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Uncoiling transition for DNA in solution
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(Received 7 August 1995

We study a simple DNA helix model, consisting of two infinite chains of evenly spaced charges to represent
the phosphate groups, wound in a helix which lies on an imaginary cylindrical surface. The change in the free
energy per helix charge between coiled and uncoiled conformations of the helix in solution is studied as a
function of the charge per unit length along the helix axis. This allows us to study the effects of the solution
on the helix stability and coiling. The change in the free energy is calculated from Soumpasis’s pair potential
of mean force, applied to all pairs of helix charg& M. Soumpasis, Proc. Natl. Acad. Sci. U.S84, 5116
(1984]. The local counterion concentration is calculated from the counterion radial distribution that results
from solving the Poisson-Boltzmann equation for an infinite uniformly charged cylifileM. Fuoss, A.
Katchalsky, and S. Lifson, Proc. Natl. Acad. S&7, 579(1951)], whose linear charge density is equal to the
charge per unit length along the helix axis. Our results show that the helix is less stable on decreasing bulk
dielectric constant and more stable on increasing counterion radius. Experimental data are discussed on DNA
in solutions with water, ethanol, and methanol as the solvent.

PACS numbedss): 87.15-v

[. INTRODUCTION the salt, such as charge screening and hard-core correlations
due to the finite size of the ions. In the treatment of Rfs.

In agueous solution at neutrpH and room temperature, and[5], the solution is allowed to flow freely into the interior
deoxyribonucleic acidDNA) [1] is a polyion, whose total of the DNA molecule(i.e., into the region enclosed by the
charge is compensated by small mobdeunterions In a  double helix of phosphate group chargda contrast, in our
simple way, a DNA strand can be thought of as a macromotreatment, we do not allow the solution to penetrate into this
lecular chain formed from nucleotides. A nucleotide isregion.
formed from a sugaffuranose ring to which a planar mol- A DNA double helix can be treated as a straight cylinder
ecule, or baseA, G, T, or C), and a charged phosphate over a distance of many base pairs, because of steric con-
group are attached. In our paper, we assume that the onbtraints and electrostatic forces of short rafig@gse stacking
charges on the DNA polyion are at the centers of the phosinteraction$, which act perpendicularly to the base planes
phate groups. [1]. On the basis of crystallographic atomic coordinates

DNA helices show structural varietjl—3], which de- [6—8] of various DNA right-handed helices, which display
pends on environmental factors, such as counterion, solverdjfferent axial translations and rotations per nucleotide, the
and temperature, as well as retained salt and relative humidadial distance of the phosphate groups to the axis is not seen
ity in crystallographic samples. An ideal infinite helix is left to vary substantially. Section IIl presents a double helix
invariant under a combination ofteanslationalong the he- model, formed from two chains of charges, in which the
lix axis and arotation about the helix axis, which is the axial translation and rotation per helix charge vary to de-
space group of the helix. From measurements on rightscribe coiling or winding, while the radial distance from a
handed double helices, it is well known that axial translacharge to the axis and the distance between two consecutive
tions and rotations per nucleotide range from 2.56 to 3.41 Aharges on the same chain are kept fixed during the process
and from 45° to 30°, respectively. of coiling.

The phosphate group positions are important in our cal- Our investigation was motivated by a desire to understand
culations. Soumpasigl] and his groug5] have developed a the dissociation of a double stranded DNA into single
method to calculate the effects of the solution on the relativestrands. It is experimentally known that a DNA double helix
stability between two polyion conformations, and their re-in agqueous solution is unstable at very low salt concentra-
sults have been confirmed experimentally. In Soumpasis'sons [9—12], i.e., natural DNA in a concentration of less
method, which is used in our paper and reviewed in Sec. llthan 10 “M at room temperaturgl2]. Moreover, at moder-
the change in the free energy between two polyion conforate concentrations~<0.1IM), DNA is unstable at high tem-
mations is calculated using statistically averaged interacperatures {85 °C). As recognized, the process of dissocia-
tions, or potentials of mean ford®MF’s). Interactions be- tion of the two strands, called denaturation, involves two
tween charged phosphate groups in the solution areteps1,13]: the uncoiling of the helix and the separation of
calculated from the pair PMF, which includes the effects ofthe strands in which a complete breaking of the hydrogen

bonds takes place. In our paper, we only treat the coiling-
uncoiling of the double heliXthe secondary structyrend
*Present address: Departamento Academico de Computacion, Ithe associated change in the free energy.
stituto Tecnologico Autonomo de Mexico, Rio Hondo No. 1, Col.  We describe the DNA double helix and the solution as
Tizapan, San Angel, DF, CP 04930, Mexico. two interdependent systems. The solution, determined by the
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solvent, concentration, and type of counterion, has been comharge density higher than a critical value; consequently, the
sidered to play an important role in DNA stability and con- polyion is partially neutralized. Studies that describe coun-
formation[1,9]. At high dilution, the molecule unwinds and terion condensation based on the PB equation for a charged
elongates[14] before the separation of the strands takestylinder have been published as Well7—29. In contrast to
place. Experiments have shown that the temperature of dighe treatment given in Ref$26] and [27], our treatment
sociation increases with increasing salt concentrgtigmnd ~ Models the DNA molecule as a double helix of charge. We
this stabilizing factor of salt was attributed to the screeningf@lculate the free energy difference between this double helix
of the electrostatic repulsion between charged groups on efi"d the same charges with the double helix unwound, using
ther strand 15,16 the apprquate trgatment |nherent in _the potential of mean
The theory of polyelectrolyte&charged polyions in solu- force (mainly the Kirkwood gpprommaudn_More_: recemly’ .
tion) [17,1§ is found in early theoretical studies of DNA it was found that condensation of counterions is increased if

denaturatior15,16,19. In these studies, effects of the ionic Fhe dielectric constant for the solvent near the DNA polyion

concentration on the DNA melting temperature, the counter'S 'OV_Vef thar_1 hthe bulk vaIué24,3qh_FE|rthermore, this i_s :
ion distribution, and the counterion binding, were addresset‘fonS!Stent wit measur_ements on nighly co'ncentrated lonic
by solving the Poisson-BoltzmarRB) equation. During the solutions [31-33 showing that the dielectric constant is
last two decades, there has been a substantial developmentiﬁ?[‘)f"er than the value of the pure solvent. Because of the

the statistical theory of ionic solutions, and because of thi ove, In solylng the PB equation in Sec. IV, we have as-
development highly concentrated ionic solutions 2M) sumed the dielectric constant has two values, one at large
can be more satisfactorily describpti20] distances from the cylinder equal to the value for a bulk

In our treatment, the double helix charges are positione((:T’OIIVenSt and”a sméaller Yslug close tq t’he cyllr?dder surf:i\cel.
on an imaginary cylindrical surface for reasons that were, '" ﬁec. fWE eSIC”_ € ourrr:pashlss met ?] tfo calculate
discussed earlier. The counterion distribution is calculated a&'¢ €ffects of the solution on the change In the free energy

if the charge on the double helix were uniformly distributed etween two polyion conformations. In Sec. llI, the helix

on a cylinder. In the early 1950s, an analytical integration of "0d€! Polyion and its parameters are introduced. In Sec. IV,
the PB equation for a uniformly charged infinite cylinder © determine the local concentration at the cylinder surface

model was introducefP1,27 (the charge in solution is only we calculate the counterion distribution by the PB equation

due to the counterions in these treatmgntss shown in fqr an |_nf|n|te uniformly charged cylinder. Section V is a
these early studies, the cylindémear charge densitys an ~ 9iScussion of the results.

