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Overlapping spin synchrotron sideband resonances
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(Received 20 March 1996

The synchrotron sideband spin resonances are shown to arise from the kinematic effect of spin phase
modulation with resonance strengths proportional to that of the primary spin resonance. We develop a method
to analyze overlapping spin resonances and apply it to fit polarization data of SPEAR and data recently
obtained from polarized beam experiments at the IUCF cooler ring. The implication of our analyses is that
synchrotron sidebands can only be corrected by correcting its principle resonance. Furthermore, the effect of
synchrotron sidebands in proton synchrotrons is to change the resonance phase without affecting the magnitude
of the strength[S1063-651X96)04907-Q

PACS numbe(s): 29.27.Bd, 41.75+i, 03.20+i, 05.45+b

[. INTRODUCTION In synchrotrons, strong quadrupole fields are also needed
to focus the beam to a small size. Those particles moving off
The study of the proton spin structure function has be-center vertically in quadrupoles will experience horizontal
come an important topic in high energy physics experimentsfjelds, which can perturb the spin vector away from the ver-
which require acceleration and storage of polarized protontical axis. Using the Thomas-BMT equation, the spin reso-
in synchrotrons. However, many depolarizing spin reso-ance strength is given by the Fourier amplitude of the spin
nances may be encountered when accelerating a polarizgegrturbing fields in synchrotrori2,3], i.e.,
beam. Thus understanding spin dynamics for polarized
beams in synchrotrons is an important topic in accelerator e = i fﬁ
physics. K 2
The spin equation of motion, governed by the magnetic ) ) ] ) )
interaction between the magnetic dipole moment of the parvhereé is the orbital bending angl&\B, is the radial per-
ticle and the electro-magnetic fields of synchrotrons, is giverurbing field, AB; is the longitudinal perturbing field, and
by the Thomas-Bargmann-Michel-TelegdMT) equation Bp is the magnetic rigidity of the beam. In synchrotrons,

(1+Gp) 2+ (1+6) s, (2)
)8, Bp ;

[1] there is little or no longitudinal field and the transverse radial
field arises mainly from dipole rolls and the vertical displace-
ds e ment in quadrupoles. Neglecting the effect of dipole rolls,
—=—_38 the radial perturbing field is given by
dt ym
dB,
. R ABy=—z+ M, ©)
X|(1+Gy)B, +(1+G)B; X
- - where M stands for higher order multipoles. In general, the
P EXB 1 vertical displacement is given ]
Y y+1 c | A
p
=Zeot+Zg+ +—
whereG=g/2—1 is the anomalous magneticfactor, y is 2= 2t 25T X p D, @

the relativistic Lorentz factor , and I§” are the transverse
and longitudinal components of the magnetic field with re-

spect to the velocity vecto[?, andE is the electric field.
Hereafter, we will neglect the electric field contribution. For
synchrotrons with planar geometry, vertical magnetic field
are needed to guide the orbiting particle for a closed pathti
Taking the cyclotron frequency into account, the spin vecto
precesses about the vertical axis at a frequenc of 5,
wheref is the revolution frequency. The quanti®y, rep-
resenting the number of spin precession per revolution, i
called the spin tune.

wherez.,,z; are, respectively, the closed orbit and the beta-
tron coordinateC,x; arises from linear betatron coupling,
andD, is the vertical dispersion function resulting from non-
lanar accelerator geometry and/or linear betatron coupling.
ubstituting Eq(4) into Eq. (2), z, gives rise to imperfec-

on resonances locatedit= integersz, produces intrinsic
fesonances &=nP= v,, whereP is the superperiod of the
machine andv, is the vertical betatron tunes; generates
linear coupling spin resonances and the vertical dispersion
Function term can produce synchrotron sidebands located at
K=nz*vg,, wherevg, is the synchrotron tune. Including
M, the spin resonance tunes are generally given by

“Permanent address: Alfuelaboratory Division of Accelerator K=n+kv,+lv,+ MVgyn, (5)
Technology, Royal Institute of Technology, 10044 Stockholm,
Sweden. wherek,l,m,n are integers.
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Defining a two-component spinok with S=(¥|a|¥), data. Note particularly that the dispersion function

the Thomas-BMT equation can be casted into the spinofannotgenerate synchrotron sidebands around intrinsic de-
equation polarization resonances.

