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Map with more than 100 coexisting low-period periodic attractors
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We study the qualitative behavior of a single mechanical rotor with a small amount of damping. This system
may possess an arbitrarily large number of coexisting periodic attractors if the damping is small enough. The
large number of stable orbits yields a complex structure of closely interwoven basins of attraction, whose
boundaries fill almost the whole state space. Most of the attractors observed have low periods, because high
period stable orbits generally have basins too small to be detected. We expect the complexity described here to
be even more pronounced for higher-dimensional systems, like the double rotor, for which we find more than
1000 coexisting low-period periodic attractors.
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[. INTRODUCTION other sinks are shifted to higher parameter values. Nonethe-
less it is easy to obtain system parameters for which the
Nonlinear dynamical systems often exhibit many rich andnumber of attractors is very high. The aim of this paper is to
varied behaviors of which stationary, periodic, quasiperiodicstudy the appearance and disappearance of these mostly low-
and chaotic attractors are some of the typical long-term bePeriod periodic attractors and their basins of attraction.
haviors. A general approach in studying tbemplexityof The paper is organized as follows. Section Il is devoted to
such systems involves investigating their dynamics as som&@e model system and its behavior in the Hamiltonian case as
system parameters are varied. This method yields an analysi¢ell as the small dissipation case. A study of the system’s
of qualitative changes, known as bifurcations, resulting in &€havior in state space for a fixed set of the forcing and
change of the number of attractors, their typeriodic, qua- damping parameters is presented. We discuss the number of
siperiodic, chaotic and/or their stability. Thus far, a large attractors and their basins depending on the period. The box
body of work has concentrated on low-dimensional systemgimension of the basin boundaries is estimated. The entire
where on|y one or two attractors dominate the system’s bebifurcation structure is considered in Sec. lll; the lifetime of
havior. However, it is expected that many systems in naturethe stable periodic orbits of different periods in parameter
in particular coupled systems, are more appropriately modspace depending on forcing and damping is studied. Section
eled by dynamical systems that have multiple coexisting at!V gives a summary of the results.
tractors. The behavior of such systems will be more complex
sin_ce there is the added_feature of interactions among the IIl. THE SINGLE ROTOR, THE NUMBER
various attractors and their bas[ris—4]. The purpose of thls OF ATTRACTORS AND THEIR BASINS
paper is to study the complexity of such systems using a
prototype model which exhibits an arbitrarily large number A suitable model for the study of systems with a large
of coexisting attractors, depending on a parameter. The phe@umber of coexisting attractors is the kicked single rotor,
nomenon described here is different from the Newhouse phevhich describes the time evolution of a mechanical pendu-
nomenon in which infinitely many attractors can coexistlum kicked at timesnT, n=1,2,. .., with a constant force
[5,6], but only for special parameter valugs8]. fo. From the original differential equation for the phase of
The model for a periodically kicked mechanical rotor the pendulum one can derive a md] which is related to
yields a two-dimensional map which can be used as such the state of the system just after successive kicks
prototype. The rotor map depends on two parameters, forc-
ing (kick amplitude and damping. In the limit of maximal Xyt 1= X+ Yi(mod2m),
damping, the system reduces to a one-dimensional circle
map with a zero rotation number exhibiting the Feigenbaum i
scenario to chaos. Without damping we obtain the area- Yik+1= (1= )yt Fosin(xi+yi), D
preserving standard map introduced by Chiriki®] and
widely studied by many authofd0]. This map, which we wherex corresponds to the phase apdo the angular ve-
refer to as the Hamiltonian case of the rotor map, is believedbcity. The damping parameteris connected to the energy
to possess infinitely manycentej stable periodic orbits, dissipation and varies between(Bamiltonian system with-
each of which turns into a sink when a small amount ofout damping and 1 (very strong damping For these two
dissipation is applied. For given values of the dissipation andimiting cases the behavior of the system is well knd@a—
forcing, we expect that only finitely many sinks coexist. The 14].
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FIG. 1. Phase portrait for the sing|e rotor Wlth no damp|ng FIG. 2. The stars ShOW the |Ocati0n Of the attracting periOdiC
(v=0) atfy,=4.0. This is the period doubling point for the main Orbits of the single rotor for the same forcing as in Fig. 1
fixed point x=, y=0). Around this major periodic island we (fo=4.0) but with small damping¥=0.02). All attractors have
find chaotic behavior, all KAM invariant circles are destroyed. been obtained by iterating 40nitial conditions on a grid in the