important parameter for determining the counterion distribu-

tion. In Sec. IV, to determine the local concentration of [l. THE POTENTIAL OF MEAN FORCE

counterions at the cylinder surface, the counterion distribu- W _ . ; _ bout S -
tion around a charged cylinder is calculated from the PB € summarize some important points about SoUMpasis's

equation of Ref[21]. The linear charge density of the cyl- method[4] to calculate the effects of the solution on a poly-

inder i | to the ch it lenath al th . ilon conformation, which is given by the positions of the
Imaer 1S equal 1o the charge per unit ‘ength aiong me axis Oé:harges on the polyioffor DNA, the positions of the phos-

hate groups In the absence of counterion binding, the so-
ution ions are considered to form a diffuse cloud. The sol-
vent, considered as a continuous medium, is modeled by a
dielectric constant. As in the Debye-ekel (DH) theory of
counterions of small radii, compared to the DNA radius. Inelectrolytes, the ;olution degre_es of freedoomic clogd and
addition, there are Monte Carlo simulations using a moreSOI\.'em are conS|der.ed statistically a\{eraged, while the co-
detailed molecular structure of the DNA polyion, based onordlnates of the polyion charge§ remain as parameters O.f the
experimental coordinatd®4], which investigate the dielec- free energy{34], or the potential of mean TOfC‘?- By this
tric saturation of water near DNA. The radial counterion dis_procedure, fast and slow processes are distinguished. Soum-

tribution that results from these simulations shows that thé)aSis[A'] and his grou5] calculated the change in the free

PB equation, which underestimates the counterion concentrg €9y between two DNA conformations in solution, using

tion near the DNA polyion by 18%, is qualitatively correct. approximations to the PMF, suggested by statistical me-
We use the PB equation as a first approximation to determin‘éhanlcal th_eor|e§4,2.0]. . .

the counterion concentration near the DNA polyion, which is F_qr a given pon|o_n conformatioiX determmed by the
best treated by introducing a dielectric constant smaller thaffositions of the polylc_)n_cha_rges, two contributions to the
the bulk value for the solvent close to the polyion. The avail-T€€ €nergyF(X) are distinguished;

able information on the value of the dielectric constant for

of the PB equation is supported as a first approximation b
Monte Carlo simulations on the ionic distribution surround-
ing a uniformly charged cylindgr23] without co-ions(ions
with a charge of the same sign as the DNA polyiand with

the solvent at close distances in unclg24]; however, our F(X)=Fo(X)+F1(X), 2.9
calculations involve other parameters that are well deter-
mined by experiments. whereF1(X) includes the statistically averaged interactions

Manning elaborated on the notion of counterion bindingof the polyion charges in the solution, aRg(X) includes all
in his theory of counterion condensation, which in its origi- other interactions, such as hydrophobic interactions, DNA
nal form[25,26] is based on modeling a polyion as a uniform chemical bonds, dispersion forces, and base stacking, which
distribution of charge on a line of infinite length in a dilute are assumed to be independent of the solution up to a first
salt solution. According to Manning, the counterions, treatecapproximation. For a second conformat®nthere is a simi-
as point charges, will condense on a polyion with a lineadar form for the free energy:
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F(Y)=Fo(Y)+Fy(Y). (2.2 e

As assumed,Fy(Y) is not significantly different from 0.50 _ ]
Fo(X) after changes in the solution, such as a change in the [ ]
counterion distribution; hence, the change in the free energy
between conformatiorX and conformationY can be ob-
tained by subtracting Eq2.1) form Eq.(2.2), giving

ozs . -

=]
S ook
AF(Y,X)=F(Y)—F(X)=F4(Y)—Fi(X). (2.3 ¥ r
A further approximation is introduced in calculating —0.25:

F.(X) and F,(Y) by adding allpair interactions between
charged phosphate groups. The pair PMF is used to calculate
interactions between pairs of phosphate groups. In Soumpa-
sis’s study[4], the ionic solution is formed by the polyion T
phosphate groups, which are treated as ions, and the sur- 1.0 1.5 2.0 25 3.0 35 4.0
rounding ions(or counterions r/o

An ionic solution can be thought of as a gas of charged
hard spheres in a continuous medium, the solvent. In the FiG. 1. The potential of mean for¢®MF), from Eq. (2.4a, of
simplest case, the solution is formed by ions of two kindstwo unit charge ions of equal sign in an ionic solution. lons of two
q; and o, where q;=—|e] and 0g,=|e] types form the solution, q;=—|e| and g,=le|, where
(le]=4.8032¢<10 Y esy. Let n, andn, denote the number |e|=4.8032<10 1 esu. lons of each type are in equal concentra-
of ions per unit volume for each kind of ion. The free energytions, n;=n, (the number of hard spheres per unit volume is
of two q; ions, considered fixed at a distanceis the pair  2n;). The molar salt concentratio), c; from Eq.(2.5), for the
PMF used in the calculation; all other ions and the solvengxamples is OX (dotted ling, 2.0M (dot-dashed ling and 4.0/
are statistically averaged. At low concentrations, the PMF i¢solid ling). At high concentrations, there is a high Coulomb screen-
a DH screened Coulomb interaction. At high concentrationsing, and hard-core correlations are important, which is shown by the
hard-spheréHS) correlations become important. In our cal- honmonotonic - solid line. Other parameters ake=78.85,
culations we use an analytical expression of the pair PMP =25 °C, ando=5 A.
suggested by Olivares and McQuarfig0] and used by

-0.50

Soumpasig4], which shows these features: analytical expression for this function is given in Rgf35]
and[36]. A computer program, provided in Appendix D of
w(r)=wHS(r;{n},o, T)+wWPH(r;{g}.{n}, o, T), Ref. [37], evaluates the Percus-Yevick correlation function
2 with a modification[ 38] in agreement with Monte Carlo data

for hard spheres. The PMF obtained from Ej43, using in
where{q;} and{n;} denote the charges and the number ofgq. (2.4h the Percus-Yevick correlation function, is dis-
ions per unit volume, for each ion type respective{for  played in Fig. 1; the energy of interaction of two charges,
simplicity, r is assumed to be the only explicit parameter inq, , is plotted as a function of the separationin the ex-
w(r)]. In the last equation, the first term is ample, we have considered a case wherg=—|e|,

g.=|e|, and n;=n,; the molar salt concentration\() is
whiS(ri{n},o.T)=—kgT Ing(r;{n},o), (24D  Jiculated from

whereg(r;{n;},o) is the pair correlation function of a hard-
core potential, which depends on the concentration of hard Cy

spheres and the minimum distance of approackbetween
a chargeg, and a counteriom,). The second term is

T 6.022<10° % 2.5

where 2, is the number of hard spheres pe?.Af the salt

(ﬁ exd —K(r —o)] concentration is high enough, the Coulomb repulsion is

wPH(r:{gi}.{n}, 0, T)== , screened, and Ed2.4b becomes important, showing the

€(1+ko) r effects of the ion hard core.
(2.49
where’€ is the dielectric constant for the solvent and . HELIX AND UNCOILING TRANSITION
112 In Table | we show a list of conformation parameters of
4772 ”iQi2 various types of DNA. The x-ray crystallographic data on the
k= i (2.49 phosphate group atomic coordinates were obtained from sev-
TkeT ' eral reference$6—8|. The right-handed helix model that is

presented in this section is based on these measurements.
is the inverse DH screening length, which characterizes the The double helix model is made from two interwound
range of the electrostatic interaction. infinite linear chains of evenly spaced unit charges, due to
Throop and BearmafB5] have evaluated the solution to the phosphate groups, on an imaginary cylindrical surface
the Percus-Yevick equation numerically and tabulated thevith a radius denoted bg,. Even though the four cases
radial distribution function for the hard-sphere potential. Thepresented in Table | correspond to various conditions of rela-



694

CARLOS E. GALINDO AND J. B. SOKOLOFF

TABLE I. DNA double helix parameters which are obtained from experimental measurements. Refer-
ences are listed in this table. The definitions of the parameters are given in Sec. Il of text.

