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Relaxation dynamics in Dyson’s model for the origin of metabolism
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This paper discusses some aspects of the dynamical evolution of the system described by Dyson’s model for
the origin of metabolism. First, the mean number of mutation events required to observe the origin of metabo-
lism in the model is calculated. This number can span a large range depending upon the values of some critical
parameters. Second, the dynamics of the relaxation to equilibrium is investigated by computing the correlation
function of an on-off random function that defines the instantaneous state of the system. It was found that the
dynamics of the system is well described by a double or a stretched exponential relaxation.
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[. INTRODUCTION ized in terms of the features of a rugged potential energy
landscape in which the monomers strongly interact with each
In an earlier papelrl] we discussed a model for the origin other. It was shown that the law of inheritance from parent to
of metabolism that was introduced by Dys@j. One of the  daughter given by the autocatalytic functigi(x) is com-
hypotheses for the elaboration of the model is that cells campletely governed by the nature of interactions between
first, enzymes second, and genes much [&&. The primi- monomers. As a consequence, the diversity of the population
tive cell is envisaged as an inert droplet containing a popuef monomers and the precision of the polymerizing catalysts
lation of polymer molecules composed of bound monomemvere found to be intimately related.
units analogous to the amino acids that make up modern Our main interest in this paper is to study the dynamical
proteins. There is no Darwinian selection. Changes in thevolution of the droplet population with respect to mutation
polymer populations within the cell proceed by random dis-events. To do this, we consider that the droplet contains
crete steps of mutation, each mutation being a replacememonomers and assume that its configuration is solely speci-
of one monomer by another at one of the sites in a polymefied by the number=0,1,... ,N of monomers active after
In a given population of polymers, the bound monomers aré mutations. In what follows, for convenience, the number
either in active or in inactive states, the active monomerd of mutation events will often be called the time The
being in sites where they contribute to the ability of a poly-variation ofi(t) corresponds to a discrete one-step Markov
mer to act as a catalyst. The probability that a monomeprocessi—i+1,i—i—1; i.e., the population in the droplet
inserted by a fresh mutation is active is described by theloes a biased one-dimensional random walk. It follows that
autocatalytic functiong(x), which only depends upon the the daughter population and its ancestors are not correlated.
fractionx of active monomers already present in the popula-The probability of finding active monomers in the popula-
tion. The monomers are assumed to belong taion aftert mutation events is denoted (i ,t), and the
1+v=1/¢(0) equally abundant species and so the activdime evolution of the population is descibed by the master
state is unique, whereas there ar@ossibilities for the in- equation
active states. Modeled in this way, the essential feature for \
the origin of metabolism lies in the transition that occurs for dP(i,t) .
the total population of the droplet from the disorganized or It :]240 wiiP(j,1), (1)
deadstate to the organized alive state[1,2]. In this con-

text, the terms alive and dead mean the presence and abser;,@@ere‘uij are the matrix elements of th&l¢1)X (N+1)

of metabolic organization. _ nonsymmetric matrix of transition probabilities per unit of
We showed in Refl1] that the concept of a spin glass as yytation. They obey detailed balance:
a model for the transition to biological order is applicable to

Dyson’s model for the origin of metabolism. Because the i jPe i) = @ iPedj), 2)
theoretical framework provided by the random energy model

[4] can be employed to study the problem, the equilibriumwhere Pedi) is the equilibrium probability of findingi
properties for the model can be completely determined. Fomonomers active in the system. The transition probabilities
instance, the droplet cell, as described above, was charactetre defined ag2]

i—i+1: wi1=(N=)$(i/N), w_10=0,
*Electronic address: bicout@ibs.fr and mjfield@ibs.fr; FAX: 76-
88-54-94 i—1l—i—i+1: Wji= ~Wjj+1~ Wji-1, (3)
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i—i—1: wi’i_1=i[1—¢(i/N)], w0'_1=0. i0 T T T T
a A
#(x) is the autocatalytic probability that the mutated unit is Feq() 8
active in a droplet that already containsctive monomers ol
and is defined, as befofé], as being of Glauber type: D
4_
¢()= 1+exg Ex(X)/kgT] 1+expA—Bx) @ 2 )
0 1 1
with x=i/N being the fraction of active monomerg,(x) 0 02 04 06 08 1

the activation energy for the transition between two configu-
rationsi —i+1, andkgT the thermal energy. The constants
A andB are given by[1]

A 4zJ-2¢ 4B 8zJ 5
= ——— an ==,
kBT kBT U(X) oF

where ¢ is the energy gainedost) for a monomer to be
active(inactive, zJ is the interaction energy between mono- -0y
mers, ancz is the average coordination number.

