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In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where
both translational and internal degrees of freedom are present and coupled through microscopic interactions,
with a focus on the manner of theacroscopiccoupling between the two types of degrees of freedom. First,
an unconventional description of the translational degrees of freedom is developed, in which the randomly
varying spatial connectivity of the particles is represented bgralom latticewhose dynamic structure is
given by triangulating the spatial configurations. Based on this random-lattice description, a series of three
statistical-mechanical models are then constructed. All of the three models are in essence spin-1/2 Ising models
where the spins, representing internal degrees of freedom, are associated with hard-disk particles and nearest-
neighbor particles interact through spin-spin interactions that may have spatial dependenfiectibéng
number of nearest neighbors and the possible spatial dependence of the spin-spin interactions couple micro-
scopically the spin degrees of freedom to the translational degrees of freedom. The first(hadeh
random-lattice Ising model with conventional nearest-neighbor spin-spin interactions. The secondimizdel
an extension of this model to include a spatial dependence of the nearest-neighbor spin-spin interactions. The
third model(lll) is a modification of the second model that accounts for spin states with different internal
degeneracy. Monte Carlo simulation techniques, including both a special algorithm for the random-lattice
description and histogram and finite-size scaling analysis, are used to investigate the phase behavior of all three
models. It is shown that the order-disorder spin transition in model | is decoupled from a first-order
singularity—Ilattice melting—associated with the translational degrees of freedom and remains critical and falls
in the universality class of the standard two-dimensional Ising model on regular lattices. Model Il is shown to
exhibit a phase diagram that has a region where the spin degrees of freedom are slaved by the translational
degrees of freedom and develop a first-order singularity in the order-disorder transition that accompanies the
lattice-melting transition. The internal degeneracy of the spin states in model Il implies that the spin order-
disorder singularity can be of first order throughout the phase diagram. It is found that this first-order singu-
larity can be either coupled to or decoupled from the lattice-melting singularity, depending on the strength of
the microscopic coupling. The calculated phase diagram and the associated thermodynamic transitional prop-
erties for model Ill are discussed in relation to experiments on planar bilayers of lipid-chain molecules whose
properties are determined by a subtle coupling between the translational variables and the intrachain confor-
mational stated.51063-651X96)01212-3

PACS numbdss): 02.70—~c, 64.60.Cn, 05.56:q

[. INTRODUCTION mational order within the lipid chains, to a high-temperature
(fluid or liquid-crystalling phase, which displays disorder in
Ordering phenomena involving both translational and in-both the translational and chain conformational degrees of
ternal molecular degrees of freedoms are common in amireedom.
phiphilic and liquid-crystal systenjd]. One specific class of In a first approximation the main transition in lipid bilay-
systems involves hydrated bilayers composed of lipids thagrs can be described in terms of simple lattice models, where
are amphiphilic molecule§2]. Each monolayer in a lipid each lattice site is assigned a lipid chain with an internal
bilayer constitutes a two-dimension@D) condensed sys- variable—analogous to an Ising spin variable in the standard
tem of interacting lipid molecules with internal degrees ofregular-lattice Ising model—representing the conformational
freedom corresponding to chain conformational states. It islegree of freedorfd] and where neighboring chains interact
well established that a lipid-bilayer system exhibits variousin a way that depends on the values of their internal vari-
thermodynamic transitiong3], among which the most ables, analogous to Ising-like spin-exchange interactions.
prominent and most studied one is the main phase transitiof.his approach has been quite successful in describing several
It is usually assumed that this thermotropic transition in-essential thermodynamic properties of the main transition
volves two distinct but coupled phase transitions—2D latticethat are mainly related to the chain conformational degrees
melting and chain melting—associated with the translationabf freedom[5]. However, it does not take into consideration
and chain conformational degrees of freedom, respectivelthe interplay between the conformation@ar interna) and
[3]. In other words, the transition takes the bilayer from atranslational degrees of freedom, an important issue in un-
low-temperaturdgel) phase, which is a solid and haguas) derstanding the structural properties and thermodynamic be-
long-range translational order and a high degree of conforhavior of the systems. For example, both the surface density
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of the bilayer and the lateral mobility of individual lipid fluid phases of systems of hard-core particles with short-
molecules strongly depend on the chain conformationatange interactions.
states. In several cases, experiments have clearly revealed Since our studies on the interplay between internal and
manifestations of this interplay. A prominent case is that oftranslational degrees of freedom of many-particle systems
cholesterol, which, when incorporated into a lipid bilayer, have largely been motivated by the collective phenomena
has the ability to uncouple the two distinctly different lattice- found in lipid-bilayer systems, we naturally see the purpose
melting and chain-melting procesdés7]. Although some of of developing the random-lattice description as being two-
the generic thermodynamics of such an interplay can be ddeld: (i) to study the generic thermodynamic behavior of
scribed by introducing newsomewhat artificigl lattice de-  two-dimensional systems where the two types of degrees of
grees of freedoni8], more realistic descriptions, especially freedom are present and coupled dinglto model this cou-
of the translational degrees of freedom, are needed. It is on@ing in a way that is relevant to lipid-bilayer systems. To
of the themes of the present work to explore this interplay bythis end, we have chosen to study a series of three statistical
developing an appropriate description, in terms of bothmechanical models, which have different emphasis and lev-
computer-simulation algorithms and microscopic interactior€ls of complexity in describing the microscopic interactions
models, of the translational degrees of freedom and theithat govern the interplay of the two types of degrees of free-
coupling to the internal degrees of freedom. dom. All three_ models are rela_ted to sygtems gonsisting of
A full microscopic (or first-principles treatment of trans- hard-core particles, each carrying a “spin” variable repre-
lational degrees of freedom would be ideal. Such a treatmeri€Nting an internal degree of freedom. Interactions between
is, however, very computationally demanding and severelypart'des are essentially spin-spin interactions, which are