There are identical islands at =, y=m2) for all integersm  region[0,2m]X[—200,20Q. To make the results visible, this pic-

but all coincide on the torus. ture shows only the region witly|<50. Some of the fixed point
attractors have already undergone period doubling, some of them

not. The black dots indicate which initial points on the same grid

For very s_trong damping we observe the usual I:e"‘:]enﬁave trajectories that are attracted to the orbit with the largest basin
baum scenario for the transition to chaos, whereas for th

. ) . . Sf attraction.
Hamiltonian case the state space consists of a chaotic sea

interspersed with periodic islands. In between these two lim-
iting cases the system’s behavior is not so well understood®7, €.g., the family of period 1 orbits has the coordinates
The crossover, however, between the universal constants fok* =, y*=m2s) with m=0,=1,... and, because of
the period doubling cascade has been stufliédlg as well  the modulo 2r, they are all in the same location on the
as the transition between Hamiltonian and dissipative chao®rus. We distinguish between two types of periodic orbits.
[17,18. The primary familieqor island$ are the fixed pointgperiod

In particular, close to the Hamiltonian case, i.e., with a1) and the higher period periodic orbitperiod >1) that
small amount of damping, the system exhibits a rich dynamiexist for zero nonlinearityf,. They make up the largest re-
cal behavior which is mainly dominated by the appearancjions of regular motion in the state space and are surrounded
and disappearance of periodic attractors of different periodgy small islands of stability. These small islands have higher
leading to a very complex bifurcation diagram. The com-periog and are the secondary families that exist only for a
plexity of the bifurcation structure varies strongly depending,, ;n-aro nonlinearity. The secondary orbits have in general

on the strength of the forcing, and_ the_da_mpmg». ACt_“' .. much smaller stability regions than the primary ones.
ally, the number of attractors can, in principle, be arbitrarily

high by choosing the damping small. B. Small dissipation

The structure shown in Fig. 1 does not persist if a small
amount of dissipation is introduced. The periodic orbits be-

Because we are interested in the system’s behavior clossome sinks and the chaotic motion is replaced by long cha-
to the Hamiltonian case, let us briefly recall some propertiestic transients that occur before the trajectory eventually
of (1) for zero damping ¢=0). There exists regular motion settles down in one of the sink&8]. Furthermore, the state
around the stable periodic orbits of the mdp as well as space is no longer a torus; the motion takes place on the
Kolmogorov-Arnold-Mose(KAM ) invariant circles. On the cylinder[0,27] X R. The dissipation leads to a separation of
other hand there also exist regions with persistent chaotithe overlapping periodic orbits belonging to a given family
motion. Both regions are complexely interwoven dependingvith increasing modulus of the velocities on the cylinder.
on the nonlinearity parametég. Furthermore, the Lebesgue For example, the fixed points of the period 1 family, which
measures of these regular and chaotic regions vary with thare represented by one point in Fig. 1, are now distinguished
system parameters. by different phase values and different velocity values that

In the Hamiltonian case, the second equatiofljrfor the  differ by =m2+ with m an integer. Figure 2 is a picture in
angular velocityy can be taken modulo 2 too, and the state space showing attractors with higher and higher veloci-
dynamics are then located on the tof&27]X[0,27]. ties that are surrounded by sinks arising from former second-
Therefore, periodic orbits, which are solutions of E¢fb, ary islands. Figure 3 shows a blowup of the indicated region
resides on the torus. As such, each of the periodic orbits, aaroundy=0 in Fig. 2. Black points are attracted to the at-
seen in Fig. 1, represents a whole family of overlapping petractor that was the primary island while white points are
riodic orbits in which the velocitiey differ by multiples of  attracted to other attractors.

A. No dissipation
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FIG. 4. Number of periodic attractors for the damped single
rotor vs their period forv=0.02 andfy=4.0. The solid columns
“show the results using 10nitial conditions while the dashed col-
umns is for 16 initial conditions.

