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Self-regulation mechanism of an ecosystem in a non-Gaussian fluctuation regime
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We study a dynamical model for an ecological network of many interacting species. We consider a
Malthus-Verhulst type of self-regulation mechanism. In the framework of the mean field theory we study the
nonlinear relaxation in three different caséa} towards the equilibrium statép) towards the absorbing
barrier,(c) at the critical point. We obtain asymptotic behavior in all different cases for the time average of the
process. The dynamical behavior of the system, in the limit of infinitely many interacting species, is investi-
gated in the stability and instability conditions and theoretical results are compared with numerical simulations.
[S1063-651%96)09606-1

PACS numbefs): 05.40:+j, 02.50—r, 05.20—y

[. INTRODUCTION stability of the system by using methods developed in the
above-mentioned Ref4]. The species interaction is intro-

In recent times some work has been devoted to the studguced by a mean field approximation, i.e., assuming that the
of population dynamics of a large number of species rangrowth parameter is proportional to the species average.
domly interacting each oth¢t]. The main motivation arises The deterministic behavior of our system shows a
from the study of complex ecosystems such as the idiotopistability-instability transition driven by the typical interac-
network in the immune system, which works as a regulatiortion strengthJ and the saturation parametgrof the popu-
scheme for idiotopes recogniti¢@]. In a natural ecosystem, lation, which gives a divergency of the time integk&(t) in
typical mechanisms for self-regulation are the territoriala finite timet,.
breeding requirement, the crowding effect caused by compe- The different modality of nonlinear relaxation is analyzed
tition between the species for the same growth limiting re-in the stability region ¢>J) and in the instability region
sourced 3], etc. We study alN-species generalization of the (J> ). For small noise intensity, whe#>0 and the system
usual Lotka-Volterra model with a Malthus-Verhulst model- is in the instability region, the noise moves the system to-
ization of the self-regulation processes. In this model thavards the instability beforehand. Moreover, the system keeps
species extinction is not prevented as in a similar model: théhe memory of the initial state configuration, unless the dis-
Gompartz model, studied recently in an interesting paper byribution is extremely peaked around the mean value.

Rieger [1], where the function of the population density, In the largen limit, with n being the species number, the
which describes the development of tiih species without average of the species concentration has negligible fluctua-
interacting with the other species, is a logarithmic onetions. In this limit the stochastic evolution of the system can
Moreover, in this model the stability domain is enlarged withbe solved exactly. The solution is given by a somewhat in-
respect to the Gompartz model. In fact, the critical interacvolved integral equation. The main result of this paper is to
tion strengthJ;, where the transition from stability to insta- introduce an approximation for the time integral of the aver-
bility takes place, is very lowtypically smaller than one  age species concentration, which greatly simplifies both the
while in our model the interaction strength can assume angeterministic and the noise affected evolution of the system.
value due to the value of the population saturation parameterhis approximation is valid in all cases in which there exists
only. In our model we consider mean field interaction be-a time range wherein the time integral of the average con-
tween the species, as a first step to get some insight into theentration becomes very large. This happens in a finite time
behavior of complex ecosystems, and a multiplicative noisevhen the system is unstable or asymptotically if the system
to take into account the influence of the environmérd., is stable. When the system decays towards an absorbing bar-
climate, disease, ejc. rier, the time integral of the average species concentration

Nonmonotonic growth of fluctuations in a nonlinear re- becomes asymptotically constant and as a consequence a dif-
laxation during the decay towards the equilibrium state, inferent approximation scheme must be developed. We use the
the presence of the multiplicative noise, has been investiabove-mentioned approximation together with the small-
gated very recently in Ref4], if the initial state is far away noise approximatiofi4]. We emphasize that in the previous
or close to the absorbing barrier. The fluctuation behaviocases the approximation scheme takes into account the noise
has been easily obtained by means of a small-noise approxinfluence in a nonperturbative way.
mation. In this paper we investigate the nonlinear relaxation of the

In this paper we analyze the dynamical behavior and thaystem in three different regions of the control parameter
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8, which describes the development of ilie species with- mechanism which prevents exponential growth of a single
out interacting with other species. population in the absence of interaction with other species.
(a) The region with6>0, where the decay occurs towards Our starting point is the following stochastic differential

the equilibrium statéequilibrium populationand where we  equation:
find a linear asymptotic behavior in time for the time integral

of the site population concentration averdgét) in the sta-

bility region (i.e., when the saturation effect of the resources dei=
prevails over the growth parameter due to the interaction

between the populationsand an exponential growth in the \yhere the parameterd, y, and & identify the interaction

instability region. between species, the saturation effects, and the growth of the