limits any studies involving translational degrees of freedommOOIeIed in the spirit of the conventional Ising model defined

[9]. Consequently, different approximation schemes are us( 2 regular lattice. Hence all three models are in essence
' ' sing models defined on the random lattice.

ally employed, depending on the scope of the study. For Ising models defined on different types of 2D random

gxamplg, Iattlcg—gas models "?‘re.used tq _descnbe systems I%f[tices have been subject to considerable attention over the
interacting particles and gas-liquid 'transmon; In these mOdbast years, in particular as model systems involving 2D grav-
els, the structure anql the occupation of lattices account fqu. Considerable progress was made by the finding of the
the hard-core repulsion, the short-range nature of the MQsyact solution for an Ising model on an unconstrained ran-
Ie_cule_lr_mteractlons, and the translational entropy. Despite thgom triangular lattice[11]. It was shown that the critical
simplifications underlying these models, they capture the gépehavior of this model is characterized by the critical expo-
neric thermodynamic properties of gas-liquid transitions ahentsa=—1 andB= 13 [11], which are very different from
which the full translational invariance of the system is pre-those of the universality class of the standard two-
served. It is necessary to invoke a different kind of approxi-dimensional Ising model¢=0 andB8=3). The same results
mation scheme, however, if breaking of translational symmewere also obtained numerically by Monte Carlo simulations
try is at issue, as is the case when solid-liquid transitions arfl12]. A different approach was taken in a recent study of an
considered. Ising model on a dynamically generated lattice based on the
In the present paper, we have developed a simple descrigpatial proximity of the particles in the plarf&3]. In this
tion based on the idea of representing microscopic spatiatudy, spins were assigned to hard disks that were allowed to
configurations of many-particle systems by configurations ofnove in the plane, and in contrast to the random lattice con-
a randomly varyingtriangular lattice. Thisrandom-lattice  sidered here, the local lattice topology was not fixed. It was
description is formulated in such a way that it is both ad-shown that, for condensed systems, the standard 2D Ising-
equate for describing collective phenomena manifesting thenodel behavior was recovered, irrespective of the presence
interplay between the interndk.g., lipid chain conforma- of full translational invarianc¢13]. As the hard-disk radius
tional) and translational degrees of freedom in a class oflecreases with respect to the interaction range, the line of
two-dimensional systems and suitable for computer simulalsing critical (temperaturgpoints was found to terminate at a
tions. It is different from conventional lattice descriptions in tricritical-like point, and it was argued that the special criti-
that the lattice structure is dynamiand semi-triangular it cal behavior displayed by the Ising model on the uncon-
can be seen as the result of “fluidizing”ragular triangular  strained random triangular latti¢&1] was again observed at
lattice through sampling over nonregular triangular latticethis point. Beyond the tricritical-like point, the spin order-
configurations with a fixed global topology. The global to- disorder transition becomes first order. In comparison with
pology is here given by the Euler characteristics of the reguthis work our studies always correspond to the condensed
lar triangular latticd 10]. The phase space of the translationalregime.
degrees of freedom, including both the part that respects the It should be noted that 2D random lattices also play a role
full translational symmetry, i.e., that corresponding to fluidin simulation studies of the shapes of fluid membranes,
phases, and the part that respects the broken symmetry, i.&here the fluidity(or a certain type of randomnegssf the
that corresponding to solid phases, should therefore be welttice is crucial for the correct description of large-scale
approximated by this description. Our description is also dif-conformational properties of the membranéd—16. To a
ferent from conventional off-lattice descriptions in that it large extent the numerical dynamic-triangulation procedure
only provides a restricted phase space: those microscopitiscussed in this paper has been carried over from studies of
configurations that correspond to large density fluctuationfluid membrane conformations. In this respect our study
on short length scales are effectively excluded. This approxibears some resemblance to a study of the mechanical prop-
mation is, nevertheless, sufficient for describing condensedrties of the spectrin network of the red-blood-cell membrane
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by Boal, Seifert, and Zilkef17].

