compensating solenoidal field at
the cooling section@18#. The vertical polarization was found
to be maximum atBiL50.0158 T m, which corresponded to
a fully compensated solenoidal field for spin motion.

The particleGg value for this experiment was 1.9925.
Because of the horizontal orbit bump at the electron cooling
section, the spin precession tune was shifted upward by
about 0.0035@11#. Thus the spin tune of the beam was
ns51.9960. In the presence of the solenoidal field, the per-
turbed spin tuneQs for an otherwise perfect synchrotron is
given by

cospQs5cos@pns#cos
x

2
, ~33!

and the spin closed orbit vectornŴ 15(n1x ,n1s ,n1z) is given
by

n1x5
21

sinpQs
sin@ns~p2u!#sin

x

2
, ~34!

FIG. 3. The polarization ofe1 single beam in SPEAR is shown
as a function of the beam energy@7#. The solid line is a fit to the eye
by using a single resonance model with parameters:
nx55.279 662,nz55.182 604,ns50.042 76, se58.731024, and
â5A6se .

TABLE II. SPEAR machine parameters that fit the polarization data.

nx nz ns e8 e31nx
e31nz

e81nx2nz

5.279 662 5.182 604 0.04 276 0.03 0.008 0.001 0.001
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n1s5
1

sinpQs
cos@ns~p2u!#sin

x

2
, ~35!

n1z5
1

sinpQs
sin@pns#cos

x

2
, ~36!

whereu is the orbital angle between the observation point
and the solenoid (u560° at the IUCF cooler ring!, x is the
spin kick angle from the solenoid, i.e.,

x5~11G!
DBiL

Br
,

whereDBiL is the integrated solenoidal field error, andBr
is the beam rigidity. A larger spin precession anglex will
cause a larger deviation of the perturbed spin tuneQs from
an integer and the spin closed orbit also tilts further away
from the vertical axis.

When a beam of vertically polarized protons is injected
into the cooler, the polarization vector will precess about

nŴ 1 . Thus the survived magnitude of polarization is

SW inj•nŴ 15Pinjn1z , and the final stable polarization vector is
given by

PW stable5Pinjn1z~n1xeŴ x1n1seŴ s1n1zeŴ z. ~37!

Sincens is close to 2 andx is small, the fractional part of the
spin tune can be approximated by

Qs'@~22ns!
21e2#1/2, e5

x

2p
. ~38!

The final vertical and radial polarization is given by

Sv'Pinj

~22ns!
2

~22ns!
21e2

, ~39!

Sr'2FPinjsin
4Ggp

3 G ~22ns!e

~22ns!
21e2

. ~40!

Thus the effect of a weak solenoidal field error on the spin
vector is similar to a single resonance. Varying the solenoi-
dal field is equivalent to varying the resonance strength pa-
rametere.

Now, we include synchrotron sidebands. Since the spin
tune at a synchrotron sideband is not an integer, the spin
closed orbit associated with the synchrotron sideband pre-
cesses about the vertical axis. Only the vertical projection
along the closed orbit of the synchrotron sideband can sur-
vive.

Combining the stable spin vector of the imperfection reso-
nance and synchrotron sidebands, the final polarization be-
comes

Sv'Pinj

~22ns!
2

~22ns!
21e2

~Qs2nsyn!
2

~Qs2nsyn!
21e syn

2 , ~41!

Sr'2FPinjsin
4Ggp

3 G ~22ns!e

~22ns!
21e2

~Qs2nsyn!
2

~Qs2nsyn!
21e syn

2 ,

~42!

whereQs is the fractional part of the spin tune,nsyn is the
synchrotron tune, andesyn is the resonance strength of the
synchrotron sideband, which can be calculated from Table I.
The solid line shown in Fig. 4 is the theoretical fit with a
type-3 snake tune shift of10.0035@19,20# and a synchrotron
tune 0.0046 with synchrotron amplitude

â5
2nsyn
uhuBf

'0.001,

where uhu'0.76 is the phase slip factor,Bf'10 is the
bunching factor. The resultingg is about 0.1. We note that
the radial polarization is slightly shifted from the zero cross-
ing point at a fully compensated solenoidal field. In an earlier
study@11#, we found that the regular imperfection resonance
atns52 with resonance strength of the order of 0.0008 could
give rise to a shift and asymmetry in the radial polarization.
The solid line has provided a good description of the syn-
chrotron sideband with only a single parameter of synchro-
tron amplitudeâ. Without the kinematic enhancement, the
resonance width would have been too small to explain the
data.