The outline of the paper is as follows. In Sec. I, the -0.2F
characteristics for systems dead, symmetric, and alive are - . . '
defined from the equilibrium distribution. In Sec. Il a first ' X '
passage time formalism is used to determine how long it

takes for a population to switch spontaneously from the dis- £ 1. (a) Equilibrium distributionPo(x) calculated from Eq.
organized to the organized state for each of the systemsg) with =10 andN=100 for the three systems symmetriB) (
Section IV is devoted to a study of the relaxation dynamicsjead p), and alive @). The corresponding values for the pair of
in the three systems defined in Sec. Il. This is done by nNuparameters4,B) are (2.3,4.6), (2.3,4.49), and (2.3,4.85), respec-
merically solving the master equation that describes the time@vely. (b) The shapes of the potentibl(x) corresponding to the
evolution of the population and by computing the autocorre-above systems.

lation function of an arbitrary random physical quantity. The

paper ends with concluding remarks in Sec. V. A>A.=2 andB>B.=4 the potentialJ(x) is bistable and
exhibits two stable minima at= « (disorganized stajeand
Il. EQUILIBRIUM DISTRIBUTION at x=7 (organized state and an unstable maximum at

x= B with a<B8<y (see Tables | and )l The organized

state is called “alive” because most monomers are active,
and together they maintain the catalytic processes which
)} keep them active. The disorganized state is called “dead”

The stationary solution of Eq1) with the transition rates
(3) is given by

Peq(i):%exp{—lzl m(m

Wji+1

(6)  since most monomers are inactive and do not work in the
same collaborative fashion. Accordingly, it is possible to
consider three special cases for systems with respect to the
occurrence of the order-disorder transition

)] (i) Dead systemin this systemU(x) has only a stable

whereZ is the partition function defined as

Z:ZNl exp{ 2 |n(M

_ 7 minimum in the disorganized state and the potential barrier
=1 Wjj+1

coincides with the organized state such that 3= vy. Be-
cause of the absence of the stable organized state this situa-

The equilibrium distribution is the Boltzmann distribu- ion, js called a dead system. Numerical analysis shows that

tion: the variation of the height of the potential barrier,
Peq(x)~e‘NU(X) ) A=U(B)—U(a), with the diversityr can be written as
whereU(x) is the potential of the free energy of the droplet A=0.017d,, v¢=0, (10)
containingN interacting monomers. It has been shoj
(see also Appendix Bthat the potential (x) can be written
as wherev.=|v— v plays the role of an effective diversity in
the system. The critical diversity. is related toA. by

v.=expA.
(ii) Alive systemThis case is the opposite of the dead
system. The unique minimum &f(x) is actually in the or-
The equilibrium distribution, calculated from E@), and  ganized state and the unstable barrier top coincides with the
the potentialU(x) are displayed in Figs.(&) and ib) for  disorganized state such that= 3<y. As above, this situa-
some selected systems. It was shown in Rg&f.that for tion is called an alive system because of the absence of a

U(x)=xIn(x)+ (1—x)In(1—x)+Ax— gxz. 9)
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TABLE I. Some selected values férandB in the three systems alive, symmetric, and deads related
to the numbery+1 of monomer speciegor the degeneracy of a given monoméry the relation
A=In(v). « andy are the locations of the disorganized and organized states, respectivefyjsatit barrier
position. For the symmetric systel@=2A and 8=0.5.

Diversity Alive Symmetric Dead

v B a=p v a y B 1] B=vy

7.389 4 0.5 0.5 0.5 0.5 4 0.5 0.5

8 4.1851 0.3947 0.7047 0.3333 0.6667 4.1414 0.3190 0.5924
10 4.8524 0.2904 0.8744 0.2029 0.7971 4.4936 0.1906 0.6657
12 5.5516 0.2358 0.9385 0.1483 0.8517 4.7603 0.1391 0.6998
14 6.2639 0.1994 0.9686 0.1169 0.8831 49771 0.1098 0.7215
16 6.9831 0.1732 0.9836 0.0964 0.9036 5.1601 0.0908 0.7371
18 7.7066 0.1532 0.9914 0.0819 0.9181 5.3186 0.0773 0.7490
19 8.0693 0.1400 0.9938 0.0761 0.9239 5.3904 0.0720 0.7500
20 8.4329 0.1375 0.9955 0.0711 0.9289 5.4584 0.0674 0.7585

stable disorganized state. Thedependence for the barrier difference A’ —A, is negative, zero, and positive for the
height,A'=U(B)—U(y), reads dead, symmetric, and alive systems, respectively.

A'=0.0123%8,  1.=0. (11)
IIl. MEAN NUMBER OF MUTATION EVENTS

(i) Symmetric systenBetween the two extreme situa-  \vo \want to determine the mean numbenf mutation

