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Coupling impedance of a hole in a coaxial beam pipe
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In this paper we derive the impedance of a circular hole in the inner tube of a coaxial beam pipe. The method
used differs from the classic Bethe’s diffraction theory, since, in the calculation of the magnetic and electric
dipole moments, we take into account also the scattered fields in the aperture to match the power conservation
law. The low-frequency impedance shows a real contribution accounting for the TEM waves propagating
within the coaxial waveguidd S1063-651X96)09406-§

PACS numbeps): 41.75-i, 41.20—q

I. INTRODUCTION Eors Eoz @andHy,, (see Appendix A
The scattered fields in the pipes can be represented as an
The impedance of a hole in a beam pipe has been recentlgfinite series of normal modes. Modes TE and TM can
thoroughly studied. Many different shapes and hole distribupropagate in both thg; and g, waveguides, while a TEM
tions have been analyz¢d—4]. The importance of such a mode (which propagates without cutgffmust be also con-
geometry in the vacuum chamber arose in particular in theidered ing,.
design of the Superconducting Supercollid86Q [5] and The scattered field can be expressed as a sum of indepen-
the Large Hadron CollidefLHC) [6,7]. At low frequencies, dent modegsee Appendix B Each mode will propagate in
i.e., for wavelengths much larger than the hole size, the fieldboth z directions, after scattering occurs at the aperture.
can be calculated by applying Bethe's theory, which state§herefore we have, for waveguidg:
that the hole is equivalent to a combination of radiating elec-
tric and magnetic dipoles and their moments are related to
the amplitude of the primary incident fiel@8]. At first order
the method yields a purely imaginary impedante?]. Re- _
cently, the real part of the impedance has been calculated +bn,me._(n,m)e'kz(""")za(—Z)],
considering the energy radiated by the hole into the beam (1)
pipe and in the free spa¢®,10]. The impedance of a hole in _ n —ik 2
a coaxial pipe has been calculated by Gluckstern applying Hi_nzm [8n,mi(n,m € Henm?6(2)
Bethe's theon|3]. _
In this paper we improve the impedance calculations in + b mhi(n.m & 20 m26(—2)],
several respects. In order to make the power conservation )
hold, the electric and magnetic dipole moments are calcu@nd for waveguidey, :
lated taking into account also the fields scattered in the cir-
cular and coaxial waveguides. Further.more', the impedances Eezz [c, me;(n m)e_jkz(n,m)zﬂ(z)
are calculated also for a charge traveling with velo@ty. amo ’
At low frequency, below the cutoff of the circular and

Ei = ;n [an,mqtn,m)e_jkz(n'm)ze(Z)

. . . . . » ik Zg(
coaxial waveguides, the longitudinal impedance shows a real +0n,mEe(n,m & 2™ O(—2)],
contribution, scaling likew?, which corresponds to the TEM 2
mode propagating inside the coaxial waveguide. He=2 [Cnymh;r(n’m)e—jkz(n,m)za(z)
n,m
Il. GENERAL APPROACH + dp g me<nmZ6( —~ 2)1,

In this section we briefly describe the method generally
used in the microwave techniques to study the coupling otV
two waveguides through a small aperture. In our case, how-
ever, the primary field is produced by a charge traveling
off-axis with velocity Sc. The fields are scattered by the

here A(z) is the step function, and

small aperture in both the circulag;) and coaxial wave- p
. . € ! R, d
guide @.) (Fig. 1. - + t 5
Due to the symmetry, the primary fields produced by the o —,
charge inside the circular pipe have only the components:
*Corresponding author. FIG. 1. Structure geometry.
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e(ll—’l,m) er(n m)+ @(n,m)— ez(n,m)y

()
(hr(n m)+ h<p(n m))+ h z(n,m)

(n m=

The expressions of the modal functiong® are given in

Appendix B.
To determine the coefficients, ,,

nmanmvdnmiwe
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M= ap,- (Ho+H;—Hg)|r=b
o—2—
(7)

P=gde (Eg+E;—Eg)|i=b ,
p=z=

whereH; andH, (E; andE,) are the tangent magnefielec-

tric) fields scattered in the circular and coaxial waveguide,

respectively, andy,,, a, are the polarizability tensors.

make use of the Lorentz reciprocity principle, which relates The static solutions oP andM, being in phase with the

the fields to the sourcekandJ,;

@(E(in,m)xH—ExH(in’m))-ﬁdS:f fflEﬁLm)dV,

S
E(*n‘m):e(*n’m)eilkz(n,m){ (4)
+ P P Fijk
H(n,m) = h(n'm)e 1Kz(n,m)Z,

Because of the orthogonality of the field functid3s, we

get:
1 _
an,m:§ AHi(n,m)‘desy

1
bn,m=§f jAHiJEn,m)“deS'
1 _
2 | L renmnas
nm___JfHe(nm) JmdS.