C. Synchrotron sidebands of rf solenoidal fields

Applying an rf solenoidal field to measure the spin tune of
the beam, synchrotron sidebands have also been observed.
Using Eq.~2!, the resonance strength due to the rf solenoid
field is given by

e
K
5

~11G!BiL

2pBr
, K5Ksol5n6

f sol
f 0

, ~43!

where f sol is the frequency of the solenoid rf field, andh is
an integer. Thus the rf solenoid field generates a resonance at
a tune given by the ratio of rf frequency to the revolution
frequency.

FIG. 4. The vertical and radial polarization measured at the
IUCF cooler ring for 104.5 MeV polarized protons is plotted as a
function of the longitudinal transverse field errorBL in T m. When
the spin tune equals to the synchrotron tune beam depolarization
was observed. The solid line is obtained from Eqs.~41! and ~42!
with synchrotron amplitudeâ50.001.
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Figure 5 shows the vertical and radial polarizations as a
function of the rf solenoidal frequency measured at the IUCF
cooler ring@12#. The proton beam energy was 104.14 MeV
and the revolution frequency was 1.505 MHz. Figure 5
shows particularly that the synchrotron sidebands are impor-
tant and the radial polarization is not zero.

It is tempting to think that the associated synchrotron
sidebands arise from the dependence ofBr on the momen-
tum, i.e.,

Br5~Br!0S 11
Dp

p0
D . ~44!

SubstitutingBr into Eq. ~2!, synchrotron sidebands can be
generated. However, becauseDp/p0<0.001 is small, the
resonance width is simply too small to account for the width
observed in Fig. 5.

In the following, we will use the overlapping resonance
model with synchrotron sideband enhancement to analyze
the data. At 104.14 MeV, we haveGg51.9918. Including a
type-3 snake tune shift of aboutDn350.002 33@19#, the spin
tune wasns51.9942. The rf solenoidal field strength was
calibrated to obtain a resonance strength of
e
K
5(4.160.2)31024. The synchrotron tune was 0.001 271,

which gave rise to the parameterg5 (b2Gg0/nsyn)â'0.30
with the momentum spread aboutâ'0.001. Thus the effec-
tive resonance strengths are aboutJ0(g)eK

'4.031024 for

the principle resonance, andJ1(g)eK
5631025 for synchro-

tron sidebands.
Using these parameters, solid lines are obtained from Eqs.

~41! and~42! for the vertical and the horizontal polarization,
respectively. It is worth noting that the nonzero value of
horizontal polarization indicate that the rf solenoid provided
an imperfection resonancelike spin resonance to the polar-
ized beam. IfKsol is not an integer, the radial polarization
will precess about the vertical axis at a frequency
u f sol2 f 0u. The time average will be zero.

The puzzle was resolved by knowing the fact that the rf
solenoid used in this experiment acted like a broadband rf

system and the beam was actually trapped by the bucket area
created by the induced rf electric field. A beam dynamics
experiment, performed by the IUCF accelerator physics
group, confirmed this explanation. Thus the radial polariza-
tion survives for the principle resonance and synchrotron
sidebands. At any frequency, the polarized beam particles are
trapped into the rf solenoidal bucket. SinceKsol was always
an integer, the radial polarization at the synchrotron side-
bands differs from that of Fig. 4.

V. CONCLUSION

In conclusion, we have discussed the physics of synchro-
tron sidebands and found that the resonance arises from the
kinematic spin phase modulation. Thus the resonance
strength is proportional to that of the primary resonance. In
the overlapping resonance regime, we find that the overlap-
ping spin resonances can be combined into a single reso-
nance with an effective resonance strength, which depends
on the relative phase of each resonance. Using this result, we
prove that the effective resonance strength of overlapping
synchrotron sidebands for proton synchrotrons is equal to its
principle resonance strength with a phase shift. In the case of
nearly overlapping spin resonances, we express the polariza-
tion vector in terms of spin closed orbits of spin precessing
frames. This model is used to analyze polarization data from
SPEAR and the IUCF cooler ring. These polarization data
are found to be consistent with the model in which synchro-
tron sidebands are generated by the kinematic effect of spin
phase modulation due to synchrotron motion.
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FIG. 5. The vertical~upper plot! and the ra-
dial ~lower plot! polarizations measured at the
IUCF cooler ring are shown as a function of the
rf frequency of the rf solenoid. The solid line is
obtained from Eqs.~31! and ~32! of the nearly
overlapping resonance model with the synchro-
tron amplitudeâ50.001.
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