Since the spin resonance driving term+{Gvy) AB,/Bp

dw i Gy —¢ from the transverse error fields, depends only weakly on
0= 3| & -6y v, (6) Ap/pg at high energy, the resonance strength is nearly inde-
pendent of the momentum deviation of the particle. In other
) . . words, the resonance strength at synchrotron sidebands due
where¢ can be expanded in a Fourier series to the transverse perturbing fields is small. In particular,
there are no synchrotron sidebands around intrinsic reso-
5:2 éKe—iKﬁ_ 7) nances. Although the longitudinal perturbing fields can pro-

duce synchrotron sidebands, longitudinal fields are usually
weak in synchrotrons. A possible mechanism to generate

Here € is the resonance strength given by E2). If spin . o .

€« . gih g y P synchrotron sidebands around intrinsic resonance is the feed
resonances do not overlap with each other so that the spigy, y, from higher order multipoles. This effect is again very
motion is under the influence of at most one harmonic iNgmall.

¢, the spinor equation can be solved analyticfyg]. So far, we conclude that the resonance strengths of syn-
However, overlapping resonances occur often in high engp 4100 sidebands induced by the vertical dispersion func-
ergy accelerators. Numerically integrating the spinor €quagon are small and there are no synchrotron sidebands around
tion, we find that overlapping spin resonances can sometimeginsic resonances. However, synchrotron sidebands were
be expressed as a single resonance with an effective resgpgeryeq to be very important in the Stanford Positron Elec-
nance strength attamaple from a linear co.mblnatu_)n of alkon Accelerator RingSPEAR polarization datd7]. What
spin resonancei3]. In high energy storage rings which use g the mechanism for synchrotron sidebands? In the follow-
snakes to overcome spin resonances, we find that the ovegy \ve will show that the enhancement of synchrotron reso-
lapping imperfection and intrinsic resonances also produc@.nces arises mainly from the kinematic effect.

even order snake resonances and generate spin tune_shift SOwe consider the spin equation of motion for a single pri-
that each snake resonan@@th odd and even ordesplit mary spin resonance

into two [5,6].
Indeed, polarized beam experiments showed that overlap- G e e KO
ping synchrotron sideband resonances were important in dv i 7' K
electron storage rinds]. Similarly, overlapping synchrotron do - 2| - e: e'k? -Gy v, ©)

sideband resonances were found to be important at the Indi-

ana University Cyclotron FacilityUCF) cooler ring[9-12).

Why were overlapping synchrotron sidebands not observedhere K is the resonance tune ar‘q( is the resonance
in the polarized proton acceleration at the alternatingstrength. For an off-momentum particle withear synchro-
gradient synchrototAGS) [8]? How do synchrotron side- tron motion given by Eq(8), the spin tune is given by
bands arise? What happens when all synchrotron sidebangsy=Gy,(1+ B?Ap/p,), wherey,mc? is the energy of the

overlap with the principle resonance? . synchronous particle. Now, we transform the spinor wave
This paper examines the physics of synchrotron sidebanfiinction into the spin precessing frame with

spin resonances and analyze the existing data in terms of an

overlapping resonance model. Section Il examines the origin 0
of synchrotron sideband spin resonances, Sec. lIl reviews the Y=g /2 JOGVd"%‘P, , (10
effect of overlapping resonances on spin motion. Section 1V

analyzes some experimental data. The conclusion is given in

Sec. V. and obtain
0 € e (KO—[Gydd)
Il. SYNCHROTRON SIDEBAND RESONANCES dw, K -
—_—= * Al (KO—[Gyd6) .

