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We study the qualitative behavior of a single mechanical rotor with a small amount of damping. This system
may possess an arbitrarily large number of coexisting periodic attractors if the damping is small enough. The
large number of stable orbits yields a complex structure of closely interwoven basins of attraction, whose
boundaries fill almost the whole state space. Most of the attractors observed have low periods, because high
period stable orbits generally have basins too small to be detected. We expect the complexity described here to
be even more pronounced for higher-dimensional systems, like the double rotor, for which we find more than
1000 coexisting low-period periodic attractors.
@S1063-651X~96!04506-0#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Nonlinear dynamical systems often exhibit many rich and
varied behaviors of which stationary, periodic, quasiperiodic,
and chaotic attractors are some of the typical long-term be-
haviors. A general approach in studying thecomplexityof
such systems involves investigating their dynamics as some
system parameters are varied. This method yields an analysis
of qualitative changes, known as bifurcations, resulting in a
change of the number of attractors, their type~periodic, qua-
siperiodic, chaotic! and/or their stability. Thus far, a large
body of work has concentrated on low-dimensional systems
where only one or two attractors dominate the system’s be-
havior. However, it is expected that many systems in nature,
in particular coupled systems, are more appropriately mod-
eled by dynamical systems that have multiple coexisting at-
tractors. The behavior of such systems will be more complex
since there is the added feature of interactions among the
various attractors and their basins@1–4#. The purpose of this
paper is to study the complexity of such systems using a
prototype model which exhibits an arbitrarily large number
of coexisting attractors, depending on a parameter. The phe-
nomenon described here is different from the Newhouse phe-
nomenon in which infinitely many attractors can coexist
@5,6#, but only for special parameter values@7,8#.

The model for a periodically kicked mechanical rotor
yields a two-dimensional map which can be used as such a
prototype. The rotor map depends on two parameters, forc-
ing ~kick amplitude! and damping. In the limit of maximal
damping, the system reduces to a one-dimensional circle
map with a zero rotation number exhibiting the Feigenbaum
scenario to chaos. Without damping we obtain the area-
preserving standard map introduced by Chirikov@9# and
widely studied by many authors@10#. This map, which we
refer to as the Hamiltonian case of the rotor map, is believed
to possess infinitely many~center! stable periodic orbits,
each of which turns into a sink when a small amount of
dissipation is applied. For given values of the dissipation and
forcing, we expect that only finitely many sinks coexist. The

other sinks are shifted to higher parameter values. Nonethe-
less it is easy to obtain system parameters for which the
number of attractors is very high. The aim of this paper is to
study the appearance and disappearance of these mostly low-
period periodic attractors and their basins of attraction.

The paper is organized as follows. Section II is devoted to
the model system and its behavior in the Hamiltonian case as
well as the small dissipation case. A study of the system’s
behavior in state space for a fixed set of the forcing and
damping parameters is presented. We discuss the number of
attractors and their basins depending on the period. The box
dimension of the basin boundaries is estimated. The entire
bifurcation structure is considered in Sec. III; the lifetime of
the stable periodic orbits of different periods in parameter
space depending on forcing and damping is studied. Section
IV gives a summary of the results.

II. THE SINGLE ROTOR, THE NUMBER
OF ATTRACTORS AND THEIR BASINS

A suitable model for the study of systems with a large
number of coexisting attractors is the kicked single rotor,
which describes the time evolution of a mechanical pendu-
lum kicked at timesnT, n51,2, . . . , with a constant force
f 0 . From the original differential equation for the phase of
the pendulum one can derive a map@11# which is related to
the state of the system just after successive kicks

xk115xk1yk~mod2p!,

yk115~12n!yk1 f 0sin~xk1yk!, ~1!

wherex corresponds to the phase andy to the angular ve-
locity. The damping parametern is connected to the energy
dissipation and varies between 0~Hamiltonian system with-
out damping! and 1 ~very strong damping!. For these two
limiting cases the behavior of the system is well known@12–
14#.
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For very strong damping we observe the usual Feigen-
baum scenario for the transition to chaos, whereas for the
Hamiltonian case the state space consists of a chaotic sea
interspersed with periodic islands. In between these two lim-
iting cases the system’s behavior is not so well understood.
The crossover, however, between the universal constants for
the period doubling cascade has been studied@15,16# as well
as the transition between Hamiltonian and dissipative chaos
@17,18#.