FIG. 3. The largest basin of attraction in the syst65 004
points. This is an enlargement of the region indicated by the rect
angle in Fig. 2. We have iterated &livitial conditions on a grid in
the region showri0,27] X[ —r,7r]. The main orbit has already

undergone period doubling at this parameter value. conditions the highest period found is 20, whereas with 10

| trast to th d d h th b initial conditions we were able to detect a period 50 attractor.
n contrast to e undamped case where e NUMDEr Og yiseyssed below, higher period periodic orbits typically

stable periodic orbits is infinite, we believe that there are %have a smaller basin of attraction and, therefore, need a finer

finite number of attractors in the damped case, though this, ¢ +ion grid to find them

number can be very large. In particular, when the damping i ) o s now look at the size of the basins of the periodic

positive there is a bounded cylinde.r WhiCh contains all of theattractors. Figure 2 shows, besides the attractors, the basin
attractors. From the second equation in niipwe see that (black dot$ of the main orbit of theP, family. This orbit,
Vit < (1= )|yl + fo. (2)  Wwhich we denote byP?, has zero velocity and a phase
x=q. It marks the location of the symmetry axis for the
Thus if |y,|>fo/v then|y,,1|<|yy|. It follows that all tra- system. The other P, orbits have coordinates

jectories are eventually trapped in the regionPT=(x=x* y=m2m) with m=x1+2 .... Velocities
[0,27] X[ = Ymax:Ymaxl» Where of a different sign correspond to clockwise and counterclock-
wise rotation. Their basins, as well as the basins of other

fo Py orbits for N>1, appear as white dots in Fig. 2. TR§
Ymax=7 ) basin is the largest one for the system and, in general, all

basins of theP; orbits are relatively large compared to the

Thereforey,.x provides a limit for the modulus of the ve- others. They make up about 84.4% of the whole number of
locities for attractors arising from former primary and sec-initial conditions in the space of initial conditions under con-
ondary islands as well. sideration and only the remaining 15.6% of all initial points

To estimate the number of coexisting periodic orbits, webelong to the basins of the higher period periodic orbits. The
iterate 1@ initial conditions on a grid of 100< 100 in the  basins of attractors with periods10 cover only 0.0067% of
rectangle 0,27 X[ — Ymax: Ymax]- The accuracy with which the space of initial conditions. For the size of the basins
each periodic orbit Py of period N is given by withinthe P, family we obtain a rather quick decrease in the
[x(N) —x(0)||<10"8. Our procedure for finding periodic or- basin size with increasing values of the velocity for the ini-
bits is then the following. First, we fix all parameters, say,tial conditions being considered, as shown in Fig.(Bhe
the damping av=0.02 and the forcing aft,=4.0. For this oscillations in the size of the basins of the prim&yattrac-
particular parameter set we find 118 different periodic attractors is related to the existence of secondary sinks surround-
tors in the rectangl€0,27] X[ —200,204. In this case, we ing the primary ones. They “eat up” a part of the basins of
find no initial conditions that do not converge to periodic the primary orbits they are connected wjthlence periodic
attractors. In Fig. 4, we show a histogram with the number ofattractors of the same family but with higher velocities are
periodic attractors of each period. It turns out that most ofmore difficult to find because of their small basins. For
the periodic attractors have low periods 10); stable higher higher period periodic attractors the situation is even worse
period orbits are found rarely. It is worth mentioning that thebecause even the largest basins of a given family occupy
number of attractors obtained depends on the resolution afnly a small part of the considered state space (9.1% for all
the initial conditions in the state space. If we increase thePs orbits and 4.97% for alP5 orbits). Therefore increasing
number of initial conditions to T0and even 10 points the  the number of initial conditions leads to a higher number of
total number of periodic attractors found rises to 146 andhttractors since stable orbits with even smaller basins become
153, respectively. A finer resolution in state space yields alsdvisible.”
more stable orbits with rather high periods. Fof* i6itial If we consider for fixed parameter®.g., fo=4.0) the
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FIG. 5. The attractors of the; family have
y values that aren2 7 for an integem. The solid
line shows the number of initial points, from a
grid of 1¢ initial conditions, that are in the basin
of the mth attractor inP, for m=0. The results
for the symmetric—m basin are the same as the
+m basin. The dashed line is for Aitial con-
ditions while the dotted line is for Zanitial con-
ditions.
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number of attractors found in each family as a function of thef (¢) generally scales witle as
number of initial conditions, we observe for small numbers
of initial conditions (<2x 10%) a rather rapid increase in the f(e)~ e, (4)
number of attractors followed by a saturation for a higher
number of initial conditions. The starting point of the satu-
ration is different for different periods; for higher periods
one needs more initial conditions to achieve a saturation. Fov. . : .