tions described ab_ove there is a third case called asymmetr@lems after which a system starting out in the disordered
system, characterized _by a double-well structure Ugx) dead state reaches an ordered state for the first time. In gen-
with the top of the barrier g8=1/2 and two equal wells at o5 “the population of monomers will spend a long time in
a andy such tha}“: 1—vyandB=2A. The v dependence gjter the dead or alive states, making small random fluctua-
for the barriersA"=A, is given by tions around the stable equilibrium. There may, however, be
A=0.009% V=0, (12) fluctuations which take the whole population of the droplet
e’ ¢ over the top of the barrier from one stable equilibrium to the
The phase diagram in the Spamz\]} representing the Other. T_hUS the Ol’igin Of metabo”sm ComeS_ _abOUt When.a
Composition of the popu|ation shows a typ|ca| cusp forsystem in a dead state makes such a transition to the alive
which the points inside the cusp at {Dcorrespond to the state.r is the mean numbe_r of mutation events required to
transition region(see Fig. 1 of Ref[1]). For all systems the Observe this transtion and is exactly the mean first passage
barrier heights\ andA’ cancel at the cusp,=0, where the ~ (nondimensionaltime for a system starting out &t N to
bistability of U(x) vanishes. Beyond the cusp, bathand ~ reach the point=yN.
A’ increase with the diversity and are, by definition, equal to  Following the first passage time approach and by impos-
zero in the alive and dead systems, respectively. Apart fronnd reflecting and absorbing boundary conditions=a6 and
the symmetric system, the organized and disorganized statés YN, respectively, one can show that the mean number of
are not mirror images of each other and so there are differnutation events can be obtained from the relation
ences betweeh and A’. This also indicates that any dy-
namical evolution will be intrinsically biased in these sys-

1 :
tems. The bias, controlled by either the energyor the T:i:EaN mlzl Pedi)- (13

yN—1

TABLE IlI. Values of potential barriers as a function of with

A=U(B)—U(a) andA’=U(8)—U(7). The_ nonfactori;ation of transition rates precludes an
analytical expression for. However, more information can
Diversity Alive Symmetric Dead be gained from the asymptotic approximation foobtained
v A A A in the continuum limit of Eq.(13). This has been done in
Appendix C and the numerical results can be summarized as
7.389 0.0 0.0 0.0 (ve>0)
8.0 0.4561& 1072 0.1129% 1072 0.26955¢10 2
10.0 0.8113% 101  0.1449510°*  0.29808<10™* 8.16NYeexp(NA), dead
—1 —1
12.0 0.22926 0.3396710_l 0.66028< 10 +~{ 24.34expNA), symmetric (14)
14.0 0.42384 0.5487810 0.10344
16.0 0.64906 0.7558810 " * 0.13972 13.79, O2NY4,  alive.
18.0 0.89541 0.9549710 ! 0.17417
19.0 0.1024% 10 0.10508 0.19069 According to this, the behavior of versus the diversity is
20.0 0.1156% 10 0.11441 0.20663 expected to be dramatically different between the alive sys-

tem and the two others.
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FIG. 2. Mean number of mutation eventsas a function of the FIG. 3. Mean number of mutation eventsas a function of
effective diversityv, for the symmetric §), dead D), and alive barrier heightA for v=19 andN=100. The solid line through the
(A) systems. The dat&ircles are obtained from the computation data(circles corresponds to Eq15).
of the formula in Eq.(13) for a population of sizeN=100. The
solid lines through the data correspond to the asymptotic expre

sions of Eq.(14). Sism for the alive system. This robustness of the process

against variation or fluctuations of andN is not seen in the

For dead and symmetric systemsgrows exponentially symmetric and dead systems because of the finite values of
with the effective diversity and the size of the population.A- o ) . o
Numerical analysis confirms these facts, as shown in Fig. 2, It is interesting to determine the effect of a variation of
which displays a semilogarithmic plot of versusv,. The the potential onr. Specifically, how is the mean number
plot for N=100 was obtained using the exact formula in Eq.(or the mean timemodified when the potentidl (x) is adia-
(13) and the lines through the data correspond to the approxfatically changed from a dead to an alive state? For an adia-
mation of Eq.(14). This exponential growth for is very ~ batic change, we require that the time scal€ ¥br the
similar to the period of a Poinca@ycle and corresponds to Variation of the shape df(x) is much larger than the char-
the so-called Levinthal time for protein foldiri§]. On pro- actenstlc- timer,, for the relaxation to equilibrium for the _
ceeding by random search among all possible configuration§ystem; i.e.f27<1. Such changes can take place due ei-
the system finds the metabolic organized state with difficultyther to the influence of other catalysts as in the enzymatic
so that the mean number of mutations required to observéeaction or to certain external influences that could occur
that transition is immense. It follows that the origin of me- during long periods of the evolution. The effect of switching
tabolism is exponentially improbable in such systems. the potential shape from that for a dead system to that for an

For the alive system, on the other handslowly de- alive one is to increase both the enegggained for making
creases withv,, as depicted in Fig. 2, since the probability @ monomer active and the interaction enemy between
of choosing an active monomer among the others goes dowionomers. Thus the system goes from a state of low stress
with the chemical diversity as #{. The number of muta- {0 @ more constrained one. To work out how such changes
tions required to find the organized state is dramatically remodify 7, we have computed the mean numbeas a func-
duced and the origin of metabolism is now a quite frequention of the barrier heigha for a fixed diversityy=19 and a
event. The system explores a very small number of possiblBopulationN=100. To maintain the value aof [=exp{)]
configurations in order to find the alive state. At first sight, it constant when changing the potential, it is necessary to ad-
seems that the effective diversity or the total number of posiust the values of the control energiesindzJ. The value of
sible configurations is exponentially reduced, so making theé\ allows us to characterize the variation of the potential and
search more efficient and less long. This stems essentially takes the values oA =0, 0.114, and 0.207 in the alive,
from the barrierless downhill structure of the potentialSymmetric, and dead systems, respectively. The results are
U(X), which admits a unique stable minimum in the alive illustrated in Flg 3, from which it can be seen that there is an
state. It is to be noted that th¢'* dependence of for the ~ €xponential drop in the value efwhen the potential barrier
alive system Suggests that keeps Comparab|e values for goes down to zero in the alive configuration. The solid line
population sizes ranging over about three order of magnithrough the numerical data is obtained from Erg) and is
tude. For instance,