In particular, close to the Hamiltonian case, i.e., with a
small amount of damping, the system exhibits a rich dynami-
cal behavior which is mainly dominated by the appearance
and disappearance of periodic attractors of different periods
leading to a very complex bifurcation diagram. The com-
plexity of the bifurcation structure varies strongly depending
on the strength of the forcingf 0 and the dampingn. Actu-
ally, the number of attractors can, in principle, be arbitrarily
high by choosing the damping small.

A. No dissipation

Because we are interested in the system’s behavior close
to the Hamiltonian case, let us briefly recall some properties
of ~1! for zero damping (n50). There exists regular motion
around the stable periodic orbits of the map~1! as well as
Kolmogorov-Arnold-Moser~KAM ! invariant circles. On the
other hand there also exist regions with persistent chaotic
motion. Both regions are complexely interwoven depending
on the nonlinearity parameterf 0 . Furthermore, the Lebesgue
measures of these regular and chaotic regions vary with the
system parameters.

In the Hamiltonian case, the second equation in~1! for the
angular velocityy can be taken modulo 2p too, and the
dynamics are then located on the torus@0,2p#3@0,2p#.
Therefore, periodic orbits, which are solutions of Eqs.~1!,
resides on the torus. As such, each of the periodic orbits, as
seen in Fig. 1, represents a whole family of overlapping pe-
riodic orbits in which the velocitiesy differ by multiples of

2p, e.g., the family of period 1 orbits has the coordinates
(x*5p, y*5m2p) with m50,61, . . . and, because of
the modulo 2p, they are all in the same location on the
torus. We distinguish between two types of periodic orbits.
The primary families~or islands! are the fixed points~period
1! and the higher period periodic orbits~period .1) that
exist for zero nonlinearityf 0 . They make up the largest re-
gions of regular motion in the state space and are surrounded
by small islands of stability. These small islands have higher
period and are the secondary families that exist only for a
nonzero nonlinearity. The secondary orbits have in general
much smaller stability regions than the primary ones.

B. Small dissipation

The structure shown in Fig. 1 does not persist if a small
amount of dissipation is introduced. The periodic orbits be-
come sinks and the chaotic motion is replaced by long cha-
otic transients that occur before the trajectory eventually
settles down in one of the sinks@18#. Furthermore, the state
space is no longer a torus; the motion takes place on the
cylinder @0,2p#3R. The dissipation leads to a separation of
the overlapping periodic orbits belonging to a given family
with increasing modulus of the velocities on the cylinder.
For example, the fixed points of the period 1 family, which
are represented by one point in Fig. 1, are now distinguished
by different phase values and different velocity values that
differ by 6m2p with m an integer. Figure 2 is a picture in
state space showing attractors with higher and higher veloci-
ties that are surrounded by sinks arising from former second-
ary islands. Figure 3 shows a blowup of the indicated region
aroundy50 in Fig. 2. Black points are attracted to the at-
tractor that was the primary island while white points are
attracted to other attractors.

FIG. 1. Phase portrait for the single rotor with no damping
(n50) at f 054.0. This is the period doubling point for the main
fixed point (x5p, y50). Around this major periodic island we
find chaotic behavior, all KAM invariant circles are destroyed.
There are identical islands at (x5p, y5m2p) for all integersm
but all coincide on the torus.

FIG. 2. The stars show the location of the attracting periodic
orbits of the single rotor for the same forcing as in Fig. 1
( f 054.0) but with small damping (n50.02). All attractors have
been obtained by iterating 106 initial conditions on a grid in the
region @0,2p#3@2200,200#. To make the results visible, this pic-
ture shows only the region withuyu,50. Some of the fixed point
attractors have already undergone period doubling, some of them
not. The black dots indicate which initial points on the same grid
have trajectories that are attracted to the orbit with the largest basin
of attraction.
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In contrast to the undamped case where the number of
stable periodic orbits is infinite, we believe that there are a
finite number of attractors in the damped case, though this
number can be very large. In particular, when the damping is
positive there is a bounded cylinder which contains all of the
attractors. From the second equation in map~1! we see that

uyk11u<~12n!uyku1 f 0 . ~2!

