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We derived a molecular dynamics algorithm capable of simulating heat flow in fluids beyond the linear
regime. Unlike the synthetic Evans method, our algorithm establishes real temperature differences between two
regions of the model system by pumping heat continuously into the high-temperature region and taking it away
from the low-temperature region. Since there is no solid phase present, the generated density variation is small.
The heat flow can be calculated from the energy input and output of the thermostat or can be measured by the
method of planes. We performed extensive calculations to study the performance of the algorithm and com-
pared the determined heat conductivity coefficients to results obtained by the synthetic method. For the studied
simple fluid model the conductivity was found practically independent of the size of the temperature gradient.
@S1063-651X~96!11112-0#

PACS number~s!: 02.70.2c, 44.10.1i, 05.60.1w, 66.60.1a

I. INTRODUCTION

Thermal conductivity has proven to be one of the most
difficult transport coefficients to calculate@1#. Unlike the
case of self-diffusion, the heat flux vector is a collective
property of the particles@2#, which makes the Green-Kubo–
type equilibrium calculations much more expensive@3#. In
realistic nonequilibrium molecular dynamics~NEMD! simu-
lations the symmetry of the process does not fit as conve-
niently into the usual periodic boundary conditions as that of
shear flow. Thus, it was a breakthrough when Evans@4# and,
independently, Gillan and Dixon@5# derived a nonequilib-
rium molecular dynamics algorithm capable of calculating
heat conductivity coefficients. In the Evans algorithm a syn-
thetic external field generated the heat flow. The equations of
motion are momentum preserving, homogeneous, and com-
patible with the usual periodic boundary conditions.
‘‘Warmer’’ particles are driven with the field, ‘‘colder’’ par-
ticles are driven against the field. Linear response theory was
used to prove that this heat flux is trivially related to the
magnitude of the heat flux induced by a real temperature
gradient@4#. The zero field limit value of the heat conduc-
tivity can be determined by extrapolating several coefficients
obtained at finite external fields.

This extrapolation can be replaced by the subtraction
technique@6#, which applies external fields several orders of
magnitude smaller than those used in NEMD simulations. In
the subtraction method the response induced by the perturb-
ing field is computed as the difference between the energy
current measured along two trajectories starting from the
same point in phase space. The first trajectory is followed by
the system under the impact of the small external field while
the second trajectory represents an equilibrium state of the
system. For a short time the noise along the two trajectories
will be highly correlated@7#. Unfortunately, the length of this
time is often not sufficient to reach a well-defined plateau of
the generated current because Lyapunov instability drives the

two trajectories apart in phase space and gradually destroys
the excellent noise cancellation.

The synthetic algorithm has been extended to rigid-body
molecules by Evans and Murad@8#, and subsequently gener-
alized to molecules with arbitrary internal degrees of free-
dom by Daivis and Evans@9#. All versions of the Evans
algorithm use synthetic thermostats, i.e., a feedback mecha-
nism which removes the generated dissipative heat instanta-
neously in order to maintain a steady state. The presence of
the thermostat does not influence the results in the zero field
limit @1#. The calculated heat conductivity coefficients, how-
ever, have no justification beyond the linear regime. Ob-
served details of the behavior of the model at finite external
fields have only questionable relevance to the behavior of
real fluids.

If we want to devise an algorithm which is capable of
calculating heat conductivity coefficients beyond the linear
regime we must return to a more realistic picture of heat
flow. There are two early works published in the literature
that attempted to calculate heat conductivities in this way.
Ashurst@10# placed the fluid between two ‘‘fluid walls’’ kept
at different temperatures at opposite boundaries of the mo-
lecular dynamics box. In the second calculation, performed
by Tenebaumet al. @11#, two stochastic walls were devised
which reflected back the particles with random velocities
corresponding to the required temperatures. An obvious dis-
advantage of the second approach is that solid walls intro-
duce large inhomogeneities into the fluid. The structure of
the fluid close to the wall is markedly different from that in
the bulk.

In the following we devise an algorithm which is a ver-
sion of the fluid wall approach. The fluid wall is formed from
the very same particles as the rest of the system. There is no
constraint on the diffusive motion of particles; they can at-
tend every region of the entire system. This conceptually
simple algorithm is completely deterministic. The presented
model calculations refer to a simple fluid but extension of the
method to molecular fluids is straightforward. In Sec. II we
describe the basic ideas of our method and present the equa-
tions of motion. In Sec. III we give technical details of our
calculations. In Sec. IV we present the results and compare
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the calculated heat conductivities and other system properties
to results obtained by the synthetic method. In Sec. V we
discuss and conclude this study.