7= T1eXp(NA), (15
7(ve,N)

e N=10) ~ 1,1.78,3.16 forN=10, 1C°, 10"

wherer,=22.1 and is the mean number of mutations in the
alive system. In connection with the folding time for a pro-
The variation of both the diversity and the size of the popu-tein, Zwanzig et al. [6], using a similar approach, have
lation of monomers has little effect on the origin of metabo-shown that the Levinthal time can be considerably reduced if
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there is an energy penalty for making an incorrect bond, the N N )
correct bond meaning the native state of the amino acid. _ . . it
Here,— A plays the role of that energy penalty angdan be —20 (2’0 O"/IO(')'/I”(')) e’n. (22
regarded as the dimensionless folding time. The real time is
obtained by multiplyingr by the characteristic rate constant  The correlation function is no longer normalized since
to interconvert one state of the amino acid to another. from Eq. (16)

It is also possible to ask the real time that it takes for a )
population originally in the dead state to switch spontane- lIm(O(t)0(0))=(0?% and lim(O(t)0(0))=(0)?,
ously to an alive state. To answer this we need to determine '~° e
the average time interval between mutation events at each (23
site. Unfortunately, it is difficult to obtain a reasonable esti-\\here the average is defined $§>=Eig(i)Peq(i), and
mate of a value for this time, which has certainly changed inp_j) is the equilibrium distribution defined above. We de-

the course of evolution. fine the normalized correlation functig®(t) by
IV. RELAXATION TO EQUILIBRIUM Clt)= (O(1)0(0))—(0)? (24
- 2\ __ 2
For the purpose of the relaxation dynamics we need to (0%-(0)

calculate_ t_he Green’s functid@(i,t|j) of Eq. (1), subject to and the corresponding relaxation timg by
the conditions

G(i,t[j)=6,; at t=0, lImG(i,t[j)=Peqi),V]. Trx:f C(t)dt. (25

t—oo 0

(16) _ o :
Following Szaboet al. [9], the relaxation time associated

The master equation in E¢L) can be symmetrized by mak- with the observabl® can be written in the continuum limit
ing the transformatiof7,8] as

f(i,t)=[Pedi)]~¥2P(i,1) 17

1 (1 dx 1 2
TI’X_<502> fo D(X) Pe{{X) J;( 5O(y) Peq(y)dy} ’

to give (26)
. N . . . ..
af(i,t) ) where D(x) is the x-dependent diffusion coefficient and

P ZJZO Hijt (.1, Hij=Vojjo;i, (18  50=0-(0) describes the fluctuations around the mean

value of O.

In Appendix B it is shown how in the continuum limit for
the master equation a Smoluchowski equation is obtained. It
is instructive to consider the qualitative properties of this
equation to gain insight into the correlation function. The
Hin=—Aptby  (n=0,...N), (19 structure of th.e diffpsion eqqation suggests a double expo-

nential relaxation, since the time evolution of the probability

where ¢, is the normalized column vector with elements distribution —consists of two terms, a drift term
(#(0),4(1), . .. . n(N)). The equilibrium condition re- I DP(94V)], which causes the_ _dlstrlbutllon_ funf:tlon to
quires that the spectrum &f contains at least a zero eigen- Move toward the nearest local minimum with its width con-

value, \y=0, and the corresponding eigenvecigg is re- trolled by the thermal energy, and a diffusion term

where H is an (N+1)X(N+1) symmetric matrix. The
problem is now reduced to computing the eigenvalhgs
and eigenvectorg,, of H such that

lated to the equilibrium distribution by d«D(d4P), which describes the probability for the whole
system to jump from a metastable minimum to a distant glo-
Peq(i):|i//o(i)|2- (20) bal minimum. Roughly speaking, relaxation timesand 7

can be associated with the drift and the diffusion terms, re-
By using the inverse tranformation of E.7), it is possible ~ spectively, in such a way that the total correlation function
to deduce that the Green’s function, or the conditional probreads
ability, for Eq. (1) is given by )
N C(t)=(1—c)exp[——

tho(1) D et Ts
%(j)gown(uwnme : (21)

G(i.tlj)=
with 7,=(1—c)7s+cCT, (27

Therefore the time correlation function for any observablg ..o 7. and , are the short and long relaxation times, re-

Olc‘?n be computed in terms of the Green’s function from thespectively, and the constant quantifies the importance of
relation 7 to the total relaxation.
N Such a relaxation dynamics can be understood as follows.
(O(t)O(O))z'Z 0:G(i,1]})O;Peq}) Whe_n the system is pertgrbed such that the initial _dl_stnbu-
i.j=0 tion is centered in the neighborhood of one local minimum,
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the drift term will cause the distribution function to relax on By using dm in Eq. (26), the relaxation time for the observ-
the time scaler, to the time-dependent distribution centeredablem can be written as
around that minimum. On the time scalg (generally,