sin boundary byw=D —d, whereD is the dimension of the

the low-period periodic attractor@eriod <10), which are at Th it Ci imated f th
the main contribution to the total number of attractors, thisS'at€ space. [he uncertainty exponent i estimated tfrom the

saturation starts for initial conditions5x10*, while the slope in the log(€)-loge plot as shown in Fig. 7. For damp-

total number of attractors has not yet saturated foritiial ing »=0.05 we QEt.a:O'OOG 41 and, hence_1=1.993 59.;
conditions. y for v=0.02 we obtaire=0.001 andd=1.999, i.e., the basin
The percentages of initial state space occupied by the pgoundary is nearly two dimensional. Furthermore, it is inter-

. _ _10 . g
sins of the different families of attractors remains approxi-esFIng t% note dthat fOEE 1Ob .abOL;]t. 9|0% of the initial
mately the same as the number of initial conditions is variedPCINtS changed to another basin. This large percentage can

We find that at least 60%when we take 1Dinitial condi- be regarded as an additional indication of the high complex-

tions of the attractors under consideration have basind ©f the basin structure. Let us ask now which accuracy

smaller than 0.1% in state space would be necessary to predict the final state with a probabil-
For the rerﬁaining computatidns in this paper we usdly of 99%, i.e., the fraction of uncertain initial conditions

10 000 initial conditions. As a result, the periodic orbits un-Shall be 0.01. As a result we obtain an accuracy
der consideration are those whose basins are larger than
15500 Of the state space. SETTTT

Another interesting observation is that the basins seemto -
have fractal boundaries which appear to spread over most of £ - ..
the state spacésee Fig. 3. This yields a complex interwo- S
ven structure of the basins. To illustrate this complicated
network of basins we present a small basin of a secondary
sink (P3) in Fig. 6 showing points spread over most of the S e
state space. Extremely small changes in the initial conditions ™ °c " "> ...
are sufficient to shift a point from one basin to another. This i
high sensitivity to the final state can be measured by com- -z, '/ i
puting the uncertainty exponent, which is related to the di- e
mension of the boundarfy19]. b

Suppose we take 10 000 randomly chosen initial condi- B
tions[x(0),y(0)] and determine for each of them the attrac-
tor they converge to. Now we change the initial conditions
slightly to[x(0)+ €,y(0)] and measure the fraction of initial
conditionsf(e€) that change from one basin to another. This  F|G. 6. Basin of attraction of one orbit of the period 3 family
fraction of initial conditions is said to be uncertain with re- p, in the same part of the state space as Fig. 3. This basin is made
spect to this perturbation of size It has been argued [120] up of 2427 points out of 0 initial conditions in
and proved in21] for Axiom A systems that this fraction [0,27]X[—m,7].

where « is the “uncertainty exponent.” This exponent is
Otp/pically related to the box counting dimensidrof the ba-
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after 25 000 iterates. But for these not converging orbits we
did not check for chaos by calculating Lyapunov exponents.
Looking at the number of periodic attractdfSig. 9 we
fs s s s s n® observe that the number of periodic attractors fluctuates un-
der the variation of ;. These fluctuations reflect the fact that
z a large number of the total number of periodic attractors
o exist only on a very small interval along tHg axis which
+ | has a resolution obfy=0.001. In the bifurcation diagram
LT these attractors are denoted only by a few points and they
7 would be seen as periodic orbits possessing a period dou-
. bling cascade in a higher resolution plot. As discussed in the
. preceding section, the number of counted attractors depends
strongly on the number of initial conditions used. With a
larger number of initial conditions more attractors with
08 L : — : o ‘ L smaller basins are detected. Since the number of attractors
e of e perrbetian ¢ for the low-period periodic orbits has already saturated for
10° initial conditions, the solid line in Fig. 9 can be regarded
as a good approximation of the total number of attractors.
The stability region of a particular periodic orbit can be
regarded as the interval between its appearance and disap-

a
AAAAAAAAAAA

FIG. 7. Fraction of uncertain initial conditionfi{¢) vs size of
the perturbatiore for forcing fu=4.0 and two different values of
the damping»=0.05(+) andv=0.02 (A). We iterate a sufficient
number of initial conditions such that the number of initial condi-