(b) The critical point5=0, where we find a long tail 5 ation:w; is the Wiener process whose incremeint,
behavior forM(t) [namely M (t)~+/t], when the nonlinear satisfies the properties

term vy is greater than the interaction strength between spe-
cies, like the behavior at the critical point in the zero dimen- (dwi(1))=0; (dwi(t)dw;(t"))=&;S(t—t")dt
sional case[4], and an interesting modified behavior ' ' ' . ! 2.2
[M(t)~ Vte']] in the instability region, which is an interme-
diate one between the long tail behavior and the exponentiand
growth.

(c) The region with§<0, where the decay occurs towards 1
the absorbing barrier, corresponding to a hostile environ- m(t):ﬁzi ¢i(t) 2.3
ment, and where the time integrisl(t) becomes a constant

in the asymptotic regime in the stability region, becausgg e sjte average. We adopt in E8.1) the Ito prescriptions

thetred i?/\/?]o st)hontanfous. ngthhgl thtﬁ specigs a{)ehe”mi' {5]. In this model the interaction among species is a symbi-
r'\1/|a(te) éan t?; u? if\ytserer:]nslzfugf 2n§nti§ gg%wtlarr]?or ?ur?c\:/tli(c))rngmic one forJ>0, i.e., the presence of other species increases
P P Hwe growth rate of each species.

The paper is organized as follows. The model is describe
in the next sectioriSec. 1), where we give the integral equa- ) _ N
tion for the time integral process and the mapping between A. Stationary analysis and stability
the linear process and the time integral of ttiepopulation. The steady-state properties of the multiplicative process
the instability transition. [6] and give for the Fokker-Planck equation associated to the

'3 lSefc.' Il we study tr:e 'fluctu.atiohns in this ecological 5pE (2 1) two different solutions. Asymptotic, steady state,
model of interacting populations, in the asymptotic regime.q 1 tione exist only ify>J. We obtain

and the effect of the noise on the tintg. The different

€
Im+ 6+ = | o — ye? |dt+ Jepidw,,  (2.1)

2

behaviors of the deterministic potential associated with the P(¢)=05(¢;) for §*<O0. (2.4
asymptotic evolution of the site population averamét)
give rise to a growing transition timé. from 6>0 to This is the case in which population extinction occurs,

6<0. This means that when the interaction population preand

vails over the resources, the presence of a hostile environ-

ment (6<<0) causes a late start of the divergence of some o) —

popula(ltion.) J P(@)=Np{>*'9 19XD(
In Sec. IV the analysis of the asymptotic regime for the

three different values of the parameteis studied by means when populations survive, with

of an approximation of the integral equation for the time

integral of the site averagd (t). The time integraM(t) is p _H p

weakly dependent on the initial state only fé=0 and tor— L (¢i),

J<wv. It is worth noting that we study the nonlinear relax-

ation in both the stability and instability regions by approxi- where  §(¢;) is the Dirac delta function,

mating directly the integral equation fdvi(t), unlike the N=(2y1€)27<r-UIT(25*/€) is the normalization con-
zero dimensional model previously studigdl], where we stant, ands* = 8y/(y—J).

approximate the stochastic process. , , The function defined by Eq2.5) shows another transition
_Besides, we note that the asymptotic behaviors obtainefegiges that fos* = 0 , when the most probable value is for

with the approximation of the integral equation Mr(t) are  anishing small population concentration. This is the well

the same as those obtained with the process approximation pf.o\vn noise-induced phase transitipi, which is charac-

[4], in the stability region. In this section our theoretical yoj,04 py the qualitative change of the probability distribu-
results are compared with numerical simulations of the origiy;, profile for 8* = /2. In fact the most probable value is

nal stochastic differential equatig®DE). Finally in Sec. V given by o, = (8" — e/2)/(y—J).

we give the conclusions. Let us remark that because of the instability-stability tran-

sition of our system the steady-state distribufigq. (2.5)] is

an effective one in the cas®e>0 andy>J (stability region,
We consider the Malthus-Verhulst stochastic model origi-but it is only a formal steady-state distribution in the insta-

nally introduced to take into account a self-regulationbility case wherel>vy and consequently<<0. This means