DNA  ay(A)  d(A) Jo(ded ThgA) o)  gy(deg  h(yy) (A)  Ref.
A 8.92 18.549 138.4 8.12 5.637 32.7 2.56 [6]
B 8.91 18.228 169.6 4.16 6.461 36.0 3.38 [6]
C 9.05 16.903 137.8 0.74 6.842 38.6 3.32 [7]
D 7.86 16.227 176.8 4.05 6.736 45.0 3.03 [8]

tive humidity, retained salt, and counterion type, the radiuslenoted with a bar over them. The projection alongzhais

ag is not substantially changed iA-DNA, B-DNA, and  of the distance between the pair of charges is

C-DNA. In D-DNA, which is considerably coiled compared

to B-DNA and C-DNA, a;, changes by about 1 A. Since our

assumption thaa; does not vary significantly among several

different forms of DNA does not hold foZ-DNA, our

method is not valid for treating it. <
The distance between two consecutive charges on the

same chain is denoted Iy, and it is measured from one

charge to the other in a straight line. As mentioned in the Foommmee @\dw 7y

h o= (dyp)?— (2a5sin ¢o/2])?  for 0<yp=<180°,
(3.2

Introduction, the sugar ring conformation determines the dis- a X
tance between consecutive phosphate groups in a DNA See LT :
strand backbone; this distance correspondd tp The dif- o
ference ind,, between theA-genus DNA and thé-genus
DNA is about 1 A (A-DNA belongs to theA genus;
B-DNA, C-DNA, and D-DNA belong to theB genus.

For clarity, thez axis of a cylindrical system of coordi-
nates is used as the axis of the helix. Double stranded DNA a
can be thought of as formed by repeating the nucleotide pair, | o
bound by two complementary bases. The positions of a pair Rt
of charges associated with a nucleotide pair can be used to
generate the positions of the consecutive pairs of charges by y
a rotation about the axis)y, and a translation along the
axis, h(¢y). The double helix is constructed by repeated PR LN
application of the combined translation and rotation upon the R -
coordinates of the first pair of charges. The translation along s R
the z axis is 1

- -

=l

-~

N E
JORR L SRR SEP
\

\

\

\

h(yy) = (dpp)2— (2a4sin ¥v/2])? for 0=y, <180°,
(3.0

4 /
) i
=1 ~

where the angle of rotatiofy is measured on a plane per-
pendicular to the axis, as an azimuthal angle, and
(dpp)?— (2agsin ¢x/2])?=0.

The distance between a pair of charges that correspond to FIG. 2. (8) Two infinite chains of charges in a right-handed
the phosphate groups in a pair of complementary nucleotidegouble helix wound on an axis along thedirection. Each pair of
is denoted byd,,,, measured from one charge to the other incharges, which correspond to the phosphate groups on two comple-
a straight line. In th&8-DNA conformation[1] the base pair mentary ”Udeo“desg is numbered by a consecutive Integer
lies nearly in a plane, with one phosphate group above anfharges on one chain are shown by solid lines, and charges on the
the other below the base pair plane. As seen in Table | th@ther chain are shown by dashed lines; only the charges in the pairs
distancesd,,, of the four types of DNA are close in value, (T:o agdd—m:l da:]e d'Splgyed',sze_ 'eggth ﬂ?ra;ntimlf TO’
within approximately 2 A. This distance is possibly due to%pp: @1d dpp @nd h(iy), described in Sec. III of the text, are
the hydrogen bonding, which has a certain equilibriumShown'(b) Projection on the-y plane of the charges shown (a).
lenath. the base bair a,lnd the stacking interactions that rE_ach pair of charges, which correspond to the phosphate groups on
Strigt fhe base paie to’be nearly on a p?e(ﬂds plane is not Gwo complementary nucleotides, is numbered by a consecutive in-

. . . . tegerm. Charges on one chain are depicted in solid lines, and

necessarily perpendicular to the gxiShe change in the azi- g g P

“ . . harges on the other chain are in dashed lines; only four charges
muthal angle between the two charge positions of this pair Ofthe pairsm=0 andm=1) are displayed. The helix axis is along

charges is denoted by, . In this section, the quantities that the 7 direction. The angles, and y, described in Sec. Il of the
depend on the relative position between the two helices argxt, are shown.
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——r reference charge, in the pain=0, to near charges from

S above and below, calculated from Eq&.3) and (3.4).
A (Coiled and uncoiled conformations for the double helix are

BN ’ ] presented. The uncoiled conformation represents the charges

along two parallel line$.

The following points are made to complete the discussion
on Table 1.B-DNA samples are generally obtained at ap-
proximately 92% of relative humidity with Naas the coun-
terion. A-DNA, C-DNA, and D-DNA samples are obtained
at approximately 75% of relative humidity or even less.
C-DNA is generally prepared in Li salt, as seen in Table
9.1 of Ref.[1]. D-DNA is obtained under the minimum bulk
salt concentration[8] which would normally give the
A-DNA; however, the ionic concentration nearDaeDNA
molecule is not necessarily small enough to compensate for
the higher charge per unit length, which is proportional to
1/h(y). Referencd39] is an interesting early study on the
atomic coordinates of DNA.

To describe coiling-uncoiling of the helix, we consider

40—

dom(¥r), Toml¥y) [A]

20—

FIG. 3. The distances from a reference chafigethe pair de-
noted bym=0) to the other charges in the double helix model. The . . ) . L
values gfntlhe p))arameters for theghelix are taken fromBttmeodel of two Conform_atlons: the firstx, in WhICh. the helix IS.Com_
Table Il. The coiled and uncoiled conformations are shown. For thepletely unc0|led,¢Y=0,_ andh(O)_=gap (i.e., two chains of
coiled helix, ¢, = 36.6° is assumed: for the uncoiled helix,=0.  charges parallel at a distancaain #4/2]); the second con-
For dom(#y) of Eq. (3.3, the solid line and dotted line represent formation, Y, in which the helix is coiled with an angle
coiled and uncoiled conformations, respectively. Bgf,(¢) of ¥y, andh(yy)<dp,, from Eq.(3.1). In considering the two
Eq. (3.4), the dashed line and dot-dashed line represent coiled andonformations, the parametesy, d,,, d,,, and ¢, are
uncoiled conformations, respectively. The lines are drawn to highkept constant. The charge per unit length along the axis of
light the points calculated from the above equations. It is seen thahe double helix, which is proportional to H(/j), is an
the curves for the charges on the same chain as the reference chajggyortant parameter for determining the concentration of
are symmetrical with respect to a plane crossimg 0 (solid and  counterions near the polyion, using the PMF of E2j4a of

dotted lines. Sec. Il. The concentration of counterions near the polyion is
_ _ _ calculated in Sec. IV.

where @p,)*— (2asin#%/2])?=0 andy, is chosen within In the final paragraphs, we give the formula for the

0<¢p=180°. (The formula is not changed if instead ¢ff  change in the free energy between the two conformations;

the complementary angle 366%, is used) this discussion is based on the discussion presented in Sec.