It is tempting to attribute the synchrotron sidebands to the dg 2| &*© 0 |
vertical dispersion function term in E@4), where the mo- (11)
mentum deviationAp/p for an off-momentum particle is
given by Using Eq. (8), the spin precessing phase for an off-

Ap momentum particle becomes
—— =acowgyf. (8)
P fae 40 Grypt+ B2 0 asinn, 0 (12
L . o vyd6=Gy, asinvg,,f.
Herea is the amplitude of synchrotron oscillations. Indeed, 0 Vsyn "

the termD, (Ap/p) can produce first order synchrotron side-

bands, located aK=n=*vg,, around imperfection reso- In particular, we note that the spin precessing phase has been
nances. Because the resonance strength is proportional to theeatly enhanced by the smallness of the synchrotron tune.
product of the synchrotron amplitudeand the vertical dis- The effective spin phase modulation amplitude is
persionD,, it would be too small to fit any experimental g= (,BZGyo/vSyr) a.
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TABLE |. Effective strengths for synchrotron sidebands. The first case has been extensively studied in R&8].
In this section, we will examine the latter two cases.
Resonances K K*vgn K*2vg, K=3vgyn
. 1 1.2 1.3
Effective strength €, 20€k 897 €, 480" €k A. Overlapping resonances

WhenK; andK, are nearly equal, two harmonics§rcan

Expanding the spin precessing phase in Fourier harmorf?® combined to be
ics, the effective resonance driving term in the spinor equa-

tion becomes £=A(e1,e5,|A]0)e K7, (15
o where K= (Ki+Ky)/2, A=K,—K;, and A is a slowly
EKefi(KHffGydﬂ)z 2 EKJm(g)e*i(K*GYO*mVsyn)g_ (13 modulating amplitude function. To study the physics of over-

lapping resonances, the spinor equation is solved numeri-
cally with a uniform acceleration rate through these reso-
If the condition|e Jn(g)|<vsy, is satisfied, each synchro- nances.
K .
tron sideband behaves as an isolated resonance with reso-Let Gy=xo+af, where a=dGy/dd is the constant
nance strengtle J,(g), wherem=0,+1,+2 i.e.. the acceleration rate. Ledy be the orbital angle where the spin
K L 7 L L | - "

off-momentum particle experiences spin resonanceallat tune of the particle is equal to the spin resonance tune, i.e.,

synchrotron sidebands. Using the small argument expansion Gv= ket =K.
for Bessel functions, Table | lists effective resonance Y= KoT abo= R

strengths for synchrotron sidebands. . . .
) . ow we define an asymptotic orbiting angly such that
The physics of synchrotron sidebands can be understoo§0a23x max(e, .¢,), so that when the orbiting angle sat-

as follows. The spin phase modulation _due to a linear syni-Sfy 16— 65> 6, , the spinor wave function is in the asymp-
chrotron motion can generate many sidebands around tr}%tic region and the spin resonance has little effect on spin

spin tune. If one (.jf the sidebands falls on the principle r€SOmotion. The factor of 3 for the asymptotic region has been
nance, the spin is strongly perturbed. Thus the resonan

Serived from numerical simulations and analytic solution of

strength of synchrotron sidebands is proportional to thea single resonance mod].

strength of the principle resonance. Because the synchrotron In general, the effective resonance strength experienced

ﬁ:‘;gr:znriag\éigi tisor:qqall:)f(;tl?)?\t tf:;}gar:;}%ee?]‘tggts oaft tthh: SSpI'r:E)y the polarized beam is the integrated effect of the effective
. ; 9 : P amplitudeA. However, if the conditionA|6,<1 is fulfilled,
resonance is particularly enhanced.