—2y¢;

) for >0 (2.5

(2.6

Il. THE MODEL
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that any small disturbance with respect to the state of Eq. B. Deterministic behavior and instability

(2.5 will grow exponentially in time. We consider first the system evolution in the absence of
The solution of Eq2.1) is given by noise, outside §>0 and §<0) and at the critical point
(6=0). From Eq.(2.10, neglecting the noise, we have the

IM(t)+ St+ Vew; ’ AT .
©i(0)e?MV* t+vew(h following deterministic integral equation fdvi(t):

(1) = , 2.
O X A0 @7 ) t
M(t)==( In| 1+ y¢;(0 Jdt’eJM“’“ﬁ" : 2.1
where (t) 7< y¢i(0) . (213
o Vi ot 4 2w (1 In the long time regimet(—~« for J<y andt—t, for
zi(t)= fodt M) ot em(t) (2.8 3>, wheret, is the stability-instability transition timewe
can approximate Eq2.13 as
and

yM(t)=(In(y¢;(0))) +In

t
Jodt'eJWt )+ ) (2.19

t t
M(t)= 12 f dt’goi(t’)zf dt'm(t’). (2.9
n= Jo 0 By differentiating Eq.(2.14) we easily obtain a determin-
istic evolution equation foM (t),
We note that the dynamical behavior of ik population
depends on the time integral of the process

__ 1 Y79 sinirenom [ge e’
exg JM(t)+ st + ew;(t)] and the time integral process M(t)—(y_‘])ln 1+ y & fodt er |
M (t) of the site average(t), which is, in the largen limit, (2.15
a not fluctuating quantity.
In fact, the integral equation determinimg(t) is For a distribution of the initial conditionsy;(0) well

peaked around the mean valuen(0) [i.e., with

2 <
M(t)= ni'yZ In{ 1+ y¢i(0) f;dt'eJMa'H&t’wEwi(t’) 740/ M(0)<1] we get
1 "faiw)
:;<|n[1+’}’¢i(0)zi(t)]>, (2.10 exd (In(ye;(0)))]=ex +|n(ym(0))—m =ym(0)
(2.19

where the angular brackets stand for the site average. It ignd
interesting to note that the time integral of ttik population

in the linear regimdi.e., in the early stages of evolutipis " 1 nl 1 0 ] J'td st
' t)= nf1+m - t'e’ |.

given by (t) =9 (0)(y=J) .

t (2.17

L _ o Lesry— .
¢ (0= fodt ei(t)=¢i(0)z (1) (219 By differentiating Eq.(2.17) we obtain the following dif-
ferential equation for the site averaggt):

and its knowledge completely determines the time evolution o
of the time integral of the population procesgt). In fact, m(t) =[5+ (I—y)m]m. (2.18

this process is simply related to the linear proce¢y) via

the mapping This equation can be also obtained, in the linear determin-

istic regime, from Eq.(2.1), if the time behaviors of the
. 1 species are nearly close ma(t).
d’i(t):f dt'@i(t") = =In[1+yp-()].  (2.12 _ For different values of the parametér when the satura-
0 Y tion parametery is greater than the interaction parameter
J, the deterministic potential associated with E@.18
In other words the time evolution of the system has acauses the particle to approach the equilibrium state=
simpler interpretation in terms of the time integral processs/(y—J) for >0 or the absorbing barrien=0 for §<0
¢i(t) of Eq.(2.12 and of its site averagh®! (t) [Eq. (2.10]. [see Fig. 18)], while when the interaction between the spe-
Both quantities are given in terms of the linear processies is greater than the saturation effett-(y), an instability
#F(1). It is worth noting that Egs(2.10 and (2.12 are  occurs.
actually a system of stochastic integral equations. Moreover, It means that in a finite timg,, the time integral of the
the only way to solve the stochastic integral equat®@i0 site averageM (t) [Egs.(2.195 and (2.17)] grows to infinity
involves a numerical procedure as complex as the numericaind the system becomes unstable.nmi{0) is less than
solution of the original stochastic differential equati@l). |6]//(J—y) and 6<0 we have an absorbing barrier at
The main effort of our work is to introduce suitable approxi- m=0. This transition time. depends on the parameters of
mation in various regimes in the parameter space, which akthe dynamical system and on the initial population distribu-
lows us to obtain analytical results for the transient behaviortion according to the expressions
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It is worthwhile to note that in the instability region
(J>v) because of the different shapes of the potential of Eq.
5<0 (2.18 [see Fig. 1b)], the transition time increases from
6>0 to §<0 according to