In Figs. 2a) and 2b), the helix model is illustrated, with Il. The change in the free energy between the two conforma-
only two pairs of charges shown for simplicity. For clarity tions, AF(Y,X) in Eq. (2.3), is calculated from the statisti-
and notation, an integen is assigned to each pair of charges cally averaged interactions afl phosphate groups in solu-
associated with a complementary nucleotide pair, considetion. The change in the free energyer helix charge
ing each pair of charges labeled in this way as one unit. WAW(Y,X), can be obtained by adding all pair interactions
choosem to increase along the positizeaxis and two con- betweenonecharge and all other charges on the double he-
secutive integers are associated with two consecutive pairs k. To calculate the pair interactions we use the PMF)
charges. o defined in Eq.(2.43. The distances between a particular

From given values of the parametea§, d,,, o, and charge and all other charges on the same stidg)d(.¢/v), or

d,p and the angleyy, the positions of all helix charges can N the opposite strando,(4y), are obtained from Egs.

be determined with respect to a charge, used as a referenc®d and (3.4), respectively. Therefore the change in free
point, in the pair of charges designated fioy=0. Distances €N€rgy per helix charge between the two conformations is
from charges on the same chain as the reference charge are

o) = VIMN(gy) T2+ 2855 myn/2) 2. (3.9 AW X)= 2, oW, (359
Distances from charges on the opposite chain to the refefyhere
ence charge are
_ OWn=Wr(Y) —Wp(X), (3.5b
dom(#v) = VIMN(y) — ho]?+{2agsin] (mysy — ) /2]}2,
(3.9 and
wherem==*=1,+2+3,..., andh(yy), andhg are given in Wi (Y) ={W[dgn( l/fv)]+W[d_o,m( wY)]}d’Y#O, (3.50

Egs. (3.1 and (3.2), respectively. For consistency of Egs.
(3.1) and (3.3), do1(/v)=d,,; also of Egs.(3.2) and (3.4, —
d_o,o(lﬂv)Edpp- Figure 3 highlights the distances from the Win(X) =Wl dom(¢y) ]+ Wl dom(4) I}y -0, (3.5
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where the integem labels the charge pairs corresponding toThe results of the simulations show that the radial counterion
complementary nucleotides. distribution obtained by the PB equation is in qualitative
In Sec. IV we calculate the counterion distribution aroundagreement with the simulations. If a smaller value of the
the double helix by solving the PB equation of a uniformly dielectric constant for the solvent close the polyion is intro-
charged infinite cylinder. Once the counterion distribution isduced in the PB equation, a better agreement can be obtained
obtained, the salt concentrationat the cylinder surface can (using the bulk dielectric constant of water in the PB equa-
be obtained. This calculation is shown in E4.13 of the tion, counterion concentration at close distances is underes-
following section. The charge per unit length along thetimated by approximately 18%®24] with respect to the re-

double helix axis is calculated from sults of the simulations In our paper, the value of this
dielectric constant is consistent with measurements per-
2q’ formed in highly concentrated ionic solutiof82,33 and
A= h(—,/,Y) (3.6 our calculations give reasonable values of other experimental

parameters that are well known.
whereh(iy) is given by Eq.(3.1) andq’ is a charge onthe ~ As shown in other studief27-29, counterions can be
double helix, the phosphate group charge. described by the PB equation. The counterion distribution
The equilibrium conformation of the helix is found by from the PB equation gives a high counterion concentration
minimizing the change in the free energy, E§.5a, as a  hear the cylinder surface, a fact consistent with Manning'’s

function of the charge per unit length along the axis given intheory of counterion condensatidi25,26. Some authors
Eq. (3.6). have shown that a lower dielectric constant for the solvent

near the DNA polyion enhances the counterion condensation
[24,30. A lower dielectric constant near the DNA polyion is
consistent with the fact that in highly concentrated ionic so-
In Sec. lIl, the helix charges were positioned on an imagi{utions the dielectric constant of water is lower than for pure
nary cylindrical surface of radiuaj. In this section, the Water[31-33. Hence, in solving the PB equation, we have
counterion distribution around the double helix is calculatedised two dielectric constants, one corresponding to the bulk
as if the double helix were a uniformly charged cylinder of Solvent, and the other to the solvent close to the cylindrical
infinite length. The linear charge density of the cylinder isSurface.
determined by Eq(3.6). The calculations are based on soly-  For an infinite charged cylinder, which is surrounded by
ing the Poisson-Boltzmann equation for an impenetrable unicounterions of one type, the PB equation is
formly charged cylinder of radiuay, in whichay=aj+ o,

IV. DISTRIBUTION OF COUNTERIONS IN SOLUTION

whereo is the minimum distance of approach of a counter- A _

ion to the center of a charge on the polyion. Results in this 10( dd(r) - ?P(f) for agsr=<a
section are based on an analytical solution of the PB equay2g(r)= = —(r );

tion [21] of an infinite charged cylinder with counterions. roor ar 4

Studies of DNA based on an infinite rigid cylinder model - Tp(r) for a<r<R,

can be found19]. This model assumes that the cylinder is (4.19
the equilibrium conformation, ignoring the fluctuations
around this conformation and bending. In addition, the infi-
nite model might not be appropriate to describe DNA in
solution; for example, when the solution is very dilfie.,
the screening length is larger than the characteristic lengt
scales associated with a DNA molecule, e.g., the radius o
the molecule, the total length, or the radius of curvature
The cylinder represents a negatively charged polyion, on a
count of the phosphate group charges. The counterions are
assumed to form a diffuse cloud. o fﬁ(r):qnoefqgl(r)/kBT, (4.1b

The PB equation significantly simplifies the equilibrium
analysis of the small ions in solution. The continuous model _
has been chosen to simplify the calculations; however, it isvhereq is the charge of the counteriorge(r) is the aver-
only appropriate as long as the discrete nature of the charg@ge potential energy of a counterion in the solution or the
can be neglected. The use of the PB equation as a first apotential of mean forcé®MF) of the counterion at a distance
proximation is supported by Monte Carlo simulations on ar from the cylinder(polyion), qn, is the charge density at a
cylinder mode[23] in which none or few co-ions are present distance whereb(r) =0, andT is the absolute temperature.
and the counterions hard core is small compared to the DNA In a first approximation, because of the negative sign in
radius, i.e.o/a,~0.1. In addition, Monte Carlo simulations the exponent of the exponential function, the occurrence of
were performed to investigate the effects of dielectric satuions with the same sign of charge as the cylin@erions is
ration of water near DNA, using a more detailed moleculameglected; therefore we assume that the only ions in solution
structure of the polyion, a structure based on experimentadre the counterions. In addition, the counterion potential en-
coordinateg24]. The PB equation does not include the ion- ergies are relevant to the extent they are comparable to
ion correlations due to the finite size of the ions, as opposedsT; at room temperature (25 °)CkgT~0.026 eV.
to the simulations in which these correlations are considered. The general solution of Eq$4.19 and(4.1b) is

wherer is the radial distance to the axis; the two dielectric
constants are for the solvent close to the cylindrical sur-
Lace, within ag=<r=a, and e for the bulk solvent, in
<r=<R. A picture of the cylinder model is displayed in Fig.
. The charge density(r) is determined by the statistical
C@oltzmann factor,



FIG. 4. Uniformly charged cylinder of infinite length in solu-
tion. Solid lines represent the impenetrable cylinder of radigs
whereay=ag+o. In this equationay is the radial distance of the
charges to the axis of the double helix andis the minimum

distance of approach of a counterion to a helix charge. The solution
is on the outside of the cylinder. The dielectric constant for the

solvent ise at close distances,<r=a, ande at large distances,
a<r=<R. The length parametdR, used in solving the Poisson-
Boltzmann equation, is not shown.

kBT K2r2 ) —
_ Tln 2(Te)’8(2)smhz[,130In(A0r)] for ap=<r<a
¢(r)_ kBT K2r2 . —

—In 2—,325|nl“?[Bln(Ar)] for a<r<R,

4.2

where k?=4mq%ny/ekgT. The parameter ¥/ is related to
the thickness of the counterion diffuse cloud.