tions that change basins with a perturbation of size 10 000. pearance. Multistability refers to the overlapping of these
intervals belonging to different periodic orbits in parameter
e~f(e)L/@=0.01/0-001= 12000 (5) space. To study this stability region of periodic orbits in

parameter space we consider the distance between the
which is not realizable with standard floating-point numeri-saddle-node bifurcatiof§” and the first period doubling}®

cal calculations. as a measure for their extension in parameter space. We call
this distance\ f o= f%— f3"the lifetime of the stable periodic
1. MULTIPLE COEXISTING ATTRACTORS orbit in parameter space. The length of this parameter inter-

val Afy is different for each periodic orbit, and varies
So far we have only discussed the number of attractingtrongly with dampingr. To get a better insight into the
periodic orbits for a fixed forcing and damping. Now we global behavior we investigate these stability regions
vary the forcing in order to get the number of coexisting[ {84 {57 of P in the f,—v space.
attractors in an interval, sayg e[ 0,5]. The damping is still For the period 1 familyPT this interval can be computed
kept fixed aty=0.02. To obtain a good estimate for the analytically. First one has to compute the period 1
number of attractors we have to adjust the cylinder of initialfjyaq points, that result from the equations, ;—x, =0 and

conditions[0,27]><[—ymax,ymax] when changingf, ac- Yir1—Ye=0. The solution of
cording to(3). Figure 8 presents the extremely complex bi-

furcation structure obtained for this parameter set. Neverthe- y*=0 (mod2m)
less, the number of attractors shown in Fig. 9, though being '
more than 100 for somg,, is only an approximation since
some of the attractors have very small basins of attraction as
discussed above. Therefore we cannot find them with only ) . .
10* or 1 initial conditions in a large cylinder. yields thf stable ~ fixed . points  xt=,y*=0)

Let us discuss the general properties of the bifurcatio?nd [SINK* +m2m)=vm2alfoy* =m2a] with m==1,
diagram and the corresponding number of attracf6igs. *2,... : Thesadd_le—node _blfurcatlon occurs wh_en the cor-
8(a), 8(b), 9]. As already mentioned, the m&p) possesses a "esponding Jacobian matri}(y-« -y« has an eigenvalue -
symmetry with respect to the orientation of the rotation ofrsn= 1, whereas the period doubling corresponds to an ei-
the rotor. Therefore the dynamics are symmetric with respecdenvaluel,q=—1 of the same matrix. Solving the equation
to y=0 andx= corresponding to clockwise and counter- [J—A[=0" for Ag=+1 and )‘pg: —1 for each pair
clockwise motion. That means that to each periodic orbifX*,y*) yields the curvedg" andfy” in the parameter space
PaOXE YY), k=1,...N, we find another orbit with Wh_ere the e|genvalue condition fpr (_aach of these two bifur-
(2m—x ,—y?). Most of the periodic attractors appear as acat.|ons is fulfllled..Because of.thelr dlffgren(} symmetry prop-
result of a saddle-node bifurcation. With a further increase of'ties, we consider the fixed point®;=(7,0) and
the forcing f, they undergo a period doubling cascade intoP1 = (X*,m2m), m=+1+2 ... separately. The fixed
chaos. IfPy, is invariant with respect to the symmetry trans- Point (,0) appears for alb at fo=0. This attractor under-
formation then a symmetry breaking bifurcation in form of a goes a period doubling bifurcation &§=4—2v. The attrac-
pitchfork occurs before the period doubling casc4gg].  tor with double period is invariant under the symmetry trans-
The intervals of chaotic behavior are very tiny and thereforeformation;  therefore, ~a  pitchfork  bifurcation  at
not visible in the present resolution in parameter space. Fdro=(2—v)m occurs before the period doubling cascade
the whole parameter interval we find only less than 1% ofstarts[13]. The lifetime of theP? orbit varies linearly with
initial conditions which do not converge to a periodic orbit the damping aa f,=4—2v. For the otheP? fixed points

—vy* +fosin(x* +y*)=0 (6)
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FIG. 8. Periodic attractors for fixed damping
(»=0.02) depending on the forcinfg in the in-
terval [0,5]: (@) phase of the rotorx, fq
€[0,2.5]; (b) phase of the rotok, fye[2.5,5];
(c) angular velocity of the rotoy, fye[0,2.5;
(d) angular velocity of the rotoy, fye[2.5,5.
The number of initial conditions used is 40
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the behavior is different. However it is the same for each paidamped case mentioned above. Each of these families is
of orbits with the samém|. Their saddle node bifurcation characterized by a special form of these lifetime intervals in

occurs at

fo= y|m|2 7

whereas the first period doubling occurs at

0= \(vm2m)%+4(2—v)>.
The lifetime of these fixed points is thus
Afo=fB— "= \J(vm2m)2+4(2—v)?— v|m|27. (9)