3=0 (te) s<0™>(tc) s=0>(te) s=0- (2.23
§ For 6>0 we have in the long time regime, from Eg.
56>0 (21@,
1
Meo M(I)Z;ln(zd(t)), (2.24

wherezy(t) is the deterministic limit of the process of Eq.
(2.8),

t
z4(t)= fodt’ej'\"“ o (2.29

b We easily obtain the following asymptotic behavior:

M (t)=

5 m =m,t (2.26

V(m)

with y>J (stability region. At the critical point (§=0) we
obtain from Eq.(2.17) a logarithmic growth oM (t),

1
M(t)= =9 In[1+m(0)(y—I)t]
>0

1
2W[|n(m(0)(7—J))+ln(t)]. (2.2

When §<0 we have a decay towards the absorbing bar-

rier and the time integradl (t) attains a constant value given
FIG. 1. (a) Schematic view of the potential of the deterministic by

equation of the site average(t) for different values of the param-

m

eter § in the stability region §<y). (b) The same with1> vy (in- 1 m(0)(y—1J)
stability region). MMZ()’_J) In( 1+ E ) (2.28
tczi—;{ln 14 (J(iyy))e“"w‘*’i(o)»“ for 520 while for 3>y we get(for t—t,)
m(0

(219 M (t)= |(T|)(1—e5ta). (2.29

and
In the next section we shall study fluctuations with respect
b ( 7 y))e‘“”(wi(o))) for 5=0. (220 © the deterministic evolution due to the noise.

lll. FLUCTUATIONS (6>0)
In general from Eqs(2.19 and(2.20) it is evident that the
system keeps the memory of the initial distribution of the e consider now the role of the fluctuations due to the
populations. However, for a peaked distribution of the initialngise on the population dynamics. We are able to discuss
conditions ¢;(0) [see Eq.(2.16], the system clearly loses fluctuations on the population concentration process for
memory of the initial state and the transition times become §>0, both in the stable and unstable regions. In particular,
we calculate the asymptotic fluctuations of the time average

1 6 of theith population
te==In| 1+ ———=|, 6#0 2.2 ;
"5 (J—y>m<0>) (220 .
and a0-¢] ate). (3.
1 - i % i -
t, 5=0. 2.22 We can introduce a fluctuation processgp;(t) with re

:(J— v)m(0)’ spect to the site average of the time average process
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- - - ni2
A¢|(t)_¢’|(t) <¢|(t)> (32) )\n:(Z) T n—gl (31])

As is evident from Eq(2.9), the time integral of the spa- V7
tial averageM(t), in the limit of infinitely many interacting ~ As a consequence the fluctuations of the time average
species, is the first moment of the time integral of the procesg, (t) are asymptotically determined by the statistical prop-
¢i(t), therefore we have erties of the Process/may(t),

— 1 24 () =(H2())—( b (1))2
AGi(= {1+ 790711~ (IN[L1+ 76Oz (D]} S FNSA DI A(0)

1
(3.3 2\]()/—t)z{E[(Wﬁqa&(t»_<Wma>g(t)>2]}

When the relaxation takes place towards the equilibrium

population ©¢>0), we approximate the integral equation _[e(m=2) E+O 1 (3.12
(2.10, using the following asymptotic equation: “my )t t2)’ :
t M58t 4 L2 - t I st which shows that we have smaller fluctuations as the system
jodt'e ) VEWi(t) ~ g Wmax fodt'e (9 approaches the equilibrium population distribution. We can
also find the effect of the noise on the tintg)( in which the
= e/ Wmax f(t), (3.4  stability-instability transition occurs. Fo6>0, using the
same approximated integral equati@@4), and after differ-
wWhereway (t) = sup<w<w;i(t’) [5], and entiating and neglecting the low order te@{1/y't), from
Eq. (3.7), for large time we get
t , , .
f(t)= J dt/ e+ o, (3.5 yM(t)zexp[<ln(wi<0))>]exqu—y>M<t>+at+JZ(Nﬁ]sa
0 31

This approximatior[Eq. (3.4] is based on the consider- Where(Wmay (t))= vitN, andN=\2/z. This is a differential
ation that for8J=0, M(t) will grow in time, thus the inte- equation equivalent to E@3.7), and it is useful to derive the
gral appearing in Eq(3.4) is dominated by the large time timet.. Solving Eq.(3.13 we obtain
behavior of the integrand. As a consequence the time integral