The four constant®, By, A, and Aq in Eq. (4.2) are
determined by requiring the continuity eta of the poten-

tial ¢(r) and the associated electric field, and two additional
conditions:(i) the space integral of the charge of the coun-
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_”é( ad)(r’)) ”é( (9¢>(r’)>
T2 ar’ r,=a_§ o' ),
e< ,a&(r')) e( ,aZ(r'))
20" o . R_ir o' |
or
‘€qg ap(r')
== | )r,a. (4.3

Using condition(ii) and the continuity of the electric field at
r=a:

ar’

aB(r")

=€lr
ar’

(limé—0),
(4.43

,&E(r’)}
r'=a-§

}r’—a+5

or, using Eq.4.2),

E{1+ Bocott BoIn(Aoa) ]} = {1+ B cott B In(Aa)]}.
(4.4

The continuity of the potential is
[ ) )r—a 5=[S()]r=ass (IM5—0). (4.5

We introduce the following parameter, which turns out to
be important in Manning’s theory:

q
GkBT )

&= (4.6

¢ is a positive number becaugeand\ have opposite signs.
The linear charge density is determined by E(3.6) of the
previous section.

From Egs.(4.2), (4.3), and(4.6), we find that

£= (%l e){1+ By cott By IN(Agan) 1},

which can be written as

(4.7)

[(&l€) &~ 1]BocotH Boln(ag/a)]+ B2

I (e 11+ pocottBgn(ao/a)] |

terions in solution is equal in magnitude and opposite in sign (4.83

to the surface charge on the cylindéii) the electric field
vanishes at a radiuR within which the counterions are con-
fined.

Condition (i) assures the electrical neutrality of the solu-
tion and condition(ii) is used for convenience. From condi-

tion (i), we get
R~
Az—f p(r’")2mr'dr’,
ag

where\ is the linear charge density of the cylinder amgis

where
Bi=1+(elO{[(e[€)-1162—(1- )} (4.8
and
e
1+ B coti B In(R/a)]’

&5 (4.80

From known values of the parametéfs €, €, ap, a, and
R, the last three equations can be solvedfgoB8,, and ;.

the radius of the cylinder or the distance of closes approachihe parameteré; is proportional to the effective linear

of a counterion to the cylinder axis. Using Ed.13 in the
last equation, we get

charge density at the radius-a, after the counterions near

the cylinder have partially neutralized the charged surface. In
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expressing?é in Eq. (4.8, we have used Eq$4.2), (4.4b), T
and (4.5). The expression fog; in Eq. (4.89 resulted from - 0.00
combining 0.004 - 005

&={1+Bcott{ B In(Aa)]} (4.9

[a9] (0)gb

-0.16 |

-0.20
0.003

and

0=1+ Bcot B In(AR)], (4.9b

0.002 —

@e

which results from conditior(ii), given above. To obtain
values for¢ with physical meaning, it can be seen, using
Eqs.(4.89—(4.80, that the values o8 which give a value of 0.001¢
& within the range &Cé<w are either real, 8=0, or i
purely imaginary, &< B<if., where B, is a certain real
value.(The parameterg and &; are real quantities because
they are proportional to a linear charge density; therefpre
andB, must be either real or purely imaginary constanis. . o .
accurately solve Eqg4.89—(4.80, values ofg within the FIG. 5. _The c_ounterlon de_nsny given in E(@f,.._ltj is shown. In _
mentioned range are substituted, until the desired value df® UPPer insetis the potential energy of a unit charge counterion,
¢ is obtained[For our purposes, the valuesEandE are .q=|e|’ near the charged Cy“nder’.from E@.2). In the '°.W‘?f Inset.

. - o : . is the fraction of the total counterion charge that is within a radius
designated as positive, and either real or imaginary, because

the formulas are invariant after a change in sign. In usin [ plotted from Eq.(4.11B. At r=R, (7)(r) IS unity (not shown.
. ) | thé) = — i cot h 9 . t?\ ’ Near the cylinder radius a large fraction of charge is accumulated.
Inr?:r?tl]nary values, cotlig) = —i cot(s) wheres is the argu- The values of the parameters, defined within the text, are

. S =4.43 [h =3.21 A, =i0.6844], e=78.85,€=20, a,=14
To analyze the counterion distribution, we calculate thei a= 15['&(1@1403.5 A ri:O.OOJI\/l]aEndT=2986.15 K. 0

following functions:

counter—ion density 5(r)/q [A®]
o

0.000 Lt L
0 100

r [A]

2(r)2ar counterions remain close to the surface. In Eql1b, the
p(rdr=— dr, (4.10a  quantity in the right-hand side enclosed in braces for
f p(r")2ar’dr’ a<r=<R decreases whenincreases. This quantity decreases

ag sharply wherr is still close toa and slowly wherr increases

more towards =R, where it vanishes. The large concentra-

(€le) (B3 €) ¢ e tion of counterions near the cylinder surface is consistent
r sint? Boln(Agr)] dr Tor g,=sr=a with Manning’s theory of counterion condensation because
P(r)ydr= — the quantity in braces in E@¢4.11b is close to 1 at a some-
B¢ d for a<r=<R what arbitrary radius which is close to the surface. In Man-
rsint?[ B In(Ar)] ’ ning's theory, the fraction of condensed counterions ap-

(4.10n  proaches the limit +1/¢ [25,26].
The charge density(r) in Eq. (4.1b is not determined

and completely unless the constam§ is known. In our calcula-
] tion, the concentration,, which is fixed, is defined in terms
B(r')2mr'dr’ of the volume of solution per counterion. With this definition
B(r)= J” B(r)dr’ = ag (4.113 we have a lower limit for the bulk concentration. The expres-
aop R_ | T sion forng is
p(r")2mr'dr
2o
(el e) ! (4.12
ele — — Ng= , .
1—T{1+,Bocotk[BOIn(Aor)]} for ap<r=<a O (dyp/2) m(R?—a3)
o(r)=

1- g{l’L:B cot{ B In(Ar)]}  for a<r<R. whered,, is the distance between two consecutive charges
(4.11n  on the same chain of the helix, as described in Sec. IIl.
Because of Eq(4.1b), the presence of the charged cylin-
In the last formulasA and A, are determined by solving der causes the charge density of counterigi(s), to be
Eqgs.(4.7) and(4.93. Equationg4.10g and(4.10h give the  sharply peaked at the cylinder surface, as shown in Fig. 5.
probability that a counterion is found between the distance3he local counterion charge density at the surface varies
r andr+dr from the axis. Equation$4.119 and (4.11b quite rapidly. The high concentration of counterions is also
represent the probability of having a counterion within a dis-apparent in an inset of Fig. 5, where Ed.11b is plotted.
tancer, or the fraction of the total charge in solution that lies This equation gives the fraction of counterions around the
between the radiugy, andr. When ¢ is large, most of the cylinder within a radiug.
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TABLE II. The parameters of the double helix model which are
based ormA-DNA and B-DNA experimental parameters of Table I.
It is seen that the two models only differ in the value of the distance
between consecutive charges on the same chgjn,

Type  a(A) d, (&) Yo deg ho?(RA) dpp(RA)

% A model 9 18.2 170 3.12 5.6
S B model 9 18.2 170 3.12 6.5
B

%Calculated from Eq(3.2) in text.

whereng andn are given by Egs(4.12 and(4.13), respec-
tively.