II. THE MOLECULAR DYNAMICS ALGORITHM

To generate a steady heat flow we need a cold reservoir
and a hot reservoir incorporated into our system with differ-
ent but constant temperatures. The best way of achieving this
is to use a synthetic thermostatting scheme. Synthetic ther-
mostats ensure that the equations of motion will remain re-
versible, the heating or cooling will be instantaneous, and the
heat transfer will be measurable.

The first systematic approach to perform molecular dy-
namics calculations at controlled temperature rather than en-
ergy was done independently by Hooveret al. @12# and
Evans @13#. These authors devised a differential feedback
scheme which kept the total kinetic energy of the system
constant. Now this procedure is referred to as Gaussian ther-
mostat because the form of the equations of motion can be
derived from Gauss’s principle of least constraint@14#.
Shortly after the Gaussian scheme Nose´ formulated a ther-
mostat@15# which is formally an integral feedback@16#, and
for ergodic, equilibrium systems the states are selected from
the canonical distribution. For our present purpose the
Gaussian scheme is better than the Nose´-Hoover method be-
cause for small systems the fluctuations of the random ki-
netic energy are very large.

In Fig. 1 we show a two-dimensional projection of our

simulation box. The system has translational periodicity in
every direction. The hot and the cold regions which are un-
der the impact of synthetic thermostats are represented by
white squares. In the dark areas only Newton’s equations
govern the motion of the particles. To maintain periodicity
there are two connecting regions between the heated and
cooled parts. Thus, we obtain averages of two independent
measurements.

Our system is continuous; particles can wander in and out
of each part of the elongated simulation box. We do not
interfere with this motion but keep track of each particle at
every instant because the positions of particles determine
whether they belong to a reservoir or to the Newtonian
~thermostat-free! region. At the boundaries of the reservoirs
this diffusive motion can cause discontinuity. The form of
the equations of motion for a particle changes if this particle
crosses one of these four possible, imaginary boundaries. To
handle this problem we introduced a weight functionf (y)
~see Fig. 1!. This function is zero everywhere in the simula-
tion box except in the thermostatted regions. The shape of
the function is arbitrary within the following requirements:
f (y) must~i! be zero at the thermostatted region boundaries,
~ii ! be symmetric with respect to the halving plane of the
thermostatted region,~iii ! have continuous first derivatives
everywhere, and~iv! be as simple as possible. We can use
this function to define the equations of motions for the sys-
tem as follows:

q̇i5pi /m,
~1!

ṗi5Fi2 f b~yi !@kbj1abpi #,

qi , pi , andFi are the position, the momentum, and the inter-
particle force of particlei , andm is the particle mass. The
unit vector of they axis, j , is parallel with the direction of
the temperature gradient. Subscriptb51,2 distinguishes be-
tween the hot and the cold parts of the system. The two
functions f 1(y) and f 2(y) have identical shapes but the first
is different from zero only in the hot reservoir region while
the second has nonzero values only in the cold reservoir
region~see Fig. 1!. The thermostatting multiplierab is mul-
tiplied with the f b(y) function. Since outside the reservoir
regions this function is zero the rest of the particles are not
effected by the thermostat.

We also use the weight function to define the temperature
inside the reservoirs.

Tb5
( i51
N f b~yi !pi

2

3km( i51
N f b~yi !

, ~2!

wherek is Boltzmann’s constant.
The role off (y) is clear from Eq.~2!. Let the value of this

function vary between unity and zero. If it is unity the par-
ticle belongs completely to the reservoir regionat this in-
stant. If it is zero the particle is not influenced directly by the
feedback scheme at this time. For intermediate cases the par-
ticle is part of the transitional wall region which separates the
reservoir from the Newtonian regime. This construction of
the wall ensures that the temperature of the reservoir changes
continuously when a particle enters or leaves the region.