7> 1) the diffusion will asymptotically move the distribu- K eeY™dx | (x Vogy|

tion to its final time-independent form given iB(x). Ac- ™T1TK o ZoD(¥) | Jo e dy

cordingly, one generally expects a nonexponential relaxation

dynamics for a diffusion process on a potential surface. It is 1 (1e¥™dx| (1 -V(y) ?

shown in Appendix A how to calculate,, 7, andc for the Tk 5ZD(0 | Jx e "Vdy (32

double exponential approximation. In particular, it is found

that7=1/\;, with A, being the smallest nonzero eigenvalue 54 previously given by Schultegt al. [10], with V(x) and

of the matrixH. The single exponential relaxation appears A% (x) defined in Eqs(B5) and (B9), respectively. To obtain

an extremum limit whenrs<7). Nevertheless, it is to be gq "(32) we have introduced the equilibrium constant
noted that a description in terms of two relaxation times forK=ZA/ZD where

C(t) is valid only when the drift term is simple enough to be
described by a single time scale. For more complex potential B 1
surfaces that generate a distribution of time scales, the relax- Zp= f e V®¥dx and Z,= f e V¥dx. (33
ation dynamics is multiexponential and can be represented 0 A
by a stretched exponential of the form

Ct)=exp —|— with 7,=T
7o m

The simplest case to consider is the symmetric system for
which K=1. For A=0 the numerical computation of inte-
70, (28)  grals in Eq.(32) leads tor,=1.02N'? for the relaxation
time at the cusp. In proceeding as in Appendix C it can be
where 7,, is the number of mutation events needed to ob-Shown that wheiNA=1 the relaxation time for the symmet-

—_—

serve the relaxation of the system to equilibrium. ric system reduces to

To study the relaxation dynamics further, we simplify the o 5
problem by dividing every configuration of the droplet cell _ jﬂe dx jxe‘wy)d 1 34
described by the potenti&l (i/N) into two subspaces, dead % JoZpD(X)| Jo Y| =3m

(D) and alive @). For any configuration having active

monomers the droplet will be seen to be in the s@téor  where 7 is the mean first passage time as calculated in the
i<BN and in the staté\ for i> 8N, wherep is the position  previous section. For the dead and alive systems the equilib-
of the potential barrier. Each state of the droplet has an asiym constant is, respectively§=e N2 and K=xeM', and

tion also be used to estimate the relaxation time. We report below
1, i()<pN the numerical analysis results obtained from E3g) in the
m(t)=6[AN—i(t)]= 0. i(t)> BN (29 limit of large N and above the cusp. We have fiay=0.61

14.7v; “¥%exp{ — v, ©"AIN®28  dead

m(t), which defines the instantaneous state of the droplet, €

could correspond to a physical quantity such as, for instance, Tx={ 12.3exgNA), symmetric (39

the polarization, magnetization, or reactivity of the system, 16.9 *Bexp{ — v, “INO26,  alive.

or its ability to perform certain functions. It is also similar to

the simple output functions used in neural networks. Fromrhese expressions provide most of the information we need
that viewpoint it would be interesting to consider other formstg know about the relaxation time regardless of the nature of
for m(t), such asm(t)= ¢(x(t)). Such questions will be the relaxation dynamics. To go further, the correlation func-
addressed in future work. Here we focus on the Simple Vertions defined by Eq(31) were Computed for the three sys-

sion of the response functian(t). _ tems(dead, alive, and symmetjigvith a population size of
By substitutingO by m in Eq. (22), we obtain the number monomers ofN=100. For all the function&(t), the fits
correlation function: obtained using the double exponential form of E2y) were
BN essentially exact with =\, for all systems.
_ S . At the cuspr.=0 the potential has a unique global mini-
{m(t)m(0)) i,,z:o G ‘t“)Peq(])' (30 mum atx=1/2 andr, as defined above does not exist. How-

ever, the potential is quite flat around this minimum point
The quantity characteristic of the relaxation to equilib-since all derivatives otJ(x) of order smaller than 4 are
rium is then the normalized autocorrelation functiGrt) equal to zero ak=1/2. The potential can be roughly subdi-
given by vided into a central region, in which there is a quasifree
diffusion, separating two regions at the edges where the drift

BN . : . .
- . . term dominates the dynamics. In this respettan be rein-
”220 (Gt —G(i,l] )}Ped i) terpreted as the equilibration time of the probability distribu-
C(t)=—3n . (31  tion within the flat region of the potential. The relaxation
T © ool ; time 7,,=11.55, obtained for this case, is very close to the
G(i,0/])—G(i,» P rx ) )
i,jzzo {G.00) = G121} Ped i) theoretical valuer ,,=11.592.
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TABLE lll. Values of \; as a function ov. The long relaxation

time is given asr=1/\;. T ' '/,f——-"0"“"*}“'é""““L'@""
Diversity Alive Symmetric Dead ,/