((7_‘])> (IN(rgi(0))
1+ ey
Y

In

M (t) is proportional to the proces&naﬁ(t). In fact we have M (t)=
(y=J)

1 =
M(D)=_(In[1+ y,(0)e ™ f(1)]), (39 y jOtht,eat'szJt—'

. (3.19

where f(t) is independent of the population index. In the

i . The system becomes unstable earlier owing to the noise,
long time regime (—~ for J<vy andt—t. for J>vy) we

as it is easily seen comparing E§.14) with (2.15. In fact,

obtain from Eq. (3.14) we obtain the instability time,,
M(t) l[<In( (0))) + Ve(Wpmax (1)) +In(F(1))] ! € Inl 1 oy —(In(y¢;(0))) e
=— - € , . = — i
v YPi max te 5 2775+n + =) e
(3.7) 5
€
So we can approximate E@.3) as “Noms
— 1 1 Sy B | 12
A¢i(t)2 ﬁ{\/;[wma%(t)_<wma>ﬁ(t)>]}' (3.8 = (_S( In| 1+ m)@ <|n(7‘p'(0))>H
The distribution of the process () is known[5], and 3 [ e \? (3.15
we have 276) ’
D=1k _ where the following approximation, valid for small noise in-
Wnax(t) W, 39 tensity, has been used:
where eacH; is a random variable distributed according a 2 Sy — nCye () | ay?
semi-Gaussiamlistribution eVe=|1+ G- e~ (IN(¢i(0) | ¥, (3.16
2(27) Yexp(—12/2) for 1;=0, with y.=y,+ V6t andy,= Vel (275).
P(l)= (3.10 A small noise moves the system towards the instability,
0 for I;<0 because the noise forces the system to sample more of the

available range in the parameter space than otherwise occurs
with moments\ , given by without noise.
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From Eq.(3.195 we can also see that the effect of differ-

ent species distributions of the initial conditions on the tran-
sition time t; is quite analogous to the deterministic case

previously discussed in Sec. Il. Namely for values¢pfO)
equally distributed around a given mean valug€0) it is
easy to show that the timg increases because the factor
e~ (i) s greater thare™ (M%) when all the species

have the same initial condition equal to the mean value
m(0). This means that the system has not enough time to

lose memory of the initial state, when it is in the instability
region. However, for a peaked distribution of the initial con-
ditions ¢;(0) with m(0)=1 [i.e., with oii(o)/m(0)< 1], the
system clearly loses memory of the initial stdsee Eq.
(2.16] and the transition time becomes

172 \/72
- 2—71_5] (3.17

IV. ASYMPTOTIC REGIME

o

te In| 1+

5
J=v)

We consider now the asymptotic behavior of the time

integral of the site averag®! (t) for different values of the
growth parametes in both stability and instability regions.

A. Relaxation towards the equilibrium state

For 6>0 using the approximatio¢8.4) and Eq.(3.13 we
get the asymptotic solution of E3.6),

M(t)= (y_J)In[lJr F(t)], 4.1
where
t v T
F(t)=F(<pi(0))J dt’ e’ + et 4.2
0
and
r(¢i(o)):<(Y;J))eUn(Wi(O)))_ 4.3

Explicit expression foM (t) in the asymptotic regime is
given in terms of complex error functions,

= 2 o - 42

B
- Ji—;yoe‘yg[elrf(i(MJr yo))—erf(iyo)]“

4.9

1

St+(2elm) t_
e 1
(y=J)

with y,= e/ (275). In terms of series expansions we obtain

e e M

e Yol (¢;(0))

M(t)

(y=3J) o
2yoy 2y;
- 2k+1) ‘WZK(l‘m) ] 49

with y=/8t+y,.