FIG. 1. Two-dimensional projection of our simulation box.
Horizontal lines represent the planes through which the heat flow
was measured. The white regions are the reservoirs. The schematic
pictures of thef 1(y) and f 2(y) weight functions are shown on the
right-hand side. The direction of the heat flow is shown on the
left-hand side.
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We introduced another multiplierk into the momentum
equation of~1!. This is necessary in order to fix they mo-
menta of the reservoir regions because Eq.~1! does not pre-
serve the total momentum of the system. Although the dis-
crepancy per time step is negligible without continuous
correction it might accumulate considerably. We experienced
that after a short initial period the whole system started to
flow in one direction. This flow is undesirable for two rea-
sons. First, it destroys the symmetry of the system. The two
thermostat-free regions will no longer be equivalent. Second,
the collective shift of particles out of the reservoir regions
distorts the measured heat input-output. The temperature of
the cold reservoir appears to be warmer because the whole
region is shifted away relative to the coordinate frame of the
simulation box. Similarly, the temperature of the hot reser-
voir appears to be cooler. To prevent this, we defined the
collectivey momentum for both reservoirs as follows:

Pyb5
( i51
N f b~yi !pyi
( i51
N f b~yi !

. ~3!

This definition is completely analogous to the definition
of the temperature in Eq.~2!. The determination of the mul-
tipliers k and a follows the usual procedure@1#. From
Ṫb50 andṖyb50 using Eq.~1! the solution for the multi-
pliers is as follows:

a5
F~C1D2E!2A~H1J2I !

BF22A2 ,

~4!

k5
22A~C1D2E!1B~H1J2I !

BF22A2 ,

where the capital letters represent the following sums:

A52( pyi f
2~yi !, B52( pi

2f 2~yi !,

C52( Fipi f ~yi !,

D5( pi
2 ḟ ~yi !, E53T( ḟ ~yi !,

F5( f 2~yi !, H5( Fyi f ~yi !, I5Py( ḟ ~yi !,

J5( pyi ḟ ~yi !.

There are two multiplier sets for the two identicalf (y)
functions but for the sake of simplicity theb subscripts are
omitted from Eq.~4!. All sums run from 1 toN. Further-
more,

ḟ ~yi !5
d f

dyU
y5yi

pyi
m

. ~5!

The energy input-output is the time derivative of the
Hamiltonian. From Eq.~1! it is simply

dH

dt
5(

i51

N

@~]H/]qi !q̇i1~]H/]pi !ṗi #52a(
i51

N pi
2

m
f ~yi !.

~6!

From Eq. ~6! we omitted the contribution ofk because in
steady states it was by several orders of magnitude smaller
than the contribution ofa.

After some initial period the evolution of the system gov-
erned by Eqs.~1! and ~4! will reach a steady state. The
amount of random kinetic energy taken away by the cooler
will be equal with the energy provided by the heater. Since
we have two connecting regions, we may expect the amount
of heat passing through they2z area of our box in the New-
tonian part to be the average of these two energy terms.
Unfortunately, this is true only approximately because there
is a nonzero heat flux in the reservoir regions as well. The
behavior of the whole system will be effected by our choice
of f (y). The shape and width off (y) will influence the
results.

To understand the role off (y) we are using another, com-
pletely independent method which measures the heat flux
directly. This method was developed quite recently by Todd
et al. @17,18#, as a simple and general statistical mechanical
technique for calculating the heat flux vector and the pres-
sure tensor of atomistic, nonequilibrium fluids. The method,
termed the method of planes~MOP!, is devised for fluids
being inhomogeneousin one direction. The corresponding
expressions of the Irving-Kirkwood procedure are only ap-
proximations for such systems. The planes can be located
anywhere in the system but their normals must be parallel
with the direction of the inhomogeneity, in our case, they
axis. The horizontal black lines of Fig. 1 represent our choice
of planes. This work can also serve as the first independent
check of the MOP technique.

III. TECHNICAL DETAILS OF THE CALCULATION

Our model system contained 8325652048 WCA par-
ticles. The WCA interaction is a spherically symmetric pair-
potential given by the following equation:

f~r !5H 4e@~s/r !122~s/r !6#1e, r,21/6s

0, r>21/6s.
~7!

Reduced units are used throughout the paper, for which
e,s and the atomic massm are unity. The overall reduced
densityr was 0.8. An advantage of the WCA interaction is
that at these parameters the distance between two adjacent
planes~1.71! is larger than the interaction range of the pair-
potential. This can be utilized during the calculations for
time saving purposes.