]
7.389 0.069182 0.069182 0.069182 B
8.0 0.048387 0.049006 0.053181 osf // 1
10.0 0.037772 0.011979 0.033084 /
12.0 0.045251 0.002132 0.036190 H B o
14.0 0.050414 0.000307 0.039366 // . A
16.0 0.054348 0.000042 0.041658 0sl ° °
18.0 0.057490 0.000006 0.043307 ¥ o .
20.0 0.060010 0.000001 0.044643 ¥ N * * D *

*

Out of the cusp, the major effect of the double well struc- 075 2 " o s P 12 14

ture of the potential is to increasg. In the symmetric sys- A

tem, the relaxation time grows exponentially withslowing
down the relaxation. This is exhibited in Fig. 2 and in Table F|G. 5. The exponent versusv, for the systems symmetric
Il since 7 =7/2=1/\;. For v,<2.6 the relaxation is still (circles and dashed linedead(asterisky and alive(circles.
double exponential since the barrier heighNid<1 and the
potential is little modified from its form at the cusp. For well described by the double exponential relaxation. This is
ve=2.6 the relaxation dynamics is reduced to a single expojjlystrated in Fig. 4, which shows the variation of, versus
nential with 7,=1/\; because the ratios/7cexp(~NA)  ,_ obtained by using a double exponential form for the re-
tends to zero whemw, gets larger, i.e., foNA>1. In this  |axation and the forms of Eq35). In contrast to the sym-
limit the dynamics of the system can be approximated by anetric systemy,, initially increases withv, and then shows
phenomenological first order kinetic rate equation that leadg power law falloff. Forv,<1 the potential is little modified
to an exponential relaxation to equilibriufh0]. from its form at the cusp, and all additional perturbative
The Situation iS SomeWhat different in the dead and aIiVQeatures cause an increase Of the re|axati0n time_ygbrl
systems, where the barrier coalesces with one of the wells ighe potential is completely different and there is a rapid re-
the potential. For the two systems, the ratid7s of relax-  |axation to the unique and deep stable minimum of the sys-
ation times slightly increases with,, falling between tem. The relaxation is speeded up withbecause the overall
14.47 and 27 for the alive system and between 14.76 angradient toward the bottom of the potential well increases
18.8 for the dead one. The typical value for the constaist  with 1,. The difference in the relaxation time between the
close toc=0.83 (c=0.785) for the aliveldead system, in-  two systems, alive and dead, is due to the differedepen-
dicating that about 83% (785%) of the overall relaxation iSdence of the potentia| gradient in each system.
dominated by the long time relaxation which originates from  For jllustrative purposes, the stretched exponential of Eq.
the diffusion. Therefore the dynamics of the system are St||t28) was also used as a f|tt|ng function for the relaxation.
Good fits were obtained for all curves 6ft). As depicted
in Fig. 5, the exponen is comprised between 0.75 and
0.84 for both dead and alive systems while it goes from
pn=0.8 tou=1 in the symmetric system. Note that the val-
ues of u in the alive system are greater than in the dead
system indicating that the relaxation is more rapid in the
alive system than in the dead one.

24

22
201

18-
V. CONCLUDING REMARKS

In this paper we have computed the mean number of mu-
tation eventsr required to observe the origin of metabolism,
which is characterized as the transition from the dead state to
the alive state in Dyson’'s model. The mean number was
found to be very similar to the Levinthal time for protein
10 . . . . . . folding. In particular, for a given population of monomers,

0 T grows exponentially with the effective diversity in the dead
and symmetric systems while it decreases for the alive sys-

FIG. 4. The relaxation time-, versusv, for the alive(circles  tem. In the latter case, it appears as if most of the degrees of
and solid ling and deadasterisks and dashed lineystems. The freedom of the system are “frozen,” allowing a very few of
points are obtained from the double exponential fits to the correlathem to control the fate of the whole system. This is illus-
tion function(see text, and the lines represent the approximationstrated by the exponential falloff to a nonzero constantrof
in Eqg. (35). when, at fixedv andN, the system is modified from the dead

14r |

12r

Ve
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configuration to the alive one by adiabatically tuning the APPENDIX A: DOUBLE EXPONENTIAL
control parameters of the potential for the system. This op- APPROXIMATION
eration removes the system from the dead state of low stress From Eq.(22) the normalized correlation function can be
into the more constrained alive state by simultaneously en- . 9.
hancing the energy gained for activating a monomer and th\é\mtten as
interaction energy between monomers. It is to be noted that N N 2
these features are very reminiscent of a number of other > (E oi%(i)%(i)) e Mt—(0)2
problems, including the folding problem, for example, in n=0 \i=0
which the analogues of the dead and alive states are the C=
unfolded and folded states, respectively. Bryngelson and N
Wolynes have used the same type of potential of free energy _ E ot
U(x) for studying protein folding within the framework of — &y €T
the random energy modEL1]. More generally, this analogy
can apply to any problem of a phase transition that admits @here the weight,, associated with the eigenvalue, is
two-states description. defined as