Thus if uyku. f 0 /n then uyk11u,uyku. It follows that all tra-
jectories are eventually trapped in the region
@0,2p#3@2ymax,ymax#, where

ymax5
f 0
n
. ~3!

Thereforeymax provides a limit for the modulus of the ve-
locities for attractors arising from former primary and sec-
ondary islands as well.

To estimate the number of coexisting periodic orbits, we
iterate 104 initial conditions on a grid of 1003 100 in the
rectangle@0,2p#3@2ymax,ymax#. The accuracy with which
each periodic orbit PN of period N is given by
ix(N)2x(0)i<1028. Our procedure for finding periodic or-
bits is then the following. First, we fix all parameters, say,
the damping atn50.02 and the forcing atf 054.0. For this
particular parameter set we find 118 different periodic attrac-
tors in the rectangle@0,2p#3@2200,200#. In this case, we
find no initial conditions that do not converge to periodic
attractors. In Fig. 4, we show a histogram with the number of
periodic attractors of each period. It turns out that most of
the periodic attractors have low periods (,10); stable higher
period orbits are found rarely. It is worth mentioning that the
number of attractors obtained depends on the resolution of
the initial conditions in the state space. If we increase the
number of initial conditions to 105 and even 106 points the
total number of periodic attractors found rises to 146 and
153, respectively. A finer resolution in state space yields also
more stable orbits with rather high periods. For 104 initial

conditions the highest period found is 20, whereas with 106

initial conditions we were able to detect a period 50 attractor.
As discussed below, higher period periodic orbits typically
have a smaller basin of attraction and, therefore, need a finer
resolution grid to find them.

Let us now look at the size of the basins of the periodic
attractors. Figure 2 shows, besides the attractors, the basin
~black dots! of the main orbit of theP1 family. This orbit,
which we denote byP1

0 , has zero velocity and a phase
x5p. It marks the location of the symmetry axis for the
system. The other P1 orbits have coordinates
P1
m5(x5x* , y5m2p) with m561,62, . . . . Velocities

of a different sign correspond to clockwise and counterclock-
wise rotation. Their basins, as well as the basins of other
PN orbits forN.1, appear as white dots in Fig. 2. TheP1

0

basin is the largest one for the system and, in general, all
basins of theP1 orbits are relatively large compared to the
others. They make up about 84.4% of the whole number of
initial conditions in the space of initial conditions under con-
sideration and only the remaining 15.6% of all initial points
belong to the basins of the higher period periodic orbits. The
basins of attractors with periods.10 cover only 0.0067% of
the space of initial conditions. For the size of the basins
within theP1 family we obtain a rather quick decrease in the
basin size with increasing values of the velocity for the ini-
tial conditions being considered, as shown in Fig. 5.~The
oscillations in the size of the basins of the primaryP1 attrac-
tors is related to the existence of secondary sinks surround-
ing the primary ones. They ‘‘eat up’’ a part of the basins of
the primary orbits they are connected with.! Hence periodic
attractors of the same family but with higher velocities are
more difficult to find because of their small basins. For
higher period periodic attractors the situation is even worse
because even the largest basins of a given family occupy
only a small part of the considered state space (9.1% for all
P5 orbits and 4.97% for allP3 orbits!. Therefore increasing
the number of initial conditions leads to a higher number of
attractors since stable orbits with even smaller basins become
‘‘visible.’’

If we consider for fixed parameters~e.g., f 054.0) the

FIG. 3. The largest basin of attraction in the system~365 004
points!. This is an enlargement of the region indicated by the rect-
angle in Fig. 2. We have iterated 106 initial conditions on a grid in
the region shown@0,2p#3@2p,p#. The main orbit has already
undergone period doubling at this parameter value.

FIG. 4. Number of periodic attractors for the damped single
rotor vs their period forn50.02 andf 054.0. The solid columns
show the results using 104 initial conditions while the dashed col-
umns is for 106 initial conditions.
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number of attractors found in each family as a function of the
number of initial conditions, we observe for small numbers
of initial conditions (,23104) a rather rapid increase in the
number of attractors followed by a saturation for a higher
number of initial conditions. The starting point of the satu-
ration is different for different periods; for higher periods
one needs more initial conditions to achieve a saturation. For
the low-period periodic attractors~period,10), which are
the main contribution to the total number of attractors, this
saturation starts for initial conditions.53104, while the
total number of attractors has not yet saturated for 105 initial
conditions.