The paper is organized as follows. Section Il gives an
essential account of the random-lattice description in the ‘ —_ ‘
context of the Metropolis Monte Carlo simulation algorithm.
Some of the more technical issues are discussed in the Ap-

pendix. Section Il describes in considerable detail the vari- '

ous two-dimensional models that we have studied. Section

IV presents the simulation results obtained for the different

models and our analysis of those results, along with discus- _ . .

sions that rationalize the simulation results and underline the FI.G' 1‘, Particle move. The hard disk at positiBris moved to
generic phenomenology of, and physical mechanisms unde osition P
lying, th_e macrosgopic coupling and decoupling between thﬁ'his triangulation is implemented as follows. An ordered
translational and mtemal dggrees of fregdom. The Comp""r'c':onfiguration in which the particles are positioned on a regu-
son of some of .the simulation results W'.th a _rec.er_1t EXPelliay triangular lattice is used as an initial state in which each
mental observation of a new phase transition in lipid-bilayer

systems is also given in this section. Section V concludes thSite IS linked to its six nearest neighbors by tethers. The
y . 9 . . ' fattice configuration is then represented by a network of teth-
paper with a brief reiteration of the work reported and a

remark on possible further applications of the random—ers forming.triangles; the term “triangqlation” refers to this
lattice-model approach we have taken representation. The phager conflgura}tlom space can then

' be explored through a random updatifmg stochastic evolu-
tion) of configurations of the lattice, which consists of three
Il. RANDOM-LATTICE DESCRIPTION steps to be described in the following subsections. All these

In this section the random lattice is introduced as a basiStePS are subject to the standard Metropolis Monte Carlo

representation of the translational degrees of freedom, upaf¥IC) acceptance criteriofl9]. According to this criterion,

which the specific microscopic models of Sec. Il are con-th€ probability of accepting an attempted move from a con-
structed so as to take into account interfsin) degrees of  figurationi to a configurationf is given by mif1,P;),
freedom and their coupling to the translational degrees ofvhere
freedom. Furthermore, the implementation of the random lat-
. . ; ' . . Pir=exp(—AH/kgT). 1
tice will be described and discussed as an integral part of the it o sT) @
Monte Carlo simulation methods used in our study, to they js an effective Hamiltonian describing microscopic inter-
extent that is necessary for understanding the essential feactions, as given by specific modelsH=H;—H;, andkg
tures of the random-lattice description. Some of the mores the Boltzmann constant. A detailed description of the mi-
technlca}l details of the implementation are relegated to th%roscopic models studied in the paper will be presented in
Appendix. _ Sec. lll. We note, however, that in all the models, the short-
The translational degrees of freedom of a 2D manyygnge repulsion between particles is modeled as a hard-core
particle system are conveniently represented by the planggpyision. Each particle is then considered as a hard disk of
coordinatesX,y) of the particles. A particle configuration is giameterd and every site on the random lattice is occupied