_ o b e b b e b
T T Sy V. RESULTS ON THE FREE ENERGY OF COILING

r/o

In this section, we discuss the results of the calculations
on the change in the free energy between the coiled and
FIG. 6. The PMF at several counterion concentrations duringincoiled conformationsAW(Y,X). The parameters for two
coiling from Egs.(2.49—(2.49 and (4.14. The parameters are double helix models are shown in Table II. TAenodel and
given in Table Ill, section(a), item 1, wherée=15. Symbols are the B model, which we use for the calculations, are based on
explained in text. A unit charge is assumed for each of the chargethe experimental values of Table | and they correspond to
on the helix and the counterions, i.g/,=—|e| andg=|e|. The  A-DNA and B-DNA, respectively. The only difference be-
curves correspond to various coiled conformations;=0°,  tween these models is the valuedf,, the distance between
c=0.84M, £¢=2.19, dotted lineyy=36.0°, c=7.5M, {=4.23,  two consecutive charges on the same chain. For the calcula-
solid line; ¢y=36.5°,c=8.4M, £=4.39, dashed linec is calcu- tions, the change in the value d@ is what seems to be
lated from Eq.(4.15h. essential. The results of the calchations are shown in Fi
. gs.
6—13 and Tables IlI-VI. The values of the parameters shown

The charges on the polyion are restricted to the surface qf these tables are both experimental and calculated; the cal-
the cylinder; therefore, we determine the local concentratioRyjated ones are noted with an asterisk. In Figs. 7—13,

usingp(ao) at the surface, namely, AW(Y,X), which is calculated from Eq¥3.53—(3.50) of
_ Sec. lll, is shown as a function of the coiling angle of

_ p(ag) conformationY; the corresponding values of the molar local
n= q '’ (4.13 concentration of counterions, calculated from E4.15h,

are also shown. The calculations are based on the pair poten-

whereq is the charge of a counterion; Eqe.1b), (4.12, tial of mean force given in Eq$2.4a—(2.49 of Sec. Il and '
and (4.2 are used. The local ionic concentration, shown inEd- (4.14 of Sec. IV; we assumed that a charge on the helix
Eq. (4.13, is substituted in the PMF, given in Eq.4a— and a counterion is a unit charge; the PMF is illustrated in

(2.4d. The inverse DH screening length associated with thé 19 6. In Egs.(2.49 and(4.14), the dielectric constant that
counterions near the double helix is enters in the PMF¢ is equal to the dielectric constant for the

solvent near the cylinder which is used in Sec. IV; this is so
because the charges on the helix are immersed in this sol-
(4.14 ~ vent. Tables IlI-VI are divided into sections, which are la-
beled with a letter, and within each table section we give
various examples, which are labeled with a num@erthe
which is used instead of Eq2.4d, andn is given by Eq. first column. Each of the seven table sections is shown in
(4.13. [A charge on the double helix denoted ¢y replaces each of Figs. 7—-13. In Tables IlI-VI, the experimental pa-
g; in Eqg. (2.49.] The interactions between charges on therameters that are fixed for the examples of the table section
helix are calculated by the PMF, which is illustrated in Fig. are shown in the heading. In the first six columns, the calcu-
6. This calculation is required in order to obtain the differ- lated parameters which minimize the value of the change in
ence in the free energy between the two conformationsthe free energyAW(Y,X), are noted with an asterisk. In the

47an/ 1/2
el |

AW(Y,X), given in Egs.(3.53—(3.50. last two columns of Tables IV-VI, we give two experimen-
If n andn, are given in number of counterions pef A  tal parameters that change in each example. In the following
the molar concentrationsV) are paragraphs, we explain the results for each table section.
(a) We use the parameters of tBemodel, which is given
No in Table I, appropriate for aqueous solutions. As seen in Fig.
Cfm. (4.153 7, decreasing the dielectric constant for the solvent near the

double helix,’¢, causes the change in the free energy,
AW(Y,X), to decrease and the position of the minimum to
n approach zero at a certain critical valu€eofThe value of 20

¢~ 6.022¢10 % (4.150 for '€ is chosen in the following water solution examples
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0.10- — T T T 0.10 ]
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-0.10 — -0.10 —
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Yy [degrees] ¥y [degrees]

FIG. 7. The dielectric constant for the solvent near to the helix, FIG. 9. The bulk concentration is varied, usingo=5.85 A.
E, is varied. The change in the free enerdyW(Y,X), between The change in the free energ¥\W(Y,X), between two conforma-
two conformations¥ (coiled) andX (uncoiled is shown, calculated tions Y (coiled and X (uncoiled is shown, calculated from Eqg.
from Eq. (3.53, as a function of the angle, of Y. Inset: local  (3.58, as a function of the anglé of Y. Inset: local counterion
counterion concentratioa from Eq. (4.150. The double helix pa- ~ concentratiorc from Eg. (4.15h. The double helix parameters are
rameters are from thB model of Table Il. Each charge on the helix obtained from thé8 model of Table Il. Each charge on the helix is
is a unit charge. The parameters of these examples are given munit charge. The parameters of these examples are given in section
section(a) of Table Ill. The following numbers refer to the first (c) of Table IV. The following numbers refer to the first column of
column of Table Ill: 1(solid line), 2 (dot-dashed ling 3 (dashed  Table 1V: 1 (dotted ling, 2 (dashed ling 3 (dot-dashed ling 4
line), and 4 (dotted ling. The value if€ decreases in the order (solid line), and 5(upper dotted ling The value ofc increases in

1-2-3-4. the order 1-2-3-4-5.
0.10 ————————— ——— ] 0.10
|
i
[ .
0.05 — ) = 0.05
L .
1
i~y 0.00 — oy 0.00
8 - i)
[ [
z I 2 i
E  _o05 — 5 —o0s
-0.10 — -0.10
ST SR S R N B S R EE I R B
o 10 20 30 40 ] 10 20 30 40
Yy [degrees] Yy [degrees]

FIG. 8. The minimum distance of approach of a counterionto a FIG. 10. The bulk concentration is varied, usingr=5.65 A.
charge on the helixg is varied. The change in the free energy, The change in the free energ¢W(Y,X), between two conforma-
AW(Y,X), between two conformations (coiled andX (uncoiled tions Y (coiled and X (uncoiled is shown, calculated from Eg.
is shown, calculated from Eq3.53, as a function of the angle (3.53, as a function of the anglé of Y. Inset: local counterion
¢y of Y. Inset: local counterion concentratienfrom Eg. (4.15b. concentratiorc from Eq. (4.150. The double helix parameters are
The double helix parameters are obtained from Ehenodel of  obtained from theéB model of Table Il. Each charge on the helix is
Table Il. Each charge on the helix is a unit charge. The parametera unit charge. The parameters of these examples are given in section
of these examples are given in sectit of Table Ill. The follow- (d) of Table IV. The following numbers refer to the first column of
ing numbers refer to the first column of Table lil:(4olid line), 2 Table IV: 1 (dotted ling, 2 (dashed ling 3 (dot-dashed ling 4
(dot-dashed ling and 3(dashed ling The value ofc decreases in  (solid line), and 5(upper dotted ling The value ofc increases in
the order 1-2-3. the order 1-2-3-4-5.
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because this value is consistent with measurements in con-
centrated ionic solutions2,33 and it yields reasonable val-
ues for the other parameters. The parameteis calculated
from Eq.(4.15h. Figure 6 illustrates the PMF, given in Egs. |
(2.49—(2.40 and (4.14), that was used in the calculation. 0.02
The PMF is not a monotonic function ofand this feature .
might produce kinks iAW(Y,X), as seen in Figs. 11 and
12.