Our choice of f (y) was uniform plateau@ f (y)51#
smoothly connected to zero by the following cubic polyno-
mial:

f ~y!5a~y2y0!
31b~y2y0!10.5, ~8!

wherea and b are constants determined from the required
properties off (y) and the actual value ofy0.

It is well known that methods using differential feedback
accumulate numerical errors gradually drifting the value of
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the fixed variable. There are two ways to correct it. The
constrained variable can be rescaled after every few hundred
time steps or one can supplement the integrator with a pro-
portional feedback which corrects the numerical errors con-
tinuously @19#. In the case of the reservoir temperatures we
used proportional feedback while rescaling proved to be
more suitable for correcting the constrained momenta of the
reservoirs.

We performed calculations with five different reservoir
temperature pairs. In each case the median temperature was
chosen to be 0.9. The results are averages of steady state runs
of 600 000 time steps. The reduced time step was 0.002, half
of the usual value and a fifth-order Gear algorithm integrated
the equations of motion. This accuracy was necessary to re-
duce the role of ‘‘numerical dissipation.’’ The contribution
of the proportional feedback and momentum rescaling to the
energy transfer of the thermostats was negligible, several or-
ders of magnitude smaller than that coming froma. The
remaining averagey momenta of the fluid slabs~particles
between two adjacent planes! were very small, a random
distribution of values of 1024–1025. With respect to the
MOP technique we provide no details, the reader is referred
to Refs.@17# and @18#.

IV. RESULTS OF THE CALCULATION

We present two sets of figures to show the most important
features of the simulated system. The first set refers to the
case when the temperature difference between the two reser-
voirs was the largest,dT50.40. In the second case the res-
ervoir temperature difference indT50.10. This is the second
smallest temperature difference in these calculations. Figures
2 and 3 show the heat flow vectors calculated by the MOP
method. In steady states, outside the reservoir regions the
heat flux must be constant. This is reproduced quite well in
the case of the large temperature gradient~Fig. 2!. The im-
pact of the random noise, however, is visible in the small
field case~Fig. 3!.

Figures 4 and 5 show the distribution of the number den-
sity and temperature in the simulation box in terms of the
reduced distance along they axis. The density and tempera-
ture values are averages of slabs defined by two adjacent
planes. Both the temperature and the density are basically
linear outside the reservoirs, although in the case of small
temperature gradients, the relative fluctuations can be signifi-
cant.

FIG. 2. The measured heat fluxes for thedT50.40 system.

FIG. 3. The measured heat fluxes for thedT50.10 system.

FIG. 4. The density and temperature variation in the fluid as
functions of they distance (dT50.40). The solid line is the tem-
perature; the dotted line is the number density.

FIG. 5. The density and temperature variation in the fluid as
functions of they distance (dT50.40). The solid line is the tem-
perature; the dotted line is the number density.
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In Figs. 6 and 7 we show the temperature in terms of the
number density. After the previous figures it is not surprising
that these functions are also linear. Within the accuracy of
our calculations there is no difference between these curves
in the studied temperature gradient range. TheT5 f (r)
curves fit onto the same linear line. The only difference is
that they occupy shorter or longer lengths of this line accord-
ing to their temperature and density ranges.

We also studied the directional distribution of the random
kinetic energy. We found that for these temperature gradients
there is no difference between the kinetic temperatures of the
x, y, andz directions in the model.

The heat conductivities calculated from the MOP heat
flux averages are shown in Table I. Since, within the errors
of the calculations, the temperature gradients and the heat
flux vectors in the thermostat-free regions were constant, we
simply took the average of the heat flux vectors measured at
planes outside the reservoirs, and divided it by the average
temperature gradient of the same region. The use of the ac-
tual temperature values produced slightly differentdT/DT
ratios. Not surprisingly, uncertainties in the heat conductivity
coefficients were much larger at smaller temperature gradi-
ents.

In Table II we show the amount of heat per unit time
provided or removed by the thermostat@see Eq.~6!#. If we
use these data the calculated heat conductivity coefficients
will be much larger than the values of Table I. The cause of
this discrepancy is that certain amount of the heat is dissi-
pated in the reservoir itself. There is an unpreventable heat

flow in these regions too~see Figs. 2 and 3!. In order to
remove this distorting effect from our calculations we ex-
trapolated our results to the hypothetical reservoir of zero
width along the y axis. For three systems
(dT50.40,0.30,0.20) we performed the same calculations
with rescaledf (y) functions. The functions had the same
shape as before but their width was only half of the previous
value. The heat transfer and the calculated heat conductivity
coefficients decreased substantially. Using these two heat
conductivity values for extrapolation we could determine the
‘‘zero-width’’ coefficients. The extrapolated coefficients
were in agreement with the values calculated with the help of
the MOP method.