For electron storage rings, the synchrotron tune is usuaII;[/he effective resonance strength is simply given by

of the order 0.1, thus synchrotron sidebands may be well _ _ ~
separated. The single resonance dominant model used above ceri=A(e1.€2, Al 6o+ (6= O0) N~Aler,e2.|A] 60),
is applicable. There are many experimental data which have
confirmed the enhanced synchrotron sideband resonancg@ich is time independent. The polarization after passing
[7]. through these two overlapping resonances is given by the

For proton synchrotrons, synchrotron tunes are normallyrroissart-Stora formulfl3]
about 103, the enhancement factor can be large. This means
that all synchrotron sidebands overlap with the principle P; ~ rleurl?i2a
resonance, and the single resonance dominant analysis used Fi=2e efft 4= 1. 17)
above is not valid anymore. In this case, we will show, in
Sec. lll, that the magnitude of the effective resonancerhis means that two overlapping resonances may be replaced
strength by combining all synchrotron sidebands is equal tgy a single resonance with an effective resonance strength
that of the principle resonance. given by Eq.(16).

To verify the model, the spinor equation has been numeri-

IIl. EEFECT OF OVERLAPPING RESONANCES cally integrated with a simplified two resonance mold|

We consider a simple model of overlapping resonances E=ee K1l gemi(KitA)0
with
. _ with K;=3.2, K=3.2+ (A/2), a=4.86x10 5. The effec-
E=e e K104 g0 K20, (14 tive resonance strength for this simplified model is

wheree;,e, and K,,K, are resonance strengths and reso- €= 2€ CO ée n 5(0—0 )
nance tunes, respectively. L&t=K,—K; be the spacing of eff 27972 0

these two spin resonances. We can classify multiple reso- _ _ o
nances into three categories: Furthermore, if two nearby spin resonances satisfies

(1) Isolated resonance witlh|> max(eq,€5), A/2 6,<1, the effective spin resonance strength becomes

(2) Overlapping resonances with |< min(e;, €5), A

(3) Nearly overlapping resonances with/A|= €ur=2¢ C os(— 0,
max(eq , €5). 2

. (18

: (19
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which is independent of time. The final polarization becomesThis means that the synchrotron motion changes merely the
phase of the principle resonance strength without affecting

el its magnitude.

a

27| e|? A
S(A)zZexp[— co§<§00”—1. (20

B. Nearly overlapping resonances

The top plot of Fig. 1 taken from Ref3] shows the final In the nearly Qverlapp|ng resonance regime wlith max
polarization obtained from numerical solutions of the spinor(el_’EZ_)’ the_Frmssart—Stora forml_JIa may not be apphcable.
equation as a function af with e=0.0023, which was cho- This is ewdently.shown in Fig. 1 in the region
sen such that a resonance strengthaduld fully depolarize €[0.01,0.3. We will analyze the two resonance model of

the beam. Cancelation of these two spin resonances occurs%‘i" (14) as follows: . :
Let us transform the spinor equation onto the resonance

_ precession frame df,, i.e.,

K— Ko
= = = 1
|A|6p=]A] - (2m+1)m, m=1.23,..., W= e Ka0ony 23
(21
and obtain
whereS(A)=1 was confirmed by numerical calculations up ) ) 0 e.e 100
to A=<0.005. Wi T, o =0 L0, 2 v
The lower plot shows similar results with=0.05, where do MMVt 3| e 0 K1

each individual resonance can cause a complete spin flip. In
this case, Eq(20) remains valid up taA <0.002. Because of
very large resonance strength, the rangd of which these where
two resonances cancel each other becomes very narrow. It is
also worth pointing out that the spin has flipped twice at N=[85+ e 1Y% 5,=K,~Gy,
A>0.3=3(e;+€5) as shown in the lower plot. Thus the
factor of 3 used in defining the asymptotic region is a rea-
sonable approximation for polarized beam acceleration
through a resonance.