(b) This shows a change in the radius of the counterion,
which changes the counterion minimum distance of approach
(hard core to the center of a charge on the double helix. As
seen in Fig. 8, after decreasing the radius of the counterion
the change in the free energy is smaller. The calculations
suggest that th8-DNA might be unstable for small radii of
the counterion. However, counterion hydrated radii are not R E R
too small, about 5 32,33, if we include both the diameter 0 10 20 30
of a water molecule and the ionic radius of the counterion. ¥y [degreee]

Because of the high concentration of counterions near the

double helix, the Coulomb interaction is screened and the FIG. 11. The bulk dielectric constan¢ is varied, using
nonmonotonic hard-core correlation effects become impore=3.79 A. The change in the free enerdy(Y,X), between two
tant, as shown in Fig. 6. Even though the sum of 8553 conformationsY (coiled and X (uncoiled is shown, calculated
can be performed easily to include the first 200 charges, thBom Eg. (3.5, as a function of the anglesy of Y. Inset: local
nearest charges in the same chain contribute significantly tgPunterion concentratioa from Eq. (4.15h. The double helix pa-
the change in the free energy. These results are consistef{neters are obtained from themodel of Table Il. Each charge on
with the experimental finding that with counterions of large he helix is a unit charge. The parameters of these examples are
hydrated radii(small ionic radi), DNA is more stable. For given in section(e) of Table V.. The following numbers refer to the
DNA in aqueoussolution, the temperature of melting is first colu_mn of Table V: 1(solid line), 2_(dotted ling, and 3(dot-
higher in Li* compared to N&[40], and in Na&* compared dashed ling The value ofe decreases in the order 1-2-3.

5 . )
to K™ [41]. The hydrated radius of the counterion decreaseisength scale, such as the radius of curvatutiee ionic con-

; o+ + +
in the orge(; I:II'h> Na.”>K ) he ch in the bulk centration at close distances decreases. A decrease of the
(c) and(d) These illustrate the change in the bu CONCEN-1504) counterion concentration causes the helix to uncoil.

tration ¢, from Eq. (4.158 with a corresponding change in ) anq(f) These show a change of the dielectric constant
the dielectric constant for the solutioa, The value of these

parameters are obtained from Rdf32] and[33], where the
hydrated radii of three counterions in aqueous solution and
the static dielectric constant were measur@de radii de-
crease in the order Li>Rb*>Cs".) Table sectiongc)
and(d) correspond to Lt and Cs", respectively. The mea-
sured hydrated radii for i, Cs*, and CI" are 2.6, 2.4, and
3.25 A, respectively. The hard coeeis obtained by adding
the radii of a positive and a negative ion, resulting in 5.85
and 5.65 A.(We use the hydrated radius of Clfor the
hydrated radius of the phosphate groups on the double helix.
As seen in Figs. 9 and 10, fgc) and (d), respectively, the
double helix is less coilefthe value ofiy at the minimum
of AW(Y,X), ¢%, is reduced when the bulk concentration
is increased, which also causes a reductiod@f(Y,X) at
the minimum. The calculations suggest that there is an un-
coiling transition at sufficiently high concentrations. This un- S RN IS R
coiling transition is different from the uncoiling transition 0 10 20 30
that is observed experimentally in DNA for sufficient dilu- ¥ [degrees]
tion. In our model, the local counterion concentration is cal- FIG. 12. The bulk dielectric constané is varied. using
culated by solving the PB equation for an infinite cylinder. Ll ) ;
Consequently, the counterion concentration near the cylindef ~ >4° A. The change in the free energyW(Y,X), between two
does not decrease substantially, even at extremely low bul onformationsy: (coiled ar_1d X (uncoileg is shown, calf:ulated
rom Eq. (3.53, as a function of the anglgy of Y. Inset: local

concentrations, and hence the double helix remains cone(%.oumerion concentratioa from Eq. (4.158. The double helix pa-

We. have perfor.med CalCUIatlon.S’ to b(_a .pUbI'Shed’ on th(?ameters are obtained from tAemodel of Table Il. Each charge on
lonic cqncentratlon nef':lr a polyion of _f'n'te length. Th,esethe helix is a unit charge. The parameters of these examples are
calculations show that if the DH screening length associategyen in sectior(f) of Table V. The following numbers refer to the
with the bulk ionic concentration is comparable to or largerfist column of Table V: 1(solid line), 2 (dotted ling, and 3(dot-

than the length of the polyiofor some other characteristic gashed ling The value ofe decreases in the order 1-2-3.

0.04

0.00

AW(Y.X) [eV]

-0.02 — =

0.04

0.02

AW(Y.X) [eV]

0.00

-0.02 — ]
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dielectric constants for the pure solvents afé3]
€,=78.85, ¢,=32.63, ande.=24.3, for water, methanol,
1 and ethanol, respectively. The examples in Table V are cal-
— culated using the static dielectric constant of a mixture of
] water and ethanol, which is obtained from measurements
] [42]. In addition, it is found from experiments of DNA in
. solutions with a high content of ethanol that DNA is in the
A conformation[44], i.e., A-DNA. Therefore the parameters
of the A model in Table Il are used in these examples. As
seen from the calculations in Fig. 8 and table sectimnthe
B model becomes unstable for small counterion radii. In ex-
periments, the high content of ethanol might prevent the hy-
dration of the counterion. In a solution with small counteri-
] ons, theA model is a more stable conformation; this is
ol e s i e e b ] because consecutive phosphate groups on the same chain are
0 10 20 30 40 closer. In our calculations, we have chosen'Gsd K* as
¥ [degrees] the two counterions. The ionic radii can be obtaif¥8] and
are found to be 2.12, 1.67, and 1.33 A, fo(fér a phosphate
FIG. 13. The temperature is varied. The change in the free engroup, Cs, and K, respectively. The hard cares obtained
ergy, AW(Y,X), between two conformationé (coiled) andX (un- by adding phosphate and counterion ionic radii. In these cal-
coiled is shown, calculated from Eq3.53, as a function of the culations, we have assumed there is no hydration; therefore
angle ¢, of Y. Inset: local counterion concentratianfrom Eq.  there is only one value of the dielectric constant for the sol-
(4.15h. The double helix parameters are obtained from Bie vent. The values of 37.18 and 27.99 correspond to mixtures
model of Table II. Each charge on the helix is a unit charge. Theof ethanol and water where the mole fraction of water is 0.5
parameters of these examples are given in se¢gpof Table VI.  and 0.2, respectivelj42]. As seen in Figs. 11 and 12, on
The following numbers refer to the first column of Table VI: 1 decreasing the dielectric constant and the counterion radii,
(solid line) and 2(dotted ling. The temperaturd increases in the AW(Y,X) at the minimum increases. The curves in these
order 1-2. figures have kinks, showing less coiling or more coiling,
depending on the values of the parameters. Considering that
for the bulk solvente. The bulk counterion concentration is the double helix uncoils before denaturation takes place, our
low in these examples; thus we use the dielectric constant faresults are consistent with measurements of DNA in ethanol
the pure solvent. A decrease in the dielectric constant for thand methanol solutions. It is well known that methanol and
solvent is achieved by mixing an alcohol, such as methanologthanol, or mixtures of these solvents and water, denature
ethanol, with the wate42]. At T=25 °C, the values of the DNA [45,46, and that the denaturation temperature is lower

0.05

0.00

AW(Y.X) [eV]

-0.05

-0.10

TABLE Ill. The dependence of the free energy change on the dielectric constant for the solvent near the
double helix and on the counterion hard-core radius. The change in the free én&igg X) is calculated
from Egs.(3.53—(3.5d). The coiled conformation i¥ and the uncoiled conformation ¥ The coiling angle
is ¢y . In each section there are experimental and calculated parameters. The calculated parameters are
denoted with an asterisk. In each section, several examples are shown. The experimental parameters in the
section heading remain fixed for the examples within the section.