The percentages of initial state space occupied by the ba-
sins of the different families of attractors remains approxi-
mately the same as the number of initial conditions is varied.
We find that at least 60%~when we take 106 initial condi-
tions! of the attractors under consideration have basins
smaller than 0.1% in state space.

For the remaining computations in this paper we use
10 000 initial conditions. As a result, the periodic orbits un-
der consideration are those whose basins are larger than

1
10 000 of the state space.
Another interesting observation is that the basins seem to

have fractal boundaries which appear to spread over most of
the state space~see Fig. 3!. This yields a complex interwo-
ven structure of the basins. To illustrate this complicated
network of basins we present a small basin of a secondary
sink (P3) in Fig. 6 showing points spread over most of the
state space. Extremely small changes in the initial conditions
are sufficient to shift a point from one basin to another. This
high sensitivity to the final state can be measured by com-
puting the uncertainty exponent, which is related to the di-
mension of the boundary@19#.

Suppose we take 10 000 randomly chosen initial condi-
tions @x(0),y(0)# and determine for each of them the attrac-
tor they converge to. Now we change the initial conditions
slightly to @x(0)1e,y(0)# and measure the fraction of initial
conditionsf (e) that change from one basin to another. This
fraction of initial conditions is said to be uncertain with re-
spect to this perturbation of sizee. It has been argued in@20#
and proved in@21# for Axiom A systems that this fraction

f (e) generally scales withe as

f ~e!;ea, ~4!

where a is the ‘‘uncertainty exponent.’’ This exponent is
typically related to the box counting dimensiond of the ba-
sin boundary bya5D2d, whereD is the dimension of the
state space. The uncertainty exponent is estimated from the
slope in the logf(e)–loge plot as shown in Fig. 7. For damp-
ing n50.05 we geta50.006 41 and, hence,d51.993 59;
for n50.02 we obtaina50.001 andd51.999, i.e., the basin
boundary is nearly two dimensional. Furthermore, it is inter-
esting to note that fore510210 about 90% of the initial
points changed to another basin. This large percentage can
be regarded as an additional indication of the high complex-
ity of the basin structure. Let us ask now which accuracy
would be necessary to predict the final state with a probabil-
ity of 99%, i.e., the fraction of uncertain initial conditions
shall be 0.01. As a result we obtain an accuracy

FIG. 5. The attractors of theP1 family have
y values that arem2p for an integerm. The solid
line shows the number of initial points, from a
grid of 106 initial conditions, that are in the basin
of themth attractor inP1 for m>0. The results
for the symmetric2m basin are the same as the
1m basin. The dashed line is for 105 initial con-
ditions while the dotted line is for 104 initial con-
ditions.

FIG. 6. Basin of attraction of one orbit of the period 3 family
P3 in the same part of the state space as Fig. 3. This basin is made
up of 2427 points out of 106 initial conditions in
@0,2p#3@2p,p#.
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e' f ~e!1/a50.011/0.00151022 000, ~5!

which is not realizable with standard floating-point numeri-
cal calculations.

III. MULTIPLE COEXISTING ATTRACTORS

So far we have only discussed the number of attracting
periodic orbits for a fixed forcing and damping. Now we
vary the forcing in order to get the number of coexisting
attractors in an interval, say,f 0P@0,5#. The damping is still
kept fixed atn50.02. To obtain a good estimate for the
number of attractors we have to adjust the cylinder of initial
conditions @0,2p#3@2ymax,ymax# when changingf 0 ac-
cording to~3!. Figure 8 presents the extremely complex bi-
furcation structure obtained for this parameter set. Neverthe-
less, the number of attractors shown in Fig. 9, though being
more than 100 for somef 0 , is only an approximation since
some of the attractors have very small basins of attraction as
discussed above. Therefore we cannot find them with only
104 or 105 initial conditions in a large cylinder.