Now we can discuss the effect of overlapping synchrotron €= €, +ieyg;.
sidebands in proton synchrotrons. When the spacing between ~
two spin resonances is smaller than ¥0the effective spin  Hereé,, &, andé, are base vectors for the particle coordi-
resonance strength becomes the sum of all resonances. Fite in the Frenet-Serret coordinate system.
synchrotron sidebands of proton synchrotrons, the effective The first term of Eq.(24) describes the precession of
resonance strength of E(L3) becomes any arbitrary polarization vector around the spin closed

orbit n,, which precesses around the vertical axis with the
tuneK,. The second term describes the perturbation due to
the nearby resonandé,. If |8;+A|>|e,|, then the reso-

nl:)\_l(élez'l' €16 €1i€),

ot~ GKE Jm(g)eimvsynﬁoz EKeigsmysy”HO. (22)
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FIG. 2. Schematic drawing of spin closed or-
bits of nearly overlapping spin resonances. The
left plot shows the survived spin vector in the
presence of a spin resonance<at, and the right
plot shows the effect of the spin resonamcgon
the final polarization vector.

nanceK, can be treated perturbatively. We however will sion tuneK; andK,, respectively. For a beam of polarized
discuss the situation whend;+A~0 with |A|= protons with vertical polarization injected into a storage ring,

max(eq , €5). the polarization vector will precess about these spin closed
Now we transform the spinor into the spin precessionorbits. We consider first the the resonarcg the survived
frame of K, with polarization is given by
T —e- (i12) 60 . 01~
Yy =e S 31 (25) 1=—1;, (29)
to obtain

which is schematically shown in the left plot of Fig. 2.

dWy, _ = -l i Since fi; precesses about the vertical axis with precession
=e” (2M0No| e 2800 tuneK,, the polarization vector is given b
dé 2 1 p g y
0 2 1 (| € lea 01
€2 Sk1=7—| 7—CosK 10+ x1), =—siN(K1 0+ x1), — |,
A\ Ag A1 A

x| e o e(i/2)A0¢r3e(i/2))\laﬁl~&{f,K1_ (26)

where y,=arctang;/e;,;) is the phase of the resonance

strength. IfK, is not an integer, spin tune spread within the

bunch will cause spin decoherence and the remaining polar-

ization is the vertical componemt/\2.

¥, ,=elil? 52003(1‘,}(11 In.cluding the e_ffec_t of the second resonanceKat the
survived polarization is

where §,=K,—G+, and obtain an approximation to Eq.

If | 51|~|A|>]|€4|, we transform the spinor into thH€, reso-
nance frame with

2
(26) with S ,m i 2 0
Skik2 N2, N2 (30
12
AW, 0 . -
do ~ M2z o) ¥a, (27)  which is schematically shown in the right plot of Fig. 2.

Now n, precesses about the vertical axis with precession
where\,=[ 85+ |€,|?]"? is the spin precession tune around tuneK,, the polarization vector becomes

the spin closed orbiin, given by 32 5,/ |e e
= 1 ©2 2 21 .

1. . N 1K2:E)‘_2 A—2C03K29+X2)1)\—2|5m(K29+X2),)\—z ,
nzz)\_( 026,71 €,€,— €3i€5),
2 where y,=arctang, /ey,).
Thus the vertical polarization of nearly overlapping spin
resonances can be expressed as the product of the projection

of each resonance, i.e.,

which precesses about the vertical axis at a &ipeFinally,
the evolution of the spinor wave function frofly to 6 can
be expressed as

_ . . 5?2
P(g)=e (112)Ki803g(i/2) A1 0fi1- o _ i
(6) N S, H N2 (31)
X e— (|/2) 52490’3e(|/2) )\2(0— 00)ﬁ20’e(|/2) 5200’3
o and the radial polarization is given by
xXe~ (i/2) )\100ﬁ1~(re(i/2) K100(r3\1,( 00) (28) 52 5 | |
j QOil€i
This series of precession frame transformation is sche- Sf_zi JI;II sz )\? cogK; O+ xi). (32
matically shown in Fig. 2. If the spacing between two spin
resonances are larger than the resonance strengths The vertical and the horizontal polarization of the beam can
widths), each resonance can be visualized as having a spihen be obtained bgveraging $ and S; over the particle

closed orbit precessing about the vertical axis with precesdistribution of the beam.
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TABLE Il. SPEAR machine parameters that fit the polarization data.

