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The formP5a(u,v)U1b(u,v)JWJW for the pressure tensor for a system submitted to an energy fluxJW ~U
being the identity matrix,u the specific energy, andv the specific volume! widely used for anisotropic
radiation and proposed to be more general by Domı´nguez and Jou@Phys. Rev. E51, 158 ~1995!# has been
recently questioned by R. E. Nettleton@Phys. Rev. E53, 1241 ~1996!#. We provide a physical basis, in a
completely different way, for this expression for anisotropic radiation and ultrarelativistic gases and we criti-
cize some previous physical interpretations. We recall the necessity of an understanding of this kind of
expression in a thermodynamic framework.@S1063-651X~96!00312-1#

PACS number~s!: 05.70.Ln, 05.20.Gg, 44.10.1i

Radiation hydrodynamics@3# is a subject of great interest
in astrophysics, cosmology, and plasma physics. However,
the numerical methods proposed to solve the transfer equa-
tion for the specific radiation intensityI are in many cases
computationally too expensive. Therefore one usually con-
siders the equations for the moments ofI up to a given order
m @4,5#. Due to the dependence of the equation for the mo-
mentm on the momentm11 one needs to introduce a clo-
sure relation. If only the energy densityu (m50) and the
energy density fluxJW (m51) are considered, one must in-
troduce a closure relation for the pressure tensorP (m52).
The usual procedure is to introduce the so-called Eddington
factorx defined by
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whereU is the identity matrix,nW :5 fW / f and fW the normalized
energy flux defined asfW :5JW /cu. In the limit of isotropic
radiation~Eddington limit!, x( f50)51/3, while in the free
streaming casex( f51)51. A number of different expres-
sions for the Eddington factor have been introduced in the
literature @4# by interpolating between these limiting cases.
Some of them have been obtained from maximum entropy
principles. For instance, in@5,6# radiation under an energy
flux is studied by exploiting the entropy inequality, i.e., by
maximizing a generalized flux-dependent entropy under a set
of constraints, and an Eddington factor given by
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is obtained. The same result is recovered in@1# from an
information theoretical formalism, whereas different ver-
sions of this formalism have been used in@7,8# to obtain
other variable Eddington factors.

Thus we observe that a flux-dependent pressure tensor
with the form

P5a~u,J2!U1b~u,J2!JWJW ~3!

has been widely employed in radiative transfer. In order to
obtain such a dependence, which apparently departs from
local equilibrium, some authors@1,6,8# have considered a
flux-dependent generalized entropy and Gibbs relation. In
addition, ~3! also appears in the study of an ultrarelativistic
ideal gas under an energy flux by means of information
theory @1#.

However, in spite of what is claimed by the authors in
@1,5,6#, ~2! can be obtained for the two simple cases of ra-
diation and an ultrarelativistic gas without abandoning the
local-equilibrium hypothesis. The equations of state and en-
tropies appearing in@1,5,6# may be recovered as well.

First of all, let us notice that these systems are submitted
to anenergy flux, and not to aheat flux, because the condi-
tion of null global velocity has not been imposed. Therefore
it is not difficult to show that the considered situation corre-
sponds to equilibrium~i.e., a purely advective energy flux!,
in contradiction to what is assumed in@1,5,6#. In fact, due to
the symmetry of the energy momentum tensor of a relativis-
tic system~i.e., Tmn5Tnm), the energy fluxJW verifies

JW5c2PW . ~4!

This property can also be obtained directly for a system of
ideal relativistic particles, with energye i5Am2c41pi

2c2

and velocityvW i5cpW i /Api21m2c2. The total energy flux is

JW5( e ivW i5:( jW i , ~5!

and introducing the expressions fore i and vW i , it can be
readily verified that

jW i5e ivW i5c2pW i . ~6!

Therefore Eq.~4! holds for this system.
Following ~4!, the equations of state for a system submit-

ted to an energy fluxJW ~without any additional restriction on
the particle flow! must be the same as the equilibrium equa-
tions of state of a moving system with momentumPW , which
can be obtained by simply performing a Lorentz boost to an
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equilibrium system at rest. Therefore the systems considered
in @1,5,6# are nothing but moving equilibrium systems. The
distribution functions of both cases can be obtained by the
use of Lorentz transformations as follows. The rest frame
(K0) equilibrium distribution function can be written as

f5
g

ea01b0e01a
, ~7!

where g is the degeneracy,a052b0m0 and a521 for
bosons,a51 for fermions,a50 for particles obeying Bolt-
zmann’s statistics, anda521,m050 for photons and
phonons. We consider the cases of radiation and a classical
ideal ultrarelativistic gas, soe05p0c. An observer at rest in
a frameK moving with momentum2PW and velocity2VW
with respect to theK0 frame measures an energye5pc for a
particle with momentump ~and velocitycW ) that verifies

e05g~e2VW •pW !. ~8!

Substitution of~8! in ~7! gives

f5
g

ea1be1 IW•pWc21a
, ~9!

where we have definedb:5gb0 andIW:52bVW /c2. Note that
(b,IWc) is the so-called coldness 4-vector. If we now use~6!
we obtain

f5
g

ea1be1 IW• jW1a
. ~10!

