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Nonequilibrium corrections in the pressure tensor due to an energy flux
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The formP=a(u,v)U+ b(u,v)jj for the pressure tensor for a system submitted to an energyjf(mk
being the identity matrixu the specific energy, and the specific volumewidely used for anisotropic
radiation and proposed to be more general by Dmmez and JoliPhys. Rev. B51, 158 (1995] has been
recently questioned by R. E. NettletpRhys. Rev. E53, 1241 (1996]. We provide a physical basis, in a
completely different way, for this expression for anisotropic radiation and ultrarelativistic gases and we criti-
cize some previous physical interpretations. We recall the necessity of an understanding of this kind of
expression in a thermodynamic framewg81063-651X96)00312-1
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Radiation hydrodynamids3] is a subject of great interest P=a(u,J%)U+b(u,J?)3J 3)
in astrophysics, cosmology, and plasma physics. However,
the numerical methods proposed to solve the transfer equatas been widely employed in radiative transfer. In order to
tion for the specific radiation intensity are in many cases obtain such a dependence, which apparently departs from
computationally too expensive. Therefore one usually contocal equilibrium, some authorgl,6,8] have considered a
siders the equations for the momentsZafp to a given order  flux-dependent generalized entropy and Gibbs relation. In
m [4,5]. Due to the dependence of the equation for the moaddition, (3) also appears in the study of an ultrarelativistic
mentm on the momentn+1 one needs to introduce a clo- ideal gas under an energy flux by means of information
sure relation. If only the energy density(m=0) and the theory[1].
energy density flud (m=1) are considered, one must in-  However, in spite of what is claimed by the authors in
troduce a closure relation for the pressure teis¢m=2).  [1.5.6, (2) can be obtained for the two simple cases of ra-
The usual procedure is to introduce the so-called Eddingtofliation and an ultrarelativistic gas without abandoning the

factor y defined by local-equilibrium hypothesis. The equations of state and en-
tropies appearing ifi1,5,6) may be recovered as well.
1-x 3x—1.. First of all, let us notice that these systems are submitted
P=ul——U+——nn|, (1) to anenergy fluxand not to aheat flux because the condi-

tion of null global velocity has not been imposed. Therefore
. : . ez z . it is not difficult to show that the considered situation corre-
whereU is the |d_ent|ty rpatrixn. =t andf the no_rmahz_ed sponds to equilibriunti.e., a purely advective energy flyx
energy flux defined as:=J/cu. In the limit of isotropic  n contradiction to what is assumed|ih,5,6]. In fact, due to
radiation(Eddington limib, x(f=0)=1/3, while in the free  the symmetry of the energy momentum tensor of a relativis-

streaming casg(f=1)=1. A number of different expres- . ; wy_ Tru 7 verifi
sions for the Eddington factor have been introduced in thetIC system(i.e., T**=T"), the energy fl>J verifies

literature[4] by interpolating between these limiting cases. j=c2p. (4
Some of them have been obtained from maximum entropy

principles. For instance, ifb,6] radiation under an energy This property can also be obtained directly for a system of
flux is studied by exploiting the entropy inequality, i.e., by ideal relativistic particles, with energy;=m?c*+ p?c?

maximizing a generalized flux-dependent entropy under a s locitve: = c b / D2+ m2c2. The total flux i
of constraints, and an Eddington factor given by Eind velocityo, = cpi/ Pimrc. The fotat energy fiuxis
=2 evi=: 2 |i, ()

and introducing the expressions fer and Ji, it can be

is obtained. The same result is recovered[1h from an readily verified that

information theoretical formalism, whereas different ver- . . .

sions of this formalism have been used[if8] to obtain ji=€vi=c?p;. (6)

other variable Eddington factors. .

Thus we observe that a flux-dependent pressure tensdnerefore Eq(4) holds for this system. ,

with the form Following (4), the equations of state for a system submit-
ted to an energy flud (without any additional restriction on
the particle flow must be the same as the equilibrium equa-
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equilibrium system at rest. Therefore the systems considerdd,5,6] different methods were used to arrive at the equations
in [1,5,6] are nothing but moving equilibrium systems. The of state of nonequilibrium radiation submitted to an energy
distribution functions of both cases can be obtained by thdlux, the authors never imposed the constraint of no global
use of Lorentz transformations as follows. The rest framamotion of the system. Therefore, when they made use of the

(Kp) equilibrium distribution function can be written as

g
f= et Boco4 g @)
where g is the degeneracygo=— Boug and a=—1 for
bosonsa=1 for fermions,a=0 for particles obeying Bolt-
zmann's statistics, anda=—1,u0=0 for photons and

condition of maximum entropy, they found an equilibrium
moving system because equilibrium situations have the
maximum entropy and the moving system verifies the im-
posed constraint of nonzero energy flux.