Vx V2 Vs €g €3+ vy €3+ v, €3+ V=V,

5.279 662 5.182 604 0.04 276 0.03 0.008 0.001 0.001

As the polarized beam travels along the ring, its polarizawith the SPEAR lattice. Unfortunately, the process involves
tion vector precesses about the vertical axis with a spin phasdosed orbit error and linear betatron coupling, which may
advanceK 0. Sinced advances by 2 every revolution, the not be known with certainty.
radial polarization observed at one location in the ring will
oscillate with a zero average if all resonance tuikeare not B. Synchrotron sidebands near an imperfection resonance
integers. On the other hand, if one of the resonances is an
imperfection resonance, whet€; is an integer, the spin
closed orbit is stationary and the radial polarization may noE
be zero.

Synchrotron sidebands around an imperfection resonance

ad also been observed in the snake experiments at the IUCF

ooler ring[10]. Figure 4 shows the measured vertical and
radial polarization vs the longitudinal field strength of the
compensating solenoids at the IUCF cooler fitg,11]. The

IV. DATA FITTING vertically polarized protons at 104.5 MeV with 77% polar-
ization were injected into the cooler ring and the radial and

To verify the overlapping resonance model and the synthe vertical components of the beam polarization were mea-
chrotron sideband enhancement, we will analyze the wellsyred as a function of the compensating solenoidal field at
known SPEAR daté7] and some synchrotron sideband datathe cooling sectiofi18]. The vertical polarization was found

of the IUCF cooler rind9-12,. to be maximum aBjL=0.0158 T m, which corresponded to
a fully compensated solenoidal field for spin motion.
A. SPEAR data The particleGy value for this experiment was 1.9925.

) , . ) Because of the horizontal orbit bump at the electron cooling

The firstsystematicstudy of spin resonances in astoragesection, the spin precession tune was shifted upward by
ring was the polarization data of SPEAR]. Many reso-  ghqt 0.0035[11]. Thus the spin tune of the beam was

nances were presented in Fig. 8 of R&fl, where one notes , _ 1 9960. In the presence of the solenoidal field, the per-
that there are turbed spin tun&), for an otherwise perfect synchrotron is

K=8, 3+v,, 3+, given by

. X
principle resonances with many synchrotron sidebands, and cosmQs= cog 7vs]Cos;, (33

nonlinear resonances at8&,— v,,v,+ v,— 2. The polariza-
tion data had been extensively studied by Chb#], Mane  and the spin closed orbit vect@s = (ny,Nys,Ny,) iS given
[15], and Buon[16] with spin tracking programs. by

Instead of repeating the spin tracking, we will use Eq.
(31) of the weakly overlapping resonance model to fit the -1 X
data and extract some relevant spin resonance information. nlxzsin—ﬂ.st”{ v(m—0)]sin, (34)
Since synchrotron sidebands are particularly enhanced re-
sulting from large spin chromaticityl 7] and small synchro-
tron tune, the resonance strengths of synchrotron sidebands 1
at K=mug, are given bye, Jn(g) with 0= B*Gydl vgyn, YT SPEAR
wherea is the synchrotron amplitude. The number of free r
parameters areg, €34, , €3.,, andeg., —, , etc. 078 1

For an electron storage ring, the synchrotron amplitude is
not a free parameter. The rms beam momentum spread for

4
g
g

[a B}

SPEAR at 3.6 GeV is given by > ;
12 0.25 i—
O'Ap/p:(JC_q) 7”87)( 1074, I
EP 0.00
L \
where the damping partition numberds=2, p is the bend- E (Ge\;’f 2

ing radius,C,=23.84x 10" 33 m. If we choosea= 60,

we obtaing=0.42. Using Eq(31) with the parameters listed FIG. 3. The polarization 0é* single beam in SPEAR is shown
in Table 11, the solid line in Fig. 3 fits the synchrotron side- as a function of the beam enerifj. The solid line is a fit to the eye
bands reasonably well, which are generated by its principley using a single resonance model with parameters:
resonance with spin phase modulation. The resonancg=5.279 662y,=5.182 604y,=0.042 76, o.,=8.7x10"4, and
strength derived from the data fitting can be tested by(Bq. a=60..
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4Gy