We have also examined the relaxation dynamics of the
system by computing the correlation function of a random N R S
and binary response function that defines the instantaneous CFW 2 Oio(D) (i) | nzl ch=1.
state of the system. It was found that the relaxation to equi- (A2)
librium is well described by either a double exponential or a
stretched exponential. Such dynamical studies of the random Wwhen the eigenvalues of the matrit are ordered as
energy mode[12,13 have already been perfomed in other ) ;=0<\;<\,<---, Eq. (Al) can be seen as a perturba-
contexts by, for example, Shakhnovich and Gutid] and  tion expansion for the correlation function. The zeroth order
Fernande£15]. In these studies the transition rates were fac-of perturbation consists in keeping only the first term of the
torizable and analytic solutions to the master equation wergummation. This gives a single exponential with decay
obtained. The equilibrium correlation functions displayedi/x, that legitimately describes the long time relaxation of
various forms, including power law and stretched exponengc(t). The remaining higher orders of the expansion contrib-
tial relaxation. In our problem the transition rates are noyte with different weightsc,, to the short time relaxation,
longer factorizable and the master equation was solved Nyghich is essentially multiexponential. In the first order of
merically. Even for a simple two-state response function thgerturbation, the short time relaxation can also be approxi-
relaxation dynamics for the balance of the populations is nofated by a single exponential with a rescaled decay time.

necessarily exponential but depends on the system consigthis |eads to the double exponential approximation for
ered. Roughly speaking, the scenario for the relaxation prog(t) as follows:

ceeds in two steps. First, there is a rapid relaxation that
drives the system to a metastable state of (bigh) meta- C(t)=(1—cq)e Ms'+ce Mt (A3)
bolic activity for the alive(dead system. It is followed by a

second step of slow relaxation, essentially controlled by dif-To derive Eq.(A3) we have used(0)=1. The short time
fusion, that takes the system from the unstable state angigenvaluexs (=\,) is obtained by requiring that the relax-
slides it down the slope into the global minimum. The ratioation time calculated from EqA3) be exact, i.e.,
of the slow to the fast relaxation times is about 17.2 and N

21.2 for the dead and alive systems, respectively. That ratio 1-c¢; n C1 Cn

(0%)—-(0)*?

(A1)

of relaxation times becomes so large in the symmetric sys- T N )\_1_“:1 )\_n (Ad)
tem that the slowing down relaxation is reduced to a single

exponential, since it is dominated by the time of jumpingto give

from one minimum to the other. A similar image for the N

relaxation dynamics was pointed out by Perioal. [16], 1 1 1

who also noted the robustness of the double exponential ap- )\_S:nzz )\_ng(”):<)\_n> (AS)
proximation to describe the correlation function. Finally, it

would be useful and instructive to study the relaxation dy-with the distributiong(n) defined as

namics through an intrinsic function of the system, the auto-

catalytic probability, for example. Such work will be re- Cn

ported elsewhere. g(n)= 1-c;’ n=2. (AB)

It follows that the double exponential approximation will
ACKNOWLEDGMENTS be more accurate when the ratign)/\,, falls off rapidly
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National de la Recherche Scientifique, and the National Inthis gives
stitutes of Health for support of this work. One of (x.J.B) 1—¢
is very grateful to Dr. A. Szabo for introducing him to the A= 1)\2>)\2, (A7)
first passage time formalism and for helpful discussions. C2




734

APPENDIX B: CONTINUOUS LIMIT
FOR THE MASTER EQUATION

The master equation E@l) can be rewritten as

dP(x,t)

P ot (X—€)P(x—€,t)+ o (X+ €)P(X+€,t)

[0 (x)+ o  (X)]P(X1), (B1)

where w™(x) [corresponding taw; ;.; of Eq. (3)] denotes
the transition rates for—x= €, respectively, withx being
the fraction of the active monomer ard=1/N. We define
the diffusion coefficientD(x) and the forcef(x) for the
mutation events such that

D(x)

w0’ (x)= —z eXp- 5 ef(x)},

D(x)

62

o (X)= exp{+ 3 ef(x)}. (B2)

The first order Taylor expansion in EB2) leads to

JP(x,t)
ot

= %[D(X-ﬁ- e)f(x+e)P(x+e€,t)—D(x—¢€)

Xf(x—e)P(x—e€,t)]+ é[D(er €)P(x+e€,t)

—2D(X)P(x,t)+D(x—€)P(x—¢€,t)]. (B3)

In the limit of smalle, Eq. (B1) becomes

IP(x,t) 92
= e [DOOTOP(XD ]+ — 5 [D(X)P(x,1)]
4 aV(X) J
= D(x) o +D(x)5 P(x,t). (B4)

Defining the potentiaV(x) by

V(x)=NU(x)+In[D(x)], (B5)
we obtain the Smoluchowski equation:
IP(x,t) 9 ven @ Ny
o =a—X[D(x)e VA >5[ev< )P(x,t)]} (B6)
with
D(X)=€e’Vo (X)o"(X) (B7)
and
U(x):efxf(y)dy= fﬂn(&%i)dy. (B8)

Thus, for the rates given by E¢B), the expression for the
diffusion coefficient is

{X(1=x)p)[1— p(x) ]}
(X)= N ,

(B9)

and for the potential,

D. J. BICOUT AND M. J. FIELD

U(x)=xIn(x) +(1—x)In(1—x) +Ax— Ex2.