total number of particles. When dealing with interactions be-
tween particles, the most important information required 1. Particle moves

concerns the local environment of each individual particle, The first step in the MC undati d is the “Dar-
such as the distribution of other particles in its neighborhood. € 1rs ,,S ep in the updating procedure 15 the - par
and their distances to it. In conventional simulations tha(t1UCIe move,” which IS |Ilustrate_d In F_|g. 1. A particle is _cho-

explicitly deal with the translational degrees of freedom, it isSen at random and its center is subject to a random displace-

usually one of the most time-consuming steps to obtain anfrent (0x, dy), where

update this information from the microscopic configurations. SX=(2¢,—1)6r
In this section, we describe an algorithm that handles struc- X mex
tural information in a manner that is distinctly different from Sy=(2¢,— 1) 6" . )
conventional off-lattice algorithms and at the same time y mex
achieves high computational efficiency. {x and ¢, are random numbers,<0¢,.,,<1. The value of
Ol max 1S adjusted during the simulations so that approxi-
A. Algorithm mately 25% of the moves are accepted. Moves that would

result in an overlap of hard disks are always rejected. An-
other constraint is that the length of every tether is not al-
lowed to exceed a maximum valak,,.

Our algorithm is a version of the dynamic-triangulation
algorithm used for modeling fluid membrangs|, adapted
to 2D planar systems of many particles. The algorithm per
forms two essential taskgi) it generates the phase space .
associated with the translational degrees of freedom(iand 2. Link flip
it generates and retains a compact data structure that allows The second step is referred to as the “link flip.” In each
efficient access to structural information contained in eacltonfiguration of the random lattice, each tetlier link) is
microscopic configuration. The data structure is based owne diagonal of a quadrilateral formed by the two adjacent
triangulation of each spatial configuration of the particles.triangles. In the link flip, a tether is chosen at random; this
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In this MC updating procedure for a change of system
size, the probability of accepting a move from a state with an
—_— areaA;=L? to a state with an areA;=(L+ éL)? is deter-
A mined by mir{1,P;;), whereP;; is given by Eq.(1) with H
» defined aH =H ,ogert Hup - Hmodel iS the model-dependent
microscopic Hamiltonian describing the interactions between
the particles and

Hup=PA—kgTNInA. 4
FIG. 2. Link flip. A tether(shown as thick lingis replaced by HD B @

another tether along the diagon@ashed ling provided that the

length of the replacement does not exceleg. The first term inHyp represents the energy associated with

the lateral pressur@ and the second term reflects the degen-

tether is either replaced by a tether along the other diagon%racy of a microscopic configuration oNtranslational de-

of the quadrilateral if the length of the replacement does no
exceedd ., Or kept otherwise. A link flip is illustrated sche-
matically in Fig. 2.

rees of freedom.

In our simulation, a MC update of the random lattice is
defined as an attempt to move every particle, flip every tether
o . . . in the lattice, and ten attempts to change the system size. A
The combination of the particle move and the link flip sufficiently large number of the simulation steps then gener-

.r:;aléisnft_he;t_tc;%e edglnzg'?h(%r rahndstigjzr;;?g Si?;?.;gzt ._ates a configuratiofphasé space that is characteristic of the
; \guratl vow ug ic variat Nranslational degrees of freedom of the system. It is impor-

both 'ghe local connect?vity of the lattice and the re.al-sp.ac«%ant to emphasize that the given Hamiltontdp,,qe describ-
coordinates of the particles. This ensures both particle d'ﬁuing the microscopic interactions between particles is in-