(5

The coefficients of the scattered fields, in the case of a
small aperture, are related to an electric and a magnetic di-

pole on its center.

jo _ _
an,m:7 (MHi(n,m)' M- Ei(n,m)' P),

_e
bn (/-LH|+(n m)’ M- El(n m)” P),

(6)
jo _ _
- 7 (/J’He(n,m)' M — Ee(n,m)' P),

Chm=

jo
dnm=— "5 (#H&nm M—EgnmP)-

e(n,m

On the other hand, these electric and magnetic dipoles al
proportional to the true tangent magnetic field and norma
electric field at the aperture, through the electric and mag-
netic polarizability coefficientsy,, and a.. In the static ap-
proximation, these dipole coefficients have been calculated

for various aperture shap€g,11].
The electric and magnetic dipoles are given by:

re

fields, do not lead to power extraction from the incident
wave, so that the power conservation law is violated. The
modified Bethe’s theory allows to find the correct expression
for the dipole moments, such to balance the scattered power.
In waveguide coupling problems, the leading correction term
comes from the propagating modes that are exdigéd
Substituting the expressions of the fields(t we derive
the following linear system for the dipole components:

I+ anuS,, FamuS,,  FamSe M,
TanuS,, l1-apuS,; Sy M,
Qe Qe
=7 Syr - =S, 1taesS P,
C C
amH()(p
= 0 : )
aceEq,
where we have defined
E (hnp(nm) nm))| z '

<pZ_7 E (hi<p(n,m)hiz(n,m)_hezp(n,m)hez(n,m )| zl?)!

_? E (hizp(n,m)eir(n,m)_hezp(n,m)eer(n,m))l':b )
»=0

€)
z (hlz(n m)

ez(nm)|";%!

Szr:7 E (hiz(n,m)eir(n,m)_ hez(n,m)eer(n,m))|‘;z%a

2 (ell’ n,m)

er(n m))| r= b

Coaxial structure

We now investigate the effect of the outer pipe of radlus
on the coupling impedance. First consider the simple case of
frequencies such that all TE and TM modes are below cutoff,
so that there is propagation only in the coaxial waveguide.
Under these conditions, the magnetic field can have only the
Fomponent alongp, therefore, the linear system (8) re-
duces to

l+tamuS,, FamSy M, amHog
a - 10
=Sy 1taeS |\ P weEo) O
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with k; (107V/I0)
. 4 T T T T T T
Jo 5
S(/J(P_? hqu:| r=b,
3 —
jw
S<pr 7 he0<p(:3e0r|f*b ) 2 F
jw 2 1r
Srr:7 ee0r|;;%'
where we have indicated with the single subscript O the TEM ”

modal functions. Solving10) gives:

amHO
Me=—%
E
P===0, (11)
Al kR (R/b)?
7 67 in(din)’

The polarizability coefficientsy,, a, for a thin circular
hole of radiusR are equal to—2R%3 and 43, respec-
tively [1].

Ill. LONGITUDINAL IMPEDANCE

The longitudinal impedance is defined by

2m i jkoz
ZH(w)z—F fﬁ E,(r=0)e/%%dz

(12

E.

Only the TMy,,, having nonzero longitudinal electric field

ko:

on the pipe axis, contribute to the impedance. After carrying

out the integration foB=1, we get:

©

>

m=1

H)Zo

qb (13

_
EOm‘Jl( §0m) .

The sum of the series ifL3) is equal to 1/2, so that we
recognize the impedance found by Kurennay but for the
factor 1A in the expressions for the dipole momefitg).

By substituting(11) and (A5) in (13), it is easy to show
that at frequencies below the cutoff gf andg. the condi-
tion

1
EM<P+

le(w):_. P,

¢ In(d/b)
W< RIpZ

(R/b)?
is always fulfilled so that we can write:

kR (R/b)?

6 In(d/b)

Zu(w)%% kKR(R/b)?| —j+ . (19

FIG. 2. Dependence of the loss factor on the hole radius.
IV. NUMERICAL RESULTS

In order to check the validity of expressigh4) we per-
form simulations with the numerical code MAFIA. To sat-
isfy all the model approximations some limitations have to
be fulfilled in the simulations:

(@) The radius of the hole has to be much smaller than the
radius of the inner tubeR<2xb.

(b) The inner tube wall thickness should be much smaller
than the hole radius in order to prevent attenuation of the
fields radiated outside the inner tube.

(¢c) The bunch spectrum must lie under the lowest cutoffs
of the inner cylindrical tube and the coaxial formed by the
inner and outer tubes.

(d) Both tubes must be long enough in order to simulate
an infinitely long coaxial line. In our simulations the tube is
much longer than the bunch lengt in the loss factor cal-
culations.