5 (B10)

APPENDIX C: MEAN FIRST PASSAGE TIME

The continuous version of E¢13) can be written as

y dx X ¥ X
— - “VY)dy— NU(x) —=V(y)
7 JaD(X)eV(XJoe dy Jae dxfoe dy,
(Cy

where the potentiaV/(x) is defined by Eq(B5) and D(x)
andU(x) are given by Eq(B9) and Eq.(B10), respectively.
Since we are concerned only by valuesnfx) and its de-
rivatives calculated at points whel¥ (x) =0 (the prime de-
noting the derivative with respect 19 so thaté(x)=x, the
expression foD(x) then simplifies to

X(1—X)

D(x)= N

(C2

To estimate the mean first passage time we use the well
known procedure that approximate§x) andV(x) around
the local minimum and maximum. The asymptotic approxi-
mations we derive are valid only in the limit of larg& and
beyond the cuspy.>1. We consider three situations de-
pending upon the shape bf(x).

1. Symmetric system

The potentialu(x) has a double well structure with two
equal minima atx=a« and x=+y and a barrier at
x= B=1/2. Consider first the integral

[(x)= f Oxe—VW)dy. (C3)

Sincel(x) is small forx<a and a<x<1y, it can be well
approximated by its value around=«. Using a quadratic
approximation around= « for V(x),

V(X)=V(a)+V'(a)(x—a)+ :V"(a)(x—a)?, (C4)

with
) 1-2«a
\ (a)=m> 0 (CH
and
., ; 1-2a(l1—a)
Vi(@)=NU (0‘)(1_ Na(l—a)[1-Ba(l—a)] |’
(Co)

we can estimaté(x) as

1(x)= 6(x— a)e—vw)F eV (@y-V'(@y’i2gy

2

1/2
Y e —V(a)+[V'3(a)/2V"(a)] gy —
(V"(Ol)) € 0(X a), (C?)
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whered() is the Heaviside function. To calculate the remain-

ing integral in Eq(C1) we expandJ(x) aroundx= 3 in the
same way as above:

1
UX=U(B)~5IU"(BIx-p%  (CY

In the limit N>1, the mean first passage time is given by

N 2mexp{(1—2a)?/2Na(1— a)[1-Ba(l—a)]}
V[1-Ba(l-a)][BA(1-B)—1]
B(1-p)|"2

x a(l—a) €

NA, (C9

2. Dead system

The top of the barrier coincides with the potential well at

X=B=1y>1/2. Equation(C7) is still a good approximation
for 1(x) while V(x) is now expanded locally around= y by
a cubic potential:

1
U(x)=U(y)+ gU"’(v’)(X—y)3 (C10

with

U= 2l =0
Y L

(C1y

The remaining integral in EqC1) can be estimated as

X
| (X)ze—vwf dye V' (@y-a-@2)V" (@)(y-a)? - 1BHV" (@)(y-a)®

0

which satisfies the equation

d’l(x) dvdi(x)
dx@ dx dx (€16
with
dv N 5
ax =V'(a)+V"'(a)(X—a)+ 3 V"(a)(X— a)*.
(C17)
On changing the variable by
B V"’(a) 1/ V"(a)
= ( 2 ) Z[X— o m (C18)
and letting
2 1/ [V"(a)]z ,
a:(vm(a)) 3[ 2VW(C¥) -V ((,l’)} (Clg)

we obtain the equation

735
f T eNUGO gy gNU() f we—NU/’/<y>y3/3!dy
a 0
4 6 1/3
D o NU(y)
(3l @ e

After calculation, we find

3
3
2mexp{(1-2a)%/Na(1— a)[1-Ba(1l—a)]} | ¥?
X[ a(l-a)[1-Ba(l-a)] ]
67°(1— %)
2y—1

7=

13
} N I/GeNA . (C13)
3. Alive system

In this case, the top of the barrier coincides with the well
at x=a=B<1/2 where bothU’(x)=U"(x)=0. Then Eq.
(C7) is no longer valid. Howevel(x) can be approximated
aroundx=« as

V(X)=V(a)+V'(a)(x—a)+ %V"(a)(x— a)?

1
+ —V"(a)(x—a)s.

T (C19
The integrall (x) can then be written as
(C15
|
d’l(2) dl(z)
972 z°—a) o =0 (C20

for which the solution is the incomplete Airy integridl7]
defined as

z
Ai(z,a)zf e VBraygy. (C21)
0
The integrall (x) is then given as
[(x)=Ai(z,a)e” V@, (C22
As above, we expand (x) up to third order:
1
UX)=U(a)+ aU”’(a)(X—a)3, (C23

where



736 D. J. BICOUT AND M. J. FIELD 54

oy 1-2a __N fy : —(UBHNJU" ()| (x— a)3
U (a)——m<0 (C24) il aAl(z,a)e (RONJU" () (x= )
to obtain (C2H
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