OF AN ECOSYSTEM IN A ... 711

Case |. Stability region &y

In this region the asymptotic behavior is characterized by
a divergence of the time integri#l(t) when the time goes to
infinity. We can approximate Ed4.1) as follows:

(7—J))

y—J

M(t)= (IN(y¢i(0))) +In

ftdt/e&' +\(25)/'rr\/t—’) }
0

and using the mean value theorem to estimate the integral in
Eq. (4.6) we have

(55l
M(t)= 3t

+In

(4.9

V(2e) it | In@®)

(y—J) (y—3J)

=)

B 1 2€t
= m St+ \/7+In(t,8(t))+|n(7—\]) ,
4.7
where
tdt/eﬁt'-%—\fmx/,t_'
tB(t) = 4.8

e5t+ V(2e) [\t

is a function which diverges less than a linear function of
time, and where we use@lii(o)<1 and Eq.(2.16 to calcu-

late (In(y¢;(0))). We see that, as expected, the system loses
memory of the initial state. We obtain the same asymptotic
behavior apart from the additive constant
@/(y—3J)In((y—J)/vy) if we approximate directly the pro-
cessz(t) of Eq. (2.8 by

Z(t)za(t)eJM(t)+§tV“?WmaX(t), (49)
where «a(t) is a function which, liketB(t), diverges less
than a linear function of timé4]. It is worthwhile to note

that in the limit of the vanishing interaction strengthwe
recover the asymptotic constant value of the first moment of
the multiplicative stochastic process, studied in Refl,
when the relaxation takes place towards the equilibrium
state. Moreover, here we obtain the square root long time
behavior as a preasymptotic term.

The main role of the fluctuations on the time average of
the site averaged population process is related to the asymp-
totic decay towards the steady state with a square root long
time tail. In the same asymptotic region the dispersion of the
same quantity can be neglected because, according to Eq.
(3.12, it vanishes with an inverse time law.

Analytical results obtained in the present approximation
scheme are compared with numerical solutions of the Lange-
vin equation(2.1), usingn=1000 species, in Figs. 2—7. In
Fig. 2 we see the time behavior of the first moment of the
site averagam(t) in the transient, obtained by time deriva-
tion from Eq.(4.7), for two different values of the nonlinear
parametery. A growth of vy means an increasing saturation
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FIG. 2. Transient behavior of the first moment of the site aver-

agem(t) for two values of the parameter in the stability region
(J<y): (@ y=1.2;(b) y=3. The solid lines are the results of the

theory. The dotted lines are the results of numerical integration of

the Langevin equatiof2.1). As in Figs. 3, 4, and 5, data are ob-
tained starting with the following parameter settings:
6=0.095>0, J=1, €=0.01,m(0)=1, aii(o)=0.01. The number
of the species is1=1000.

effect and the system settles down beforehand in the statio

ary regime. In Fig. 3 we report the transient behavior of the

first moment of the time average of(t). We note that our
approximation scheme works well for almost the full tran-
sient regime for high values of. Figure 4 shows the effect
of different initial distributions on the transient behavior of
the site averagm(t) and its time averagkl (t)/t. The effect

of a large variance of the initial distribution of the species
(aii(o)zl) is to reduce only in the short time regime the

values ofm(t) because of the tergin(y¢;(0))), while the
time averageM (t)/t keeps the memory of the initial condi-

tions for all the transient. This is due to the memory effect of

the integral operatdrsee Eq(2.9)].

Case Il. Instability region by

In this region of parameters we note th&tt), defined in
Eq. (4.2, in a finite timet. becomes equal te- 1. Therefore
for times smaller than,, F(t) is a small quantity. Particu-
larly we have
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FIG. 3. Transient behavior of the first moment of the time av-
erage ofm(t) in the stability region ¢=3). The solid line is the
result of the theory.
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FIG. 4. Plots ofm(t) (a) andM(t)/t (b) as a function of time for
two values of the variance of the Gaussian initial distribution in the
stability region ¢y=3). Namely, (a) aii(0)=0.01 (squareys (b)

0% =1 (dots.
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M(t)t

0 2 4 6 8
t

FIG. 5. Transient behavior of the first moment of the time av-

erage ofm(t) for y=0.9 (instability regionJ> vy). The solid line is
the result of the theory.
JF(t)|<1 for t=<t,.

(4.10

Because of the time cutoff, we can approximate the

integral in Eq.(4.2) obtaining

M(t)< , (4.1

1 t
_ 1 o0t
(y_‘])ln{l A(tc)fodt e

where

J_
A(tc)=(7y> exif (In(ye;(0))) + eNvt]

2
J—v 04.(0) 2€
:(T> ex"['”(ym(o))_ 2mo) " N7 Vte

(4.12
Because of Eq(4.10, from Eq.(4.11) we have
A(tc)eﬁt)
m 1. (4.13)
Now we obtain
Mt~|n(5)+ ! |[51+A(t°) o In| 1
V=G 59" 5 "=
A(tg) e
T\ SHAMY) | (4.14
and for the leading ternffor t<t)
Alte)
( A(to) '”(1 5 )
M(t)= el — .
(J=y)[6+A(te)] =)
(4.15

713

retical result compared with simulation of Ed2.1) (dotted
line) for this region of parameters is reported in Fig. 5.