Let us note another interesting feature(df) related to
the physical meaning of temperature in this moving system.
The distribution functior{11) can also be viewed as a Planck
distribution with an effectiveB¢; given by

phonons. We consider the cases of radiation and a classical

ideal ultrarelativistic gas, sey=pyCc. An observer at rest in

a frameK moving with momentum— P and velocity —V
with respect to th&, frame measures an energy pc for a

particle with momentunp (and veIocityE) that verifies

€0="7(e=V-p). 8)
Substitution of(8) in (7) gives

B g
f_ea+ﬁe+F~§c2+a’ ©

where we have definel: = y8, and = — BV/c?. Note that

(B,rc) is the so-called coldness 4-vector. If we now (8g
we obtain

g

f:f-
ea+Be+|-j+a

(10

Now, we can recover the distribution function usedihfor
radiation by simply settingg=—1, =0, e=pc, |=ec,
g=2:

2
f=———, (11
eBpcti-cpe_q

Beﬁ:=ﬂ+lccos9=,8<1—%cos€>. (13

This expression is used, for instance, in cosmology in the
study of the cosmic microwave background radiation
(CMBR) in order to take into account the relative movement
between the Earth and the reference frame defined by the
CMBR. By averaging over the angular dependence with the
distribution function(11), it is obtained that

<,3eff>=,3(1— ;—22) b=t

so it is possible to define an effective mean temperature
given by

: (14

:—2:

Y Y

1

Teﬁ::@:'yTO!

(15

whereT,: =1/kgB,. ThereforeT o is found to be simply the
Lorentz transformation of 3, according to Ott’s transforma-
tion law [9]. This gives a simple interpretation of Ott's tem-
perature, whose physical bases were controverted during the
1960s[10].

In [11], it has been argued that in some situations it is not
possible to apply the methods of nonequilibrium thermody-
namics to radiation. This is the case, for example, for two
planar surfaces fixed at different temperatuiigsand T,

whereas for the classical ultrarelativistic gas we obtain thevhich exchange energy through a radiation field. Photons

distribution function proposed ifil] settinga=0. Once this

traveling in one direction are characterized By, and the

distribution function is fully justified, the whole procedure in pnes traveling in the opposite direction By, so it is not

[1] holds. Thus the results obtained|[ih,5,6] are recovered

possible to assign a single temperature to radiation. Based on

and, in particular, defining the pressure tensor as the meafese arguments, recently Nettletp®] has criticized the

value of the operator
N

fvaﬁ::v—lg1 Pl (12)

thermodynamical methods used[#,6] in their analysis of
anisotropic radiation. However, we have proved that the sys-
tem considered i5,6] is, in fact, an equilibrium moving
system and therefore the criticism does not hold in this case.
Let us remark that in the system considered by E$d4k

and using(1), (2) is obtained. However, the physical inter- the distribution function is characterized by a double peak,
pretation given by this derivation is completely different to whose relative heights depend on direction, while ours has a

that given in[1,5,6).

single peak whose position varies with direction. Thus it is

Clearly, the distribution of particles is anisotropic in the possible to define an angle-dependent effective temperature.

frameK due to the additional vectorial constraitiie global

momentumls). The distribution function(11) allows the
study of anisotropic equilibrium radiatiofibeing the anisot-

In addition, in[2] the validity of expressions lik€3) for
the pressure tensor has been questioned, both for gases and
for radiation. We have seen that in the cases of equilibrium

ropy due to the relative motiobut not the study of nonequi- Moving radiation or an ultrarelativistic gas, the pressure ten-
librium situations. We propose the following heuristic argu-SOr adopts an anisotropic form due to the presence of an
ment to understand the physical situation. Although inadditional vectorial constrairi.e., J). We think that these
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simple problems can serve as a guide to more complicateand if pressure and temperature are defined, as usual, by the
nonequilibrium situations. Therefore it seems a plausiblederivatives of the entropy function, one can easily obtain

possibility that for a nonequilibrium system submitted to anflux-dependent equations of state:
energy flux and zero mass flow, the pressure tensor also de-

pends on the energy flux, as in equilibrium. If that is the 1 1 da. .

case, the dependence must have the forniljnbecause, 5:$+% -J, 17
from a purely algebraic point of view, the most general ten-

sor that may be built up in the presence of a vedtanust T p da. .

have the forma(J%)U+b(J?)JJ and according to the defi- 2T Y (18

nition for the pressure tensoPt=u. However, this question
remains open, and such a form for the pressure tensor is n
free of difficulties, as pointed out if2]. Taking into account
these criticisms, and the fact that expressions of the {@&m
are widely used in radiation hydrodynamics, the convenienc
of finding a consistent thermodynamic scenario for these sys-
tems arises. We should also note that some variable Edding-
ton factorsy have been proposdd] using maximum en-
tropy principles without a careful interpretation of the ) ) )
generalized flux-dependent entropies that naturally appear yherey is determined by the requirement tha+ru.

the formalism. )
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