] (2—vy)€e
Pinjsin 3 >

(2-vg)?+ e

(40)

X
Nis= sim-rQSCOS{ vo(m— 6)]S|n§, (35 S~-—

. X Thus the effect of a weak solenoidal field error on the spin
N1z~ S si mvs]cos;, (36)  vector is similar to a single resonance. Varying the solenoi-
S dal field is equivalent to varying the resonance strength pa-

where ¢ is the orbital angle between the observation pointrametere.
and the solenoidd=60° at the IUCF cooler ring y is the Now, we include synchrotron sidebands. Since the spin
spin kick angle from the solenoid, i.e., tune at a synchrotron sideband is not an integer, the spin
closed orbit associated with the synchrotron sideband pre-
cesses about the vertical axis. Only the vertical projection
along the closed orbit of the synchrotron sideband can sur-

P
x=( ) Bp

vive.
whereAB|L is the integrated solenoidal field error, aBg Combining the stable spin vector of the imperfection reso-
is the beam rigidity. A larger spin precession anglevill nance and synchrotron sidebands, the final polarization be-

cause a larger deviation of the perturbed spin tQadrom  comes
an integer and the spin closed orbit also tilts further away
from the vertical axis. (2—vy)? (Qs— veyn)?

When a beam of vertically polarized protons is injected Svmpinj(z_ vg) 2+ €2 (Qs— s n)2+€2 ' (41
into the cooler, the polarization vector will precess about Y S
A;. Thus the survived magnitude of polarization is AGym| (2—wvg)e (Qs— veyn)?
Si-A1=Piyny,, and the final stable polarization vector is S~ | Pisin—s (2= v5)*+ € (Qg— veyn) >+ €4y
given by (42
Petabie= PinjN12( N1+ N1s8s+ N1 &5 (377  whereQq is the fractional part of the spin tunegy, is the

_ _ _ . synchrotron tune, ands, is the resonance strength of the
Sincevs is close to 2 ang is small, the fractional part of the synchrotron sideband, which can be calculated from Table .

spin tune can be approximated by The solid line shown in Fig. 4 is the theoretical fit with a
type-3 snake tune shift 0f0.0035[19,20 and a synchrotron
Q~[(2—vo)2+ ]2 €= % (38) tune 0.0046 with synchrotron amplitude
. . . e ~ 2Vsyn
The final vertical and radial polarization is given by a= EE ~0.001,
f
(2— Vs)z . . .
S,~P (399  where |7|~0.76 is the phase slip factoB;~10 is the

bunching factor. The resulting is about 0.1. We note that
the radial polarization is slightly shifted from the zero cross-
O S A A e B ing point at a fully compensated solenoidal field. In an earlier

g 1 study[11], we found that the regular imperfection resonance
at v,=2 with resonance strength of the order of 0.0008 could
give rise to a shift and asymmetry in the radial polarization.
The solid line has provided a good description of the syn-
chrotron sideband with only a single parameter of synchro-
tron amplitudea. Without the kinematic enhancement, the
resonance width would have been too small to explain the
data.

0.8 [
06 F

<S>

v n
04 F

0.2 F

E 3
0.0 H———

04 F

0.2 |

<S> C. Synchrotron sidebands of rf solenoidal fields

™ 0.0 5 1

E B 1 Applying an rf solenoidal field to measure the spin tune of
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FIG. 4. The vertical and radial polarization measured at the K 2wBp fo

IUCF cooler ring for 104.5 MeV polarized protons is plotted as a

function of the longitudinal transverse field er®t in T m. When ~ Wherefg, is the frequency of the solenoid rf field, angis

the spin tune equals to the synchrotron tune beam depolarizatioan integer. Thus the rf solenoid field generates a resonance at
was observed. The solid line is obtained from E@) and (42) a tune given by the ratio of rf frequency to the revolution
with synchrotron amplitud@a=0.001. frequency.
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FIG. 5. The verticalupper plo} and the ra-