B. Relaxation at the critical point

For 6=0, i.e., with a zero growth of the population, we
can use again the approximati¢®.4) obtaining as asymp-
totic solution forM (t)

1
M(t)=——=1In

(y—=J) 1+

L‘J) e{ln(r¢i(0))) ftdt’ ev“?NV/t_’ .
Y 0
(4.16

For the stability region {<vy), neglecting low order
terms and using Eq2.16), we get

1 2¢€ Jt
E) (\/;) ﬁ“”( (k)/w)
+(In(y¢i(0))) +In Z(yy_J)H

ol Vool

e)lm

o, 2(y—J
+In(y¢(0))~ 2%((8))+In( (77 )H

M(t)=

(4.17

which is a result consistent with the zero dimensional case,
previously studied4]. Besides we note that the dominant
term in Eq.(4.17 can be obtained using the approximation
(4.9 [4].

While for the instability region J>vy) we have

M (t)=| ——|In| 1+ M)eanwi(m»
y—J ye
2e [ZeTm i
x| 1+ ?\/f—l e Tl 418

and expanding the logarithm we obtain as a dominant behav-

ior (for t<t.)
26 - 1| e
ﬂ' L

melinyei(0))
MO=||——
(4.19

which is an interesting behavior for the time averaged pro-
cessM(t)/t, in fact we have a long time tail behavior
(t~Y2 dependengemodified by e'f. Around the stability-
instability transition the system goes from a purely long time
tail behavior to a new long time regime modified &Y. In

Fig. 6 we report the transient behaviors Mf(t)/t at the
critical point.

1+

C. Relaxation towards the absorbing barrier

The relaxation now is characterized by a constant asymp-

That is an exponential growth for the site population av-totic value for the time integraM(t) as the system ap-

erageM(t). The plot of M(t)/t (the solid line is the theo-

proaches the absorbing barrier, i.&< y. In order to obtain
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. ‘ ‘ ‘ , studied[4]. We can write for the procesg(t), using the
translation invariance properties of the Wiener process, the
a following multiplicative SDE:

_ €\ -
dz(t)=|| 6+ 5|z+1|dt+ JVezdw,.  (4.23

Therefore a mapping is introduced,

M(t)t

vi(t)=In(z (1)), (4.24

obtaining an additive noise procesét). In fact, from Eq.
(4.23 and using Ito’s rules of calculus we have the following
SDE:

dv;=(5+e viV)dt+ Jedw; . (4.25

We separate therefore the processnto a deterministic

partvy and a small fluctuating pad; obeying an additive
b SDE,
5 F
dv;= —e vdVg,dt+ edw; , (4.26)
5| where
g 1
3r _ 1 o
vy(t) |n( 5 1)) (4.27)
“f and
TY=0. 02 (D)= — —(1— 2%
‘o 10 12 (vi)=0, ‘Tvi(t) 25(1 e“”). (4.28

With this approximation Eq4.21) becomes
FIG. 6. Plot of the first moment of the site averagét) as a

function of time at the critical points=0. (a) Stability region 1 Mt _
(y=3); (b) instability region ¢/=0.9). The other parameters are M(t)=—(In[1+ y¢;(0)e™MVz4(t)(1+7})])
the same as Fig. 2. The solid lines are the results of the theory. Y

1 ~
the preasymptotic behavior in this regime, we approximate 2;(In[7¢i(0)eJM(t?d(t)(l+Ui)])v (4.29
Eqg. (2.10, taking into account thai (t) is asymptotically

constant. Therefore the approximation wherez4(t) is the deterministic part of the proceggt).