The idea of the infinitely thin reservoir layer is conceptu-
ally identical with the stochastic wall of Tenebaumet al.
@11#. However, in our case there is no solid wall with its
induced extra inhomogeneity and no need for complicated
kinetic recipes. Certainly, the extrapolation means more cal-
culations but the simplicity of the method is attractive. The
described method with extrapolation can be used for any
molecular model.~At present the MOP technique exists only
for atomic particles@17,18#.!

Performing calculations with different system sizes and
time steps we studied the accuracy of the heat transfer mea-
surement. There are several factors to be optimally chosen to
obtain the best results by the extrapolation scheme.

If the temperature gradient is very small (DT,0.005) the
uncertainty in the heat transfer calculation becomes signifi-
cant. For very large gradients (DT.0.025) the amount of
heat going through the fluid is so high that we have to de-

FIG. 7. Temperature in terms of the density (dT50.10). Reser-
voir data are also shown.

FIG. 6. Temperature in terms of the density (dT50.40). Reser-
voir data are also shown.

TABLE I. Heat conductivity results calculated as the ratio of the MOP heat flux average~pot, potential
contribution; kin, kinetic contribution! and the temperature gradient average in the thermostat-free region.
The numbers in parentheses indicate the uncertainty in units of the last decimal digit: 6.10~8! means
6.1060.08.

dT 0.40 0.30 0.20 0.10 0.05
DT 0.0250 0.0186 0.0127 0.062 0.0035

JQy ~pot! 0.085 0.062 0.042 0.019 0.011
JQy ~kin! 0.068 0.051 0.036 0.018 0.010
l 6.10~8! 6.07~10! 6.13~14! 6.04~30! 5.94~40!
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crease the time step to prevent intolerable inaccuracy. In ad-
dition to the time-step reduction, the inhomogeneity will also
be undesirably high, which may render the slab averages
meaningless.~In such cases the intervention of the feedback
term in the dynamics of the reservoir particles will also be
unnecessarily strong, although we want their behavior as
close to the Newtonian dynamics as possible.!

The size of the thermostat region has also an optimum. If
the ratio of the reservoir/Newtonian particles is very small
we face the previous problems~time-step reduction, etc.! of
large temperature gradients. Nevertheless, we should not
have big reservoirs because we want to extrapolate to the
zero width of this region. There is no need to employ too
many reservoir particles from the point of view of the
economy of the calculations either, because their role is
merely to facilitate the heat transfer.

In Fig. 8 we show the extrapolation of heat conductivity
coefficients calculated by the Evans method atT50.9 and
r50.8 for 500 WCA particles. Each point is the average of
half a million time steps (Dt50.004). These state variables
characterize the middle layer in our inhomogeneous system.
The accuracy of the Evans method is very good in its usual
range of external fields (F50.120.4). However, these fields
are an order of magnitude larger than the corresponding tem-
perature gradients in our calculations@1#. Actually, the error
bars of the two low-field calculations by the synthetic
method are much bigger than the uncertainties in thel-s
calculated by our method. Our largest temperature gradients
(DT50.02520.0186) are close to the smallest
(TF50.018) external field value~see Table I!. @The errors in
the results~transformed always intol values! were calcu-
lated by dividing each simulation run into 10 blocks. The
error bars correspond to one standard deviation of the block
averages.#

The extrapolated zero field value of Fig. 8 is 5.92~we
omitted the two low fieldl-s from the extrapolation because
of their large uncertainties!. The value of 5.92 permits a
slight field dependence of the heat conductivity coefficient,
although this is within the range of the uncertainties. The
possible increase of the conductivity with increasing tem-
perature gradients does not contradict to the qualitative pic-
ture of the Evans method. The minimal overlap in the typical
range of external fields studied by the two methods, how-
ever, prevents us from drawing a definite conclusion in this
respect.