Let us discuss the general properties of the bifurcation
diagram and the corresponding number of attractors@Figs.
8~a!, 8~b!, 9#. As already mentioned, the map~1! possesses a
symmetry with respect to the orientation of the rotation of
the rotor. Therefore the dynamics are symmetric with respect
to y50 andx5p corresponding to clockwise and counter-
clockwise motion. That means that to each periodic orbit
PN(xk* ,yk* ), k51, . . . ,N, we find another orbit with
(2p2xk* ,2yk* ). Most of the periodic attractors appear as a
result of a saddle-node bifurcation. With a further increase of
the forcing f 0 they undergo a period doubling cascade into
chaos. IfPN is invariant with respect to the symmetry trans-
formation then a symmetry breaking bifurcation in form of a
pitchfork occurs before the period doubling cascade@22#.
The intervals of chaotic behavior are very tiny and therefore,
not visible in the present resolution in parameter space. For
the whole parameter interval we find only less than 1% of
initial conditions which do not converge to a periodic orbit

after 25 000 iterates. But for these not converging orbits we
did not check for chaos by calculating Lyapunov exponents.

Looking at the number of periodic attractors~Fig. 9! we
observe that the number of periodic attractors fluctuates un-
der the variation off 0 . These fluctuations reflect the fact that
a large number of the total number of periodic attractors
exist only on a very small interval along thef 0 axis which
has a resolution ofd f 050.001. In the bifurcation diagram
these attractors are denoted only by a few points and they
would be seen as periodic orbits possessing a period dou-
bling cascade in a higher resolution plot. As discussed in the
preceding section, the number of counted attractors depends
strongly on the number of initial conditions used. With a
larger number of initial conditions more attractors with
smaller basins are detected. Since the number of attractors
for the low-period periodic orbits has already saturated for
105 initial conditions, the solid line in Fig. 9 can be regarded
as a good approximation of the total number of attractors.

The stability region of a particular periodic orbit can be
regarded as the interval between its appearance and disap-
pearance. Multistability refers to the overlapping of these
intervals belonging to different periodic orbits in parameter
space. To study this stability region of periodic orbits in
parameter space we consider the distance between the
saddle-node bifurcationf 0

sn and the first period doublingf 0
pd

as a measure for their extension in parameter space. We call
this distanceD f 05 f 0

pd2 f 0
sn the lifetime of the stable periodic

orbit in parameter space. The length of this parameter inter-
val D f 0 is different for each periodic orbit, and varies
strongly with dampingn. To get a better insight into the
global behavior we investigate these stability regions
@ f 0

pd, f 0
sn# of PN in the f 0–n space.

For the period 1 familyP1
m this interval can be computed

analytically. First one has to compute the period 1
fixed points, that result from the equationsxk112xk50 and
yk112yk50. The solution of

y*50 ~mod2p),

2ny*1 f 0sin~x*1y* !50 ~6!

yields the stable fixed points (x*5p,y*50)
and @sin(x*1m2p)5nm2p/f0,y*5m2p# with m561,
62, . . . . Thesaddle-node bifurcation occurs when the cor-
responding Jacobian matrixJux5x* ,y5y* has an eigenvalue
lsn511, whereas the period doubling corresponds to an ei-
genvaluelpd521 of the same matrix. Solving the equation
uJ2lI u50 for lsn511 and lpd521 for each pair
(x* ,y* ) yields the curvesf 0

sn and f 0
pd in the parameter space

where the eigenvalue condition for each of these two bifur-
cations is fulfilled. Because of their different symmetry prop-
erties, we consider the fixed pointsP1

05(p,0) and
P1
m5(x* ,m2p), m561,62, . . . separately. The fixed

point (p,0) appears for alln at f 050. This attractor under-
goes a period doubling bifurcation atf 05422n. The attrac-
tor with double period is invariant under the symmetry trans-
formation; therefore, a pitchfork bifurcation at
f 05(22n)p occurs before the period doubling cascade
starts@13#. The lifetime of theP1

0 orbit varies linearly with
the damping asD f 05422n. For the otherP1

m fixed points

FIG. 7. Fraction of uncertain initial conditionsf (e) vs size of
the perturbatione for forcing f 054.0 and two different values of
the damping:n50.05 ~1! andn50.02 (D). We iterate a sufficient
number of initial conditions such that the number of initial condi-
tions that change basins with a perturbation of sizee is 10 000.
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FIG. 8. Periodic attractors for fixed damping
(n50.02) depending on the forcingf 0 in the in-
terval @0,5#: ~a! phase of the rotorx, f 0
P@0,2.5#; ~b! phase of the rotorx, f 0P@2.5,5#;
~c! angular velocity of the rotory, f 0P@0,2.5#;
~d! angular velocity of the rotory, f 0P@2.5,5#.
The number of initial conditions used is 104.
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the behavior is different. However it is the same for each pair
of orbits with the sameumu. Their saddle node bifurcation
occurs at

f 0
sn5numu2p ~7!

whereas the first period doubling occurs at

f 0
pd5A~nm2p!214~22n!2. ~8!