AW* (eV) 45 (deg  h* (A)  c*(M) &* B* e oA a A
(@
T=298.15 K ¢=78.85c,=0.00lM (R=403.6 A?
o=6A a,=15A a=16A

1 -0.121 36.0 3.36 7.57 423 i0.6887 15

2 —-0.077 29.6 4.59 7.21 3.10 i0.6493 8

3 —-0.020 17.4 5.90 6.91 2.41 i0.6005 5

4 ~0 0.3 6.50 7.40 2.19 i0.5708 4

5 ~0 ~0 6.50 9.34 219 i0.5554 35

(b)
T=298.15 K ¢=78.85c,=0.00M (R=403.6 A?
=20 a=16A

1 -0.119 375 2.96 7.60 4.80 i0.7005 6 15
2 —0.033 35.1 3.58 7.32 3.98 i0.6584 5 14
3 -0.011 32.8 4.05 7.15 3.51 i0.6139 4 13
%R is used in Eq(4.12 in text.
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TABLE IV. As Table Ill, showing the dependence of the free energy change on the bulk concentration of

the solution.
AW* (eV) S (deg h* (A) c* (M) &* B co(M) €
(0
T=298.15 K €=20
0c=585A a,=14.85A a=16 A
1 —-0.106 37.3 3.02 7.79 4.71 i0.4561 10°° 78.85
(4032.92

2 —0.087 36.8 3.16 7.85 450 i1.5311 0.1 78.85
(43.0

3 —0.036 32.4 4.13 6.93 4.23 i3.4609 1.09 64.2
(19.2

4 —-0.018 26.7 5.00 7.27 4.62 i5.4189 2.65 48.6
(16.9

5 —-0.002 16.0 6.00 6.83 457 i6.6178 3.88 40.95
(16.2

(d)
=298.15 K €=20
0=5.65A a,=1465A a=16A
1 —0.082 36.7 3.18 7.49 4.47 i0.4523 10°° 78.85
(4032.92

2 —0.064 35.9 3.39 7.27 420 i1.4824 0.1 78.85
(42.9

3 —-0.025 315 4.29 6.82 3.85 i3.2375 1.1 68.0
(19.0

4 —-0.012 26.9 4.97 7.30 3.92 i4.7170 2.5 57.6
(16.7

5 —0.003 16.2 5.72 6.98 3.77 i5.5459 35 52.1
(16.2

%R in A, which is used in Eq(4.12) in text.

compared to an aqueous solution of the same ionic concenvater. The melting temperature decreases in” Ne& com-
tration. Experimentally, it is found that DNA in methanol pared to C$ [45], which is understood because Chas the
solutions is more stable when the ionic radius of the couniarger ionic radius. As noted in other studi€12], the sta-
terion is largei{45,44], as opposed to what happens in purebility of the double stranded DNA secondary structure is not

TABLE V. As Table lIl, showing the dependence of the free energy change on the dielectric constant for
the bulk solvent.

AW* (eV) J5 (deg  h* (A)  c*(M) & B €
(e)
T=296.15 K c,=0.00IM (R=434.7 A?
=379 A a;=12.79 A

ml

1 —0.018 32.3 251 13.17 12.10 i0.6999 37.18 37.18
2 —0.012 29.7 3.18 11.01 12.70 i0.7007 27.99 27.99
3 —0.002 214 4.49 10.67 16.75 i0.7043 15.0 15.0

)
T=296.15 K c,=0.00M (R=434.7 A?
0=3.45A a,=12.45A

1 —-0.014 314 2.76 11.26 10.99 i0.6940 37.18 37.18
2 —0.009 29.6 3.20 11.45 12.62 i0.6962 27.99 27.99
3 —0.001 20.0 4.65 10.48 16.19 i0.6995 15.0 15.0
%R is used in Eq(4.12 in text.
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TABLE VI. As Table lll, showing the dependence of the free energy change on the temperature.

AW* (eV) ¥y (deg h* (A) c* (M) & B* T (K) €
9
=20 y=0.00M (R=403.6 A2
0=55A a,=145A a=16A

1 —0.058 35.8 3.41 7.49 4.06 i0.6730 273.15 88.28
2 —0.070 36.5 3.24 7.21 4.55 i0.6855 323.15 70.27

%R is used in Eq(4.12) in text.

only due to the interstrand hydrogen bonds. The authors dent with the thermal denaturation of DNA that occurs below
these references have also mentioned that denaturing agents;s 100 °C. However, a decrease of the dielectric constant
such as methanol and ethanol, do not specifically break thior the solvent close to the helix can produce an uncoiling
hydrogen bonds; however, they cause instability of the DNAtransition at temperatures close to the experimental value, as
helix. The hydrogen bonding is important in keeping the twoseen above in paifa) of this discussion and the examples
DNA strands together11], shown in experiments in which shown in Fig. 7 and Table IlI.
the composition of G-C pairs is varied; however, this might As a final point, we discuss briefly the calorimeter mea-
not be relevant for the coiling. surements of the enthalpy associated with DNA denatur-
(g9) This shows a change in the temperature with a correation. At a temperature of =25 °C, kgT~0.026 eV. The
sponding change in the dielectric constant for the bulk solstability of the helix depends on comparing the minimum
vent, according to experimental measurem@a8. In these  value of the free energy of coiling witkgT. Once the hy-
examples we consider thig model in agueous solution. The drogen bonding contribution to the energy has been sub-
product eT decreases only slightly. This small decreasetracted, the experimental energy attributed to the stacking
causes almost no effect on the parameters that minimize thenthalpy is 3.6 kcal per mole of phosphate group paim.
change in the free energy, as seen in Fig. 13. The equilibriurithe energy attributed only to the stacking could also include
value of ¢/y moves slightly toward higher values, implying the coiling energy. To compare the experimental measure-
coiling of the helix and increase in the change in the freement to our calculations, an energy of 1.8 kcal per mole of
energy, i.e., it has a higher negative value. In these examplephosphate groufone half of the above value for one charge
we have not considered a change in the value of the diele@n the heli} is approximately 0.078 eV. The coiling energy
tric constant near the double helix due to an increase of thealculated in the examples is seen to be consistent with this
temperature. However, this temperature dependence mighkialue.
be an important feature to investigate. In our model, for a
very high temperaturé&housands of degregsvhere the di- ACKNOWLEDGMENTS
electric constant of water is close to 1, the helix uncoils We acknowledge support from the Office of Naval Re-
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