- dial (lower ploY polarizations measured at the

5 IUCF cooler ring are shown as a function of the
E rf frequency of the rf solenoid. The solid line is

E obtained from Eqs(31) and (32) of the nearly

3 overlapping resonance model with the synchro-
E tron amplitudea=0.001.
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rf frequency (MHz)

Figure 5 shows the vertical and radial polarizations as aystem and the beam was actually trapped by the bucket area
function of the rf solenoidal frequency measured at the I[UCFcreated by the induced rf electric field. A beam dynamics
cooler ring[12]. The proton beam energy was 104.14 MeV experiment, performed by the IUCF accelerator physics
and the revolution frequency was 1.505 MHz. Figure 5group, confirmed this explanation. Thus the radial polariza-
shows particularly that the synchrotron sidebands are impottion survives for the principle resonance and synchrotron
tant and the radial polarization is not zero. sidebands. At any frequency, the polarized beam particles are

It is tempting to think that the associated synchrotrontrapped into the rf solenoidal bucket. Sin€g, was always
sidebands arise from the dependencd&pfon the momen- an integer, the radial polarization at the synchrotron side-
tum, i.e., bands differs from that of Fig. 4.

Ap

1+ 2P} (44) V. CONCLUSION
Po

Bp=(Bp)o
In conclusion, we have discussed the physics of synchro-
SubstitutingBp into Eqg. (2), synchrotron sidebands can be tron sidebands and found that the resonance arises from the
generated. However, becaudg/p,=<0.001 is small, the kinematic spin phase modulation. Thus the resonance
resonance width is simply too small to account for the widthstrength is proportional to that of the primary resonance. In
observed in Fig. 5. the overlapping resonance regime, we find that the overlap-
In the following, we will use the overlapping resonance ping spin resonances can be combined into a single reso-
model with synchrotron sideband enhancement to analyzeance with an effective resonance strength, which depends
the data. At 104.14 MeV, we haw@y=1.9918. Including a on the relative phase of each resonance. Using this result, we
type-3 snake tune shift of abositv;=0.002 3319], the spin  prove that the effective resonance strength of overlapping
tune wasv,=1.9942. The rf solenoidal field strength was Synchrotron sidebands for proton synchrotrons is equal to its
calibrated to obtain a resonance strength ofprinciple resonance strength with a phase shift. In the case of
€= =(4.1x0.2)x 10" “. The synchrotron tune was 0.001 271, nearly overlapping spin resonances, we express the polariza-
wh|ch gave rise to the parametge (BZGYO/Vsyn)a 0.30 tion vector in terms of spin closed orbits of spin precessing
with the momentum spread abcar=0.001. Thus the effec- frames. This model is used to a_nalyze polarlzathn d_ata from
tive resonance strengths are abdytg)e ~4.0x 104 for SPEAR and the IUCF cooler ring. These polarization data
L DA are found to be consistent with the model in which synchro-
the principle resonance, adg(g) e, =6>10"" for synchro- ., sidebands are generated by the kinematic effect of spin

tron sidebands. o . phase modulation due to synchrotron motion.
Using these parameters, solid lines are obtained from Egs.

(41) and(42) for the vertical and the horizontal polarization,
respectively. It is worth noting that the nonzero value of
horizontal polarization indicate that the rf solenoid provided We are grateful to Dr. J. Johnson and Professor A. D.
an imperfection resonancelike spin resonance to the polakrisch for allowing us to analyze their published and unpub-
ized beam. IfK4, is not an integer, the radial polarization lished data. We thank Dr. R. Phelps for his help in providing
will precess about the vertical axis at a frequencyus the data shown in Fig. 5. This work is supported in part by
|fso— fol. The time average will be zero. grants from NSF PHY-9512832 and the U.S.DOE DE-FG02-
The puzzle was resolved by knowing the fact that the rf92ER40747. M. Berglund would like to thank the Blanceflor
solenoid used in this experiment acted like a broadband foundation, Stockholm, Sweden for financial support.
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