The lifetime of these fixed points is thus

D f 05 f 0
pd2 f 0

sn5A~nm2p!214~22n!22numu2p. ~9!

Both orbits with the sameumu have the same stability inter-
val. The stability intervals of the first six orbits of theP1
family (m561,62,63) are shown in Fig. 10~a!. For the
other orbitsPN

m(NÞ1) these intervalsD f 0 can be obtained
numerically using continuation methods@23#. Figure 10~b!
shows the results for six orbits of the secondaryP3 family.
From these computations we can distinguish the families of
periodic orbits according to the classification in the un-

damped case mentioned above. Each of these families is
characterized by a special form of these lifetime intervals in
the f 0–n space. The saddle-node bifurcations, i.e., the ap-
pearance of orbits of primary families, can be continued to
f 050 at n50, whereas secondary families always need a
finite forcing f 0Þ0 to be excited atn50. All bifurcation
points of different orbits of the same family converge to the
same bifurcation points in the Hamiltonian case.

As was already pointed out in@13#, all of the saddle-node
bifurcations and period doublings can be continued to the
limit of very strong dampingn51. That means that all peri-
odic orbits present in the Hamiltonian case can be found in
the dissipative case too. But the forcing needed to excite
these orbits increases with increasing velocity. For strong
damping it turns out that the stability intervals do not overlap
any more, so that orbits of the same family do not coexist.
This results in fewer and fewer coexisting orbits with in-
creasing damping and, hence, a decrease in the total number
of orbits for a given forcing interval. Besides the shift to
higher forcing we also notice that the lifetime of all orbits
gets smaller with increasing damping@Figs. 10~a!, 10~b!#.

FIG. 9. Total number of periodic attractors
depending on the forcingf 0: The dashed line
shows the number of periodic attractors shown in
Fig. 8 using 104 initial conditions. For the solid
line we used 105 initial conditions.

FIG. 8 ~Continued!.
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This means that even if the forcing is sufficient to obtain a
specific periodic orbit we may not observe it if its lifetime in
parameter space is smaller than the resolutiond f 0 used. This
argument holds especially for higher period periodic orbits
@compare the lifetime intervals for theP1 andP3 families in
Figs. 10~a!, 10~b!#. These two mechanisms —the shift to
higher forcing and the shrinking of lifetime intervals— are
the main reasons that the number of orbits in a specific forc-
ing interval decreases rapidly with increasing damping. For
illustration we present another bifurcation diagram~Fig. 11!
where the damping is still small (n50.05) but larger than in
Fig. 8. Since we restrict our consideration to the intervalf 0
P@0,5# fewer orbits are found; in particular the number of
high period periodic attractors decreases much faster than the
number of the low period ones.

Let us now discuss the opposite case, how the number of
attractors rises as we come close to the Hamiltonian case.
The two mechanisms mentioned above can be reformulated
to explain the rapid increase in the number of attractors as
damping approaches zero, i.e.,n50. First, the shift in the
appearance of periodic orbits towards lower forcing values
yields an increased overlapping of the stability intervals of
orbits of the same family. Second, the lifetimes of stable

orbits in parameter space get larger with decreasing damp-
ing. For theP1

m orbits we get an analytical expression for the
numberNp1 of stable orbits for fixedf 0 . According to~7!
two P1 attractors with velocitiesy*56m2p arise if
f 0
sn5numu2p. Now, we fix f 0 and vary the dampingn. With
decreasing damping, beginning from 1, we always cross a
saddle-node bifurcation curve iff 05numu2p or in other
words, if f 0/2pn gives the next integer valuem. Each cross-
ing gives us 2 additionalP1 attractors. Therefore the number
Np1 can be computed as follows:

Np152IS f 0
2pn D11, ~10!

whereI denotes the integer part of the expression in brack-
ets. The additional 11 refers to the solution
(x*5p, y*50). The validity of ~10! is restricted to that
f 0 interval where none of theP1

m orbits has undergone a
period doubling. The number ofP1 orbits increases rapidly
when the damping goes to zero. We expect that the same
scalingNpN;1/n holds for higher periods as well. Thus add-
ing a small amount of damping we expect a finite number