Both orbits with the samém| have the same stability inter-
val. The stability intervals of the first six orbits of tHe,
family (m==*=1,=2,+3) are shown in Fig. 1@). For the
other orbitsPj(N# 1) these intervala\f, can be obtained
numerically using continuation metho@23]. Figure 1Qb)
shows the results for six orbits of the secondBgyfamily.

the fo—v space. The saddle-node bifurcations, i.e., the ap-
pearance of orbits of primary families, can be continued to
fo=0 at v=0, whereas secondary families always need a
finite forcing f;#0 to be excited atv=0. All bifurcation
points of different orbits of the same family converge to the
same bifurcation points in the Hamiltonian case.

As was already pointed out [13], all of the saddle-node
bifurcations and period doublings can be continued to the
limit of very strong damping’= 1. That means that all peri-
odic orbits present in the Hamiltonian case can be found in
the dissipative case too. But the forcing needed to excite
these orbits increases with increasing velocity. For strong
damping it turns out that the stability intervals do not overlap
any more, so that orbits of the same family do not coexist.
This results in fewer and fewer coexisting orbits with in-
creasing damping and, hence, a decrease in the total number
of orbits for a given forcing interval. Besides the shift to

From these computations we can distinguish the families ohigher forcing we also notice that the lifetime of all orbits
periodic orbits according to the classification in the un-gets smaller with increasing dampihgigs. 1@a), 10(b)].

200 T T T T T T T

total number of periodic attractors

\\\\\\\\\\

FIG. 9. Total number of periodic attractors
depending on the forcind,: The dashed line
shows the number of periodic attractors shown in
Fig. 8 using 16 initial conditions. For the solid
line we used 1®initial conditions.

forcing f,
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FIG. 10. (a) The lifetime intervals of the first
orbits of the primary familyP,: with m=*x1
(solid line, m==*2 (dashed linegs and
m= * 3 (dotted line$ in the forcing-damping pa-
rameter space. These intervals of stability for
each orbit extend between the saddle-node bifur-
cation (left curve and the first period doubling
(right curve; (b) the lifetime intervals of the first
orbits of the secondary familp;: m= =1 (solid

lines), m= =2 (dashed lines andm= *3 (dot-
/ / ted lines.

damping v
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o
I

°
=
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| L L L L | L L L L
10 15 20
forcing f,

0.0

This means that even if the forcing is sufficient to obtain aorbits in parameter space get larger with decreasing damp-
specific periodic orbit we may not observe it if its lifetime in ing. For theP!" orbits we get an analytical expression for the
parameter space is smaller than the resolufibjused. This numberNy; of stable orbits for fixed'y. According to(7)
argument holds especially for higher period periodic orbitsswo P, attractors with velocitiesy* = +m2# arise if
[compare the lifetime intervals for tfe, andP; families in  {5"=»|m|27. Now, we fixf, and vary the damping. With

Figs. 1Qa), 10(b)]. These two mechanisms -the shift to  decreasing damping, beginning from 1, we always cross a
higher forcing and the shrinking of lifetime intervals are  sgddle-node bifurcation curve ifo=v|m|27 or in other

the main reasons that the number of orbits in a specific forcyords, if f ,/27rv gives the next integer valua. Each cross-
ing interval decreases rapidly with increasing damping. Foing gives us 2 additiona?, attractors. Therefore the number
illustration we present another bifurcation diagréig. 11) N,; can be computed as follows:

where the damping is still smalb& 0.05) but larger than in

Fig. 8. Since we restrict our consideration to the interfial f

e[0,5] fewer orbits are found; in particular the number of Nplzzz(—o) +1, (10)

high period periodic attractors decreases much faster than the 2mv

number of the low period ones.