Once we meet these conditionskR/6m)[(R/b)%/
In(d/b)] is <1 within all the bunch spectrum and the real
part of the impedance can be written as:

2 R6

w
¢/ 3673b%In(d/b)"

c

(15

Re{Z(w)}=Zo

Here we consider the case with>b and notd~b. Ap-
plying the standard definition of the loss factor for the
Gaussian bunch we have:

Zo\ 7R

K(9)= 482707 In(dlb) o

(16)

We compared the above analytical expression to the nu-
merically calculated loss factor. Figure 2 shows the depen-
dence of the loss factor of the Gaussian bunch wijk-4
cm on the hole radius. The inner tube radius is 2 cm and the
outer one is 2.4 cm. The numerical resulidack points fit
well the analytical dependendgsolid line). Some small dis-
agreement is observed Rt 10 mm, when the hole radius is
getting comparable to the inner pipe radius, i.e., when the
model approximation no longer holds.

Figure 3 shows the dependence of the loss factor of the
Gaussian bunch withr,=5 cm on the ratio of the pipe radii,
d/b. The inner radius is constant and equal to 1 cm, the hole
radius is 3 mm in the given set of simulations. As it can be

It is worth pointing out that the real part of the impedanceseen, the analytical logarithmic dependerit6) is reason-

behaves likew?.

ably confirmed by the simulations.
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where the expression in brackets is equal to 1.

k; (10°V/C) _ : . .
s We remind that the above expression can be derived di-

T T T T T
rectly from the longitudinal impedance {18) by applying
20 . the general relation between longitudinal and transverse im-
pedances:
15F .
107 ’ z,-Sy Z. (22)
1 (!)r]_ 1
5 * .
0 L L L ) L b From (20) we see that the transverse impedance also ex-
1 L1 12 13 14 15 L6 hibits a real part, which is linear with frequency.

FIG. 3. Dependence of the loss factor on the ratio of the pipe

radii. VI. IMPEDANCE FOR p<1
V. DIPOLE LONGITUDINAL _ In the ca_se_of a charge traveling with yelocity( c, the
AND TRANSVERSE IMPEDANCES impedance is in general lower. Only the fields synchronous
o _ _ with the chargdi.e., with the same phase velogityan con-
A. Longitudinal dipole impedance tribute to the impedance. This effect is accounted for by

The dipole field of a charge traveling with an offset evaluating the integral€l2) and(19) assumingk,= w/ Sc.

Eo(r=b :O)zq—zor—lco 2wZ B
or P 277_2 b2 Spy, ZH(Q)):_J quBEM‘p_Pr:|
17
q r 1 kb \2 -1
Hoy(r=b,=0)= 5—; i cosp;. X [( + B2 22
‘ 27 b 2 SEminlyan T @
Following a procedure similar to that of Kurennfij, we
obtain: and
211 o)=] 2wZy R3 rry cosp cosp; 1
ro)= — , o
! ®)=] 37%c b* A m Jo(é1m) ZL(w):_'Z_ZgE EM _p}z ;
(18 ab® ry [c ¢ T[a=1 Jo(€xm)
where the¢, ,, are the zeros of the first order Bessel’s func- % b 2+ 2 - 23
tion J;(X). In Appendix C it is shown that the series (ib8) Yéim B r. 23

can be analytically summed and it is equal-td.

B. Transverse dipole impedance

The transverse impedance is defined by: Vil. CONCLUSIONS

. We have calculated the coupling impedance of a pumping

Z, (0)=— 4 fw [(E,—ZoH,)F hole on a coaxial beam pipe at low frequency. It has been
ari J -« ¢ shown that, applying a modified Bethe's diffraction theory
~ 1 ikoz which accounts for the power loss, the longitudinal and

+(Eg+ZoH ) ple"dz, 19 transverse impedances have a resistive term. Numerical cal-

, : . lation nfirm the analytical results.
where the transverse field are those for the dipole fiefds (Cu ations co © analytical results

=1) given by(B1) and(B3) in the limit (r,¢)—0.
After some calculations, again we find the same expres-

sion as Kurennoy's except for the factolhamely: APPENDIX A
270 R® cos ¢, The fields produced by a point charge traveling inside a
Z (w)=—]j 3205 A perfectly conducting cylindrical pipe with velocity=8cz

are found from the scalar potentid(r, ¢,z—wvt) solution of
Elm 1 ~ the Maxwell equations with homogeneous boundary condi-
x| 22 7 1) (& +> T tions at the pipe walt =b [12].
m o (En ™ Dalém) - Jol&am In cylindrical coordinates we can express this potential as
(20 a sum of multipole terms:
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1 = to the wave-number domaik. Each Fourier component is
V(r,p,z—vt)= > ngo cogne) obtained by solving the differential equation
iy —jko(z—vt) 14V P
X B Vy(r,rq,kg)e %0 dko, VLV+7E:_E1 (A2)
(A1)

where y=(1— %2 Imposing the boundary conditions at
where we made use of the Fourier transform fromzlspace the pipe walls, we get:

Ia(xr1)
KaOxma(xr1) = 7005 Ka(xD)n(xr), 1211
= den n(xb)
Vn(rvrl!kO): (A3)
27e K Y In(xrq) K (v =t
r rN——— r =T,
n(XT ) 1n(xr) I.(xb) n(xP)1n(xr), 1
|
wherex=Kky/ By, |, andK,, are the modified Bessel’s func- Kenm Kzt m) _
tions, ande,, is Neumann’s symball if n=0, 2 if n>0). hy=—Cym —on Jn(Ken,mr)sin(ne),
The electric field can be obtained from K
k n
19V, hy=—Cpm 2™ 2 3 (Ky ) COSN)
= — 5 o) n,m n\{Kt(n,m) ®),
Pl z—-V V. (A4) r
. - kS nm) _
From (A3) and(A4) it is easy to see that for a relativistic h,=Cnm _tnm In(Ki(nm)SIN(N@).
charge the low-frequency monopolar fields on the aperture Jou
are
The normalization constai@,, ., is given by:
- q .
En_or:b1 :O :Z —r, 1 7Tk , b dr
or (1=b.¢=0)=Z0 575 o= ;(;Lm) (1480007 | Iikinmr) -
(A5) n,m
Hr‘IZO(r_b _0)_ a - 2 b 12
[o1%) =b,p= - 2xb &, +(1_5n0)kt(n,m) OJn (kt(n’m)l’)rdr . (BZ)
while the corresponding dipole fields are given by For the TE modes thk’s are the zeros of (&, ) divided
by b.
El-Y(r=b,p=0)=2 an (cosp)f
or ¢ 0272 p? set TM modes
(A6)
o1 q rp . _ o Km0
Ho<p (r=b,<p=0)= ﬁ Ez (COS(pl)ga. €= nm~— n( t(n,m)r)coin‘P)y
For B<1 there is also a component of the electric field _ :
along z. However, we do not give its expression since it e¢_cnvmEF‘Jn(kt(mm)r)Sme%
never couples with the aperture.
2
_ - t(n,m)
APPENDIX B ez_Cn,m jws kz(n,m) Jn(kt(n,m)r)cosn(P)a
Circular waveguide (g;) N (B3)
TE modes hr:_Cn,mmr‘]n(kt(n,m)r)sm(néo)y
n kt(n m)
er:_cn,mFJn(kt(n,m)r)Coinﬁo)r (B1) h(P:—Cn’mT’)Jé(kt(n’m)r)COE{ncp),
z(n,m
eqo:Cn,nkt(n,m)‘]é(kt(n,m)r)Sin(r“P)- h,=0.

e,=0, For TM modesC,, ,, is



! 1-6 2fbazk dr
Czn,m_wSkz(n,m) ( no)n 0 n( t(n,m)r) r

+(1+ Sno)kiin, m)J I (kyn, m)r)rdr} (B4)
and thek's are 1b times the zeros od,(&, n)-

Coaxial Waveguide(ge)
TEM mode

—:||—\

1
€eor = VZo2T —=
e0r ol €T ’—(d/b)

(BS)
hquo:Z_O €eor -
TE and TM modes fog, can be obtained from the cor-

respondentg; modes simply substitutingJ] to J,, and
[J)] to J;,, where we have defined:

( ‘],(kt( mb)
~Vikuemp) Yotkinmr) (T8
[‘]”]:Jn(kt(n,m)r)-i- f
- P () (TM)
L Yn(kgnmb) " t(n,m) ,
(B6)
r \],(kt(n,m)b) .
_mYn<kt<n,m>r) (TE)
[Jé]:Jrq(kt(n,m)r)"r‘ ,
Jn(kt(n,m)b) , TM
~ Yo(knmp) | Ktnm") (TM).
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The ks in (B6) are 1b times the zeros ofJ,] (TE
mode$ and of [J,] (TM mode3, calculated for =b.

APPENDIX C

To calculate the sum ifil8), we make use of the relation
[13]:

o0

1
=22 2 go,k

Jo(é1m) =1 (&g E1m)Idn(€oK)

(CD

From (18) and(C1), exchanging the order of summation,
one gets:

o © oo

ok
2 JO(gl m)

=2 .
=1 &1 Ju(éop) mm1 Egx—Em

(C2

The second sum in the right-hand side(@R) is equal to
—(1/2)3,(é0m)/I1(é0m) SO that the above equation reduces
to

[’

1 “
mz _ 2 2(50,k)

2 T P Pk €3

which, given the properties of Bessel's functions, is finally
equal to

o o

1
B 221 $oxd1(€ox) N

mzzl Jo(é1m) - -l ©9
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