FIG. 10. ~a! The lifetime intervals of the first
orbits of the primary familyP1: with m561
~solid lines!, m562 ~dashed lines!, and
m563 ~dotted lines! in the forcing-damping pa-
rameter space. These intervals of stability for
each orbit extend between the saddle-node bifur-
cation ~left curve! and the first period doubling
~right curve!; ~b! the lifetime intervals of the first
orbits of the secondary familyP3: m561 ~solid
lines!, m562 ~dashed lines!, andm563 ~dot-
ted lines!.
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of attractors for each family of orbits of a given periodpN .
However due to the rapidly decreasing size of the basins of
attraction for the high-period periodic attractors one cannot
predict the highest occurring periodpN for a given forcing
and damping using only numerical means.

To get an estimate on the average number of coexisting
attractors of each period over the forcing interval@0,5#, we
count all attractors with a given period observed in this in-
terval and divide this number by the number off 0 values
considered in this interval. This quantity can be regarded as
the average number of periodic attractors of a given period
per parameter value in the considered forcing interval. Plot-
ting this average number of attractors with a periodat least
p as a function ofp, we obtain a smoothing of these distri-
butions. These distributions show a different behavior for
odd and even period periodic orbits. The average number of
attractors with odd period diminishes much faster than the
number of even ones~Fig. 12!. This reflects their different
mechanisms of appearance. For the even periods, period
doubling is the dominant process. Long period doubling cas-
cades leading to relatively high periods can be observed for
orbits with large basins of attraction. The attractors with odd

period correspond mainly to the appearance of secondary
sinks. The size of their basins of attraction decreases more
rapidly with increasing period.

If we calculate the same kind of distribution for the total
size of the basins of attraction of even and odd period peri-
odic orbits, then we obtain the same scaling behavior for the
basin size as a function of the period.

IV. CONCLUSIONS

We have studied a system with a very high number of
coexisting attractors. Such a system can be obtained from a
Hamiltonian one having a very large number of stable peri-
odic orbits by adding a small amount of damping. Due to the
dissipation the stable periodic orbits turn into sinks. Instead
of the very large number a smaller number of attractors is
observed for a given forcing. It seems, nevertheless, that the
number of attractors can be made arbitrarily large by choos-
ing the damping small. Families of periodic orbits of the
Hamiltonian system, which yield identical points in state
space, split into families of periodic attractors with different
velocities. Periodic attractors belonging to the same family

FIG. 11. Periodic attractors for fixed damping
(n50.05) depending on the forcingf 0 in the in-
terval @0,5#: ~a! phase x of the rotor, f 0
P@0,2.5#; ~b! phasex of the rotor, f 0P@2.5,5#.
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of orbits exhibit the same bifurcation behavior, but their ba-
sins of attraction are of different size. Most attractors found
in these systems have low periods. High period stable orbits

have extremely small basins of attraction and are, therefore,
difficult to detect.

In systems with many coexisting attractors as found here,
the structure of their basins is very complex. They are so
closely interwoven that perturbations of the magnitude of
round-off error are sufficient to move an initial condition
from one basin to another. This results in an extremely low
predictability of the final state of the system for a given
initial condition. It turns out that the dimension of the basin
boundary is almost equal to the dimension of the state space.

Moreover, we have studied the double rotor which yields
a four-dimensional map@24#. Here, the system’s behavior is
even more complex since the number of observed attractors
is much higher for the same value of the damping. We find in
this case more than 5000 attractors. The basins of attraction
show the same complex structure as we examine the state
space of initial conditions. We expect that this complexity in
the bifurcation structure and the closely interwoven basins of
attraction are typical properties of systems with a large num-
ber of coexisting attractors.

It is interesting to note, that for the forced damped pen-
dulum, a system with a four-dimensional parameter space,
we have not found so many attractors. The highest number of
coexisting attractors that we have found was six. This result
does not exclude the possibility of a high number of coexist-
ing attractors, since we have not checked the whole four-
dimensional parameter space systematically. We fixed two of
the parameters and varied only the forcing and the damping.
We may have, therefore, missed the regions in parameter
space where a large number of coexisting periodic attractors
exist.
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