,3'32 ;Z:?IEEJQE v;rswrlee 3?;25?:] :?]d ggggﬂ?tt'%ms;?tgﬁlaﬂié'Uded in the acceptance criterion Efy) for all of the three
. ' q y P steps in the MC update for the random lattice.
lational degrees of freedom.
In this part of the algorithm, the constraint of maximum
tether length is employed. The reason for employing this lll. MICROSCOPIC HAMILTONIANS
constraint is that the main data structure used in our algo-
rithm describes the position of each individual particle rela-Creasin complexity. referred to in this paper as models 1. |1
tive to its tethered neighbors. This is referred to as the “link 9 piexity, . pape T
” : and lll, where the random-lattice description of the non-
structure.” When the tether length is bounded, a one-to-one

mapping can be efficiently established from a given “nk!nteractlng hard-disk particle system is extended to include

structure to a nearest-neighbor structure. One may expeg}ternal degrees of freedom and microscopic interactions that

that this constraint prevents the algorithm from accessing thgouple the internal degrees of freedom to the translational

entire phase space spanned by the 2D translational degre ?egrees_of freedom. Ir_1 essence all three m_odels are variants
; . ) ' . Of the Ising model defined on a regular lattice.

of freedom since those microscopic configurations that cor-

respond to strong short-length-scale fluctuations in the par-

ticle density are not compatible with the constraint. To ad- A. Models | and II: Ising models on the random lattice
dress this issue, we have r_eV|S|ted, using our algorithm, the The 2p spin-1/2 Ising model defined on a regular trian-
system of hard disks, as will be described in Sec. IV. gular lattice has a continuous phase transition from a high-
. temperature paramagnetispin-disorderedphase to a low-
3. Change of system size temperature ferromagnetispin-orderegl phase at a critical
In the constanN-P-T ensemble used here it is necessarytémperaturekgTc/Jo=3.641, whereJ, is the exchange in-
to allow the area of the system to fluctuate. In our simulateraction between nearest-neighbor spins. We have extended
tions this is achieved via a third step in the MC procedure: ghis standard model in two ways. Our first extension, which
random uniform expansion or contraction of the whole sysWill be referred to as model |, is to associate a spin with each

tem. In this step, a random change in the size of the systefrd-core particle on the random lattice. Nearest-neighbor
is generated by resca"ng the |ength as parthleS are connected by tethers and interact through the

usual Ising spin-spin-exchange interaction. This leads to a
randomIsing model in which the number of nearest neigh-
6L=(2{—1) 6L max, 3 bors is a fluctuating quantity. In this model, the characteristic
interaction range is set by the particle density of the system,
where{ is a random number,9¢<1, and the coordinates Which in turn is controlled by the external pressérand the
of all particles and the maximum tether length., are re- translational and spin degrees of freedom are only coupled
scaled accordinglyd,,. is rescaled in order to allow for a by thefluctuatinglocal connectivity(or the number of near-
significant density decrease for low values for the lateraest neighbonsof the random lattice. For later reference, we
pressurdZO]_ If the distance between any two partic|es afteerite -dOWH .the microscopic interaction Hamiltonian used in
the rescaling is smaller than the hard-disk diameter, th@ur simulation,
change is always rejected. The maximum possible size
changesL jax. i.s adjusted during the simulation to give an Hi=—J, 2 SS (5)
acceptance ratio of about 50%. {i<j)

In this section we present three different models of in-
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where (i<j) denotes a sum over nearest neighbors con- 1-S

nected by tethers an|=+1. Hp=Ho+ Vi + P> [Ad< 5 )+Ao( 5 )
In the second extension of the standard Ising model, '

which will be referred to as model Il, we have modified the

above model in Eq5) by introducing a spin-spin interaction

that isdistance dependenthe tethered spins only interact if 1-S

they are within a certain distand®, of each other. The Ho=2 Ed( > ) 8

random-lattice Hamiltonian is then given by

where

and
Hy=-1J S, 6 J
b 2 S © Vin=-7 2 (1+S)(1+S), )
Rij<Rg (i<j)

with (i<j) denoting a sum over nearest neighbors. In this

where(i<j) again denotes a sum over all possible nearestase,P plays the role of an internal interfacial pressure that
neighbors andR;; is the distance between spisands; . provides the lateral stabilizing force controlled mainly by the
Hence, in this caséy, sets the range of interaction. The fact hydrophobic effect at the lipid-water interfade, describes
that the density of the system sets another length scale leaélse chain internal energwi(nlt) models the chain-chain inter-
to a different type of coupling between the spin and theaction, which(somewhat arbitrarilyis taken to be nonzero
translational degrees of freedom. only if a chain and its neighbor are both in the ordered state.