¢ ‘ Therefore because of the zero mean of the procgssand
f dt'eJM<t’>+5t’+v?Wa<t’>:eJM(t)f dt’ edt’ +Vewi(t") neglecting all moments of order higher thar(stnall noise
0 0 expansioh we obtain forM (t)
(4.20
1 - _
is meaningful. Substituting E@4.20 in Eq. (2.10 we obtain M(t):(m) [{In(y¢i(0)))+(In(L+v;)) +In(z4(1))]
1 1 1 ot
MO=-23 In[1+ ye(0)e™Z (D], (421 =|==5]| (In(re:(0n) +In| 5(e”~1)
I
— €
where the process(t) is given by + Is(l—em) . (4.30
Z(t)= ftdt/eé‘t’+\c‘?wi(t’). (4.22 .From this equation_ we 'easily obtain the constant asymp-
0 totic valueM., of the time integraM (t),

Because of the expected small fluctuations for the time - 1 ) (In( <(O))>+In(i n €
integral M(t) we can use here the small noise expansion * -J Yo |6]) 438
approximation used for a zero dimensional model recently (4.3)
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that the approximation given by E(B.4) works not as well

as at the initial times. This is because to obtain @32 we
perform an integration between the initial tire 0 and the
time t of the asymptotic equatio(8.13), thus extrapolating

the asymptotic solution back to the initial time. In other
words, we force the asymptotic behavior to cross the initial
condition and as a consequence we obtain a worse behavior
as the time approaches the transition valtjein this param-

eter region.

V. CONCLUSIONS

We have studied a stochastic model of interacting popu-
lations in the limit of a large number of interacting species.
0 We have introduced an approximation for the time integral
of the average species concentration which allows us to ob-
tain analytical results for the transient behavior and the as-
ymptotic statistical properties of the time average of ittie
population process.

An interesting feature concerning the population dynam-
ics is that the statistical properties of the time average of
the ith population process are determined asymptotically
from the statistical properties of the procesg,.,(t)
=SURy<t<W(t") [5], wherew is the Wiener process.

Our approximation scheme works for all cases studied
[see Figs. 2—@)]. Results are less accurate in the instability
region for the transient behavior wheix 0 [Fig. 7(b)], as
compared with all other cases. This is because our approxi-
mation, which is accurate in the asymptotic regine-€.),
needs also an extrapolation back to the initial time. This
extrapolation is clearly less accurate when Mét) has a
large slope variation in a finite time. A possible improvement
should be achieved with a matching procedure between the

FIG. 7. Relaxaton towards the absorbing barrier 8ymptotic and a perturbative solution of Hg.1) at an
(5=—0.01<0): (a) stability region (y=3); (b) instability region  intermediate time.

(y=0.9). The other parameters are the same as Fig. 2. The solid On the other hand, in all the other different regimes of
lines are the results of the theory. nonlinear relaxation our theoretical results reproduce not
only the asymptotic behavior but almost all the transient evo-

The plot ofM(t)/t is given in Fig. Ta), where we see that lution of the system. At the critical point we see that around
our approximation schemgEgs. (4.20 and (4.29] works  the stability-instability transition, the system goes from a
well. purely long time tail behavior for the time averaged process

Finally we consider the instability region y), where ~ M(t)/t to a new long time regime modified f&y'. For small
in the long time regim¢t—t. andM(t)—] we can apply noise intensity the transition time increases fr@m0 to
the asymptotic Eq(3.4), obtaining 6<0 according to the same relation found for the determin-
istic evolution of the system

1 I Y2 o= (Tt yo)? i
M(t)= pr IN[J(1-TT¢i(0)]{e Yo—e ° (t)s<0>(te) se0>(te) s=o  With €£0, (5.1

as we can see from Figs. 5(%, and 1b).
+my Lerf(V]alt—yo) +erf(yo) D], We investigated also the effect of a large variance of the
(432 Gaussian initial distribution of the populationgmamely
aii(o)zl) on the transient behavior of the site average

m(t) and of the time averag®l(t)/t. We found that, apart
from a short time regime whenm(t) is lower than the be-
(J—y)es2lel havior obtained with the numerical solution of Eg.1), the
| 4| relaxation converges quickly to the right behavior. In the
short time regimen(t) keeps the memory of the initial dis-
In Fig. 7(b) the asymptotic behaviofsolid line) of the tribution because of the tergin(y¢;(0))). In fact the spe-
time average ofn(t) given by Eq.(4.32 is compared with cies with ¢;(0)<m(0)=1 makes({In(y¢;(0))) and there-
the numerical simulatioridotted ling of Eq. (2.1). We see fore m(t)lower. On the other hand, the behavior of the

wherey,= e/ (2| 5]), erf is the error function, and

T(¢;(0)= einGei0)) (4,33
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processM(t)/t is lowered for all the transient. The process ACKNOWLEDGMENTS
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