The temperature gradients of our calculations are very

high. If we convert the reduced units by identifying our
simple spherically symmetric particles with liquid argon the
reported temperature gradients correspond to 107–108 K/cm.
Then it is not surprising that we can observe density varia-
tions within our simulation box. These variations are absent
from the synthetic method, although the fields typically used
in such calculations are larger by an order of magnitude than
ours. If one is interested only in heat conductivity coeffi-
cients in the linear regime the homogeneity of the synthetic
method is an advantage because it permits the use of much
smaller systems. However, the synthetic method creates an
artificial system which has no relevance to real fluids beyond
the linear regime. Details of the system dynamics, the struc-
ture of the nonequilibrium liquid cannot be studied by using
the synthetic method. For instance, in our calculations the
distribution of the random kinetic energy in thex, y, andz
directions is absolutely uniform despite the inhomogeneities
of the density. This not true for the synthetic method at its
typical external fields. AtF50.3 the kinetic temperature in
the flow direction is 0.942 while in the perpendicular direc-
tions it is only 0.879. Details of the thermostatting scheme
play an important role in the synthetic method.~To obtain
the results of Fig. 8 we applied the standard Gaussian ther-
mostat with the usual2ap term.! A further noticeable dif-
ference is that in our method the kinetic contribution to the
heat flux calculated by the MOP method is 40–50 % of the
total. This is considerably smaller in the synthetic method,
14–16 %.

FIG. 8. Heat conductivity coefficients as determined by the syn-
thetic method at different external fields (N5500, T50.9, and
r50.8).

TABLE II. Heat conductivity results calculated from the energy input-output of the thermostat.
@l5(dQ/dt)(1/AR) whereAR546.78 is the cross section area of our box anddQ/dt is the average of the
heat input and output; theh subscript refers to calculations with the half-sized reservoirs;lext is the extrapo-
lated value.# Uncertainty inlext is 60.40.

dT 0.40 0.30 0.20 0.10 0.05

dQ/dt ~in! 9.38 6.78 4.74 2.04 1.10
dQ/dt ~out! 9.20 6.81 4.66 2.17 1.14
l 7.93 7.81 7.93
dQ/dt ~in!h 8.18 6.15 4.24
dQ/dt ~out!h 8.50 6.05 4.30
lh 7.05 7.00 7.09
lext 6.17 6.19 6.25
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V. CONCLUSIONS

We devised a method to determine the thermal conductiv-
ity coefficients of fluids beyond the linear regime. The
method is simple and easily applicable to any molecular
model used at present in computer simulations.

For the model of atomistic particles we had two different
ways of calculating the coefficients. First we used the re-
cently developed MOP technique, which has an excellent
performance; its accuracy is comparable to that of the Irving-
Kirkwood expressions of homogeneous systems. The MOP
results served as cross checks for the trivial extrapolation
method when the heat flow is measured with the amount of
heat pumped into and out of the system by the thermostats.
Although the latter method requires more runs with several
different reservoir widths, it needs no direct heat flux calcu-
lations. This simplicity makes it very attractive for complex
molecular systems.

If one is interested only in values of thermal conductivity
coefficients of simple, equilibrium fluids the homogeneous
and synthetic method of Evans serves better because much
smaller system size can be used with reasonable accuracy.
However, it is also clear that the artificial homogeneity of the
synthetic method tells us nothing about the structural details
of the steady state system and the behavior of the thermal
conductivity coefficient beyond the linear regime.

The results of the Evans method refer to a well-defined
state point of the fluid. In our case there is a continuous
variation of temperature and number density in the simula-

tion box. However, variations of system properties can be
monitored. Temperature, temperature gradient, and pressure
can be calculated along the long axis of the simulation box.
In this way we can measure the thermal conductivity coeffi-
cients for a range of state points of the fluid in a single
simulation. This compensates us for the more time-
consuming calculations in our bigger system. A further ad-
vantage of our algorithm is that the properties of our system,
in contrast to the synthetic method, are not influenced by the
choice of the synthetic thermostats because only Newton’s
equations of motion govern the dynamics of the particles.
The only reasonable requirement of our method is to limit
the energy input or output per particle in order to keep the
dynamics of the reservoir region close to that of the Newton-
ian region.

As an example we studied the heat conductivity of simple
soft spherical particles. In the case of this model system we
experienced no substantial dependence of the coefficient on
the size of the temperature gradient. Even the temperature
variations in terms of the number density were practically
linear in the range studied. These results can serve as a ref-
erence for more complex molecular systems.
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