Now, we can recover the distribution function used in@1# for
radiation by simply settinga521, a50, e5pc, jW5ecW ,
g52:

f5
2

ebpc1 IW•cWpc21
, ~11!

whereas for the classical ultrarelativistic gas we obtain the
distribution function proposed in@1# settinga50. Once this
distribution function is fully justified, the whole procedure in
@1# holds. Thus the results obtained in@1,5,6# are recovered
and, in particular, defining the pressure tensor as the mean
value of the operator

P̂ab :5V21(
i51

N

pi
av i

b , ~12!

and using~1!, ~2! is obtained. However, the physical inter-
pretation given by this derivation is completely different to
that given in@1,5,6#.

Clearly, the distribution of particles is anisotropic in the
frameK due to the additional vectorial constraint~the global
momentumPW ). The distribution function~11! allows the
study of anisotropic equilibrium radiation~being the anisot-
ropy due to the relative motion! but not the study of nonequi-
librium situations. We propose the following heuristic argu-
ment to understand the physical situation. Although in

@1,5,6# different methods were used to arrive at the equations
of state of nonequilibrium radiation submitted to an energy
flux, the authors never imposed the constraint of no global
motion of the system. Therefore, when they made use of the
condition of maximum entropy, they found an equilibrium
moving system because equilibrium situations have the
maximum entropy and the moving system verifies the im-
posed constraint of nonzero energy flux.

Let us note another interesting feature of~11! related to
the physical meaning of temperature in this moving system.
The distribution function~11! can also be viewed as a Planck
distribution with an effectivebeff given by

beff :5b1Iccosu5bS 12
V

c
cosu D . ~13!

This expression is used, for instance, in cosmology in the
study of the cosmic microwave background radiation
~CMBR! in order to take into account the relative movement
between the Earth and the reference frame defined by the
CMBR. By averaging over the angular dependence with the
distribution function~11!, it is obtained that

^beff&5bS 12
I 2

b2D5
b

g2 5
b0

g
, ~14!

so it is possible to define an effective mean temperature
given by

Teff :5
1

kBbeff
5gT0 , ~15!

whereT0 :51/kBb0. ThereforeTeff is found to be simply the
Lorentz transformation ofT0, according to Ott’s transforma-
tion law @9#. This gives a simple interpretation of Ott’s tem-
perature, whose physical bases were controverted during the
1960s@10#.

In @11#, it has been argued that in some situations it is not
possible to apply the methods of nonequilibrium thermody-
namics to radiation. This is the case, for example, for two
planar surfaces fixed at different temperaturesT1 and T2
which exchange energy through a radiation field. Photons
traveling in one direction are characterized byT1, and the
ones traveling in the opposite direction byT2, so it is not
possible to assign a single temperature to radiation. Based on
these arguments, recently Nettleton@2# has criticized the
thermodynamical methods used in@5,6# in their analysis of
anisotropic radiation. However, we have proved that the sys-
tem considered in@5,6# is, in fact, an equilibrium moving
system and therefore the criticism does not hold in this case.
Let us remark that in the system considered by Essex@11#
the distribution function is characterized by a double peak,
whose relative heights depend on direction, while ours has a
single peak whose position varies with direction. Thus it is
possible to define an angle-dependent effective temperature.

In addition, in@2# the validity of expressions like~3! for
the pressure tensor has been questioned, both for gases and
for radiation. We have seen that in the cases of equilibrium
moving radiation or an ultrarelativistic gas, the pressure ten-
sor adopts an anisotropic form due to the presence of an
additional vectorial constraint~i.e., JW ). We think that these

6934 54BRIEF REPORTS



simple problems can serve as a guide to more complicated
nonequilibrium situations. Therefore it seems a plausible
possibility that for a nonequilibrium system submitted to an
energy flux and zero mass flow, the pressure tensor also de-
pends on the energy flux, as in equilibrium. If that is the
case, the dependence must have the form in~1! because,
from a purely algebraic point of view, the most general ten-
sor that may be built up in the presence of a vectorJW must
have the forma(J2)U1b(J2)JWJW and according to the defi-
nition for the pressure tensor trP5u. However, this question
remains open, and such a form for the pressure tensor is not
free of difficulties, as pointed out in@2#. Taking into account
these criticisms, and the fact that expressions of the form~3!
are widely used in radiation hydrodynamics, the convenience
of finding a consistent thermodynamic scenario for these sys-
tems arises. We should also note that some variable Edding-
ton factorsx have been proposed@7# using maximum en-
tropy principles without a careful interpretation of the
generalized flux-dependent entropies that naturally appear in
the formalism.

A plausible framework in which to understand these non-
equilibrium flux-dependent entropies appearing in radiation
transfer may be extended irreversible thermodynamics~EIT!
@12#. According to EIT, both temperature and thermody-
namic pressure should be modified in nonequilibrium situa-
tions, if a generalized flux-dependent entropy function is
considered. Up to second order in the fluxes, one has

s~u,v,JW !5seq~u,v !1a~u,v !JW•JW ~16!

and if pressure and temperature are defined, as usual, by the
derivatives of the entropy function, one can easily obtain
flux-dependent equations of state:

1

u
5
1

T
1

]a

]u
JW•JW , ~17!

p

u
5
p

T
1

]a

]v
JW•JW , ~18!

whereT is the kinetic or local-equilibrium temperature and
p the local-equilibrium pressure andu andp their general-
ized flux-dependent counterparts. In addition, the resulting
pressure tensor was supposed in@1# to adopt the form

P5pU1cJWJW , ~19!

wherec is determined by the requirement that trP5u.
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