Let us now discuss the opposite case, how the number d¥hereZ denotes the integer part of the expression in brack-
attractors rises as we come close to the Hamiltonian cas€fs. The additional +1 refers to the solution
The two mechanisms mentioned above can be reformulatelx™ =, y*=0). The validity of (10) is restricted to that
to explain the rapid increase in the number of attractors a$o interval where none of th@]' orbits has undergone a
damping approaches zero, i.e+0. First, the shift in the period doubling. The number d?; orbits increases rapidly
appearance of periodic orbits towards lower forcing valuesvhen the damping goes to zero. We expect that the same
yields an increased overlapping of the stability intervals ofscalingN,y~1/» holds for higher periods as well. Thus add-
orbits of the same family. Second, the lifetimes of stableing a small amount of damping we expect a finite number
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FIG. 11. Periodic attractors for fixed damping
(»=0.05) depending on the forcinfg in the in-
terval [0,5]: (a8 phase x of the rotor, f,
€[0,2.5; (b) phasex of the rotor,f;e[2.5,5].
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of attractors for each family of orbits of a given peripq . period correspond mainly to the appearance of secondary
However due to the rapidly decreasing size of the basins afinks. The size of their basins of attraction decreases more
attraction for the high-period periodic attractors one cannotapidly with increasing period.
predict the highest occurring perigg, for a given forcing If we calculate the same kind of distribution for the total
and damping using only numerical means. size of the basins of attraction of even and odd period peri-
To get an estimate on the average number of coexistingdic orbits, then we obtain the same scaling behavior for the
attractors of each period over the forcing interp@)5], we  basin size as a function of the period.
count all attractors with a given period observed in this in-
terva_l and Q|V|d§ t'h|s numbe( by the'numbeerf values IV. CONCLUSIONS
considered in this interval. This quantity can be regarded as
the average number of periodic attractors of a given period We have studied a system with a very high number of
per parameter value in the considered forcing interval. Ploteoexisting attractors. Such a system can be obtained from a
ting this average number of attractors with a periddeast = Hamiltonian one having a very large number of stable peri-
p as a function ofp, we obtain a smoothing of these distri- odic orbits by adding a small amount of damping. Due to the
butions. These distributions show a different behavior fordissipation the stable periodic orbits turn into sinks. Instead
odd and even period periodic orbits. The average number aif the very large number a smaller number of attractors is
attractors with odd period diminishes much faster than thebserved for a given forcing. It seems, nevertheless, that the
number of even oneFig. 12. This reflects their different number of attractors can be made arbitrarily large by choos-
mechanisms of appearance. For the even periods, peridgdg the damping small. Families of periodic orbits of the
doubling is the dominant process. Long period doubling casHamiltonian system, which yield identical points in state
cades leading to relatively high periods can be observed fospace, split into families of periodic attractors with different
orbits with large basins of attraction. The attractors with oddvelocities. Periodic attractors belonging to the same family
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have extremely small basins of attraction and are, therefore,
difficult to detect.

In systems with many coexisting attractors as found here,
the structure of their basins is very complex. They are so
closely interwoven that perturbations of the magnitude of
round-off error are sufficient to move an initial condition
from one basin to another. This results in an extremely low
predictability of the final state of the system for a given
initial condition. It turns out that the dimension of the basin
boundary is almost equal to the dimension of the state space.

Moreover, we have studied the double rotor which yields
a four-dimensional maf24]. Here, the system’s behavior is
even more complex since the number of observed attractors
is much higher for the same value of the damping. We find in
this case more than 5000 attractors. The basins of attraction
show the same complex structure as we examine the state
space of initial conditions. We expect that this complexity in
the bifurcation structure and the closely interwoven basins of
attraction are typical properties of systems with a large num-
ber of coexisting attractors.

It is interesting to note, that for the forced damped pen-
dulum, a system with a four-dimensional parameter space,
we have not found so many attractors. The highest number of
coexisting attractors that we have found was six. This result
does not exclude the possibility of a high number of coexist-
ing attractors, since we have not checked the whole four-
dimensional parameter space systematically. We fixed two of
the parameters and varied only the forcing and the damping.
We may have, therefore, missed the regions in parameter
space where a large number of coexisting periodic attractors

FIG. 12. Average number of periodic attractors over the wholeexist.
forcing interval f;e[0,5] with period =p vs p: (a) even period
orbits; (b) odd period orbits. This average number of periodic at-
tractors is computed as follows: We count all periodic attractors of
a given period in the considered forcing interval and divide this
number by the number of parameter valdgs [ 0,5] that we con-
sider. Here we used Y0nitial conditions for each parameter value.
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