With these two models, we can address the basic issue @hviously, this is an approximation to the fact that the inter-
how and to what extent different types of microscopic cou-chain forces are diminished when either or both of the neigh-
pling between the internal and translational degrees of freehoring chains are in the disordered state, but it is formally
dom manifest themselves in the macroscopic thermodynamigquivalent to setting the relative energy scales of the Hamil-
behavior of the systems and understand and underline thgnjan. The third term in E7) represents the energy cost of
generic physics associated with such coupling. Ising spitabilizing the lipid system against lateral expansion.
transitions in these models will be of particular interest, as |t js straightforward to determine the thermodynamic be-
the classical understanding of the critical transition in thenavior of this model[4], which is isomorphic to an Ising
Ising model defined on a regular lattice provides an essentighodel in a temperature-dependent field, i.e.,
framework of reference, with respect to which effects arising

from the interplay between the two types of degrees of free- Jo
dom can be mapped out. Hp=Eo— Z(E) 515j+2i het(T)S;, (10

i<j

where E, is a trivial constant, he(T)=—3[Eq4

+(2/2)Jg+ PAA—KgTINDy], AA=A4—A,, andz is the co-

ordination number of the latticez& 6 for the regular trian-
Model Ill is, in principle, an Ising model similar to those gylar lattice. At low temperatures the effective field “pre-

introduced above, but with a basic difference that one of thgers” the chains to be in the ordered state. Rsncreases,

spin states is assigned an internal degeneracy larger than oRge system crosses over from the ordered state to the disor-

by Doniach[4] to describe the essential thermodynamic

properties of lipid bilayers, in particular the main transition, hett(Trm) =0, (12)

that are primarily associated with the conformational degrees

of freedom of lipid chains in a planar array. Doniach’s modelprovided thatT,, is less than the critical temperatufe of
uses two states to represent the lipid-chain conformatiorthe standard Ising model. This transition is effectively a
One state, the “ordered” stat@enotedS;=1), has zero field-induced transition below the critical temperature of the
internal (conformational energy €,=0) and is nondegen- standard Ising model and is therefore a first-order transition
erate D,=1), characteristic of the chain conformational usually referred to as the “chain-melting” transition.

state of lipid molecules in the gel phase. The other state, the While the Doniach lattice model includes the most essen-
“disordered” state(denotedS;=—1), has a high internal tial physics associated with the lipid-chain conformational
energyE, (corresponding to the excitation energy associatedlegrees of freedom, it ignores the translational degrees of
with a conformational changeand a large degeneracy freedom. We therefore propose an extension of the Doniach
D4>1 (representing the large number of possible chain conmodel to account for the interplay between the conforma-
formations that have the same valuefy) characteristic of tional and the translational degrees of freedom in the sim-
the chain conformation of lipid molecules in the liquid- plest way: the translational degrees of freedom of lipid
crystalline (fluid) phase. Each chain occupies a site on achains are governed by interchain interactions that depend on
regular triangular lattice and each state is assigned a cros#e conformational states of the interacting chains. This ex-
sectional area\, or A, corresponding to the average areatended model, which we refer to as model Ill, is described by
occupied by chains in the ordered and the disordered stat#)e random-latticeHamiltonian

respectively. This regular-lattice model is described by the D) 1 2
Hamiltonian Hi=Ho+ Vig + Vipd + PA, (12)

B. Model lll: The Doniach model on the random lattice—
A model for lipid bilayers
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V(R) may expect that this model displays different types of ther-
modynamic behavior, depending on the strength of this cou-
pling.

IV. SIMULATION RESULTS AND DISCUSSION

Before proceeding to presenting the numerical results ob-
dyax tained from the simulation studies of the models described in
the preceding section, we first give an outline of the simula-
Ro tions themselves. All simulations were initialized using a

d | state where the lattice configuration was crystalliregular
: R triangulay and the internal degrees of freedom were disor-
To L dered. This initial configuration was then equilibrated by the
[ ) Metropolis Monte Carlo algorithm to a high-temperature

\ state with disorder in both the translational and internal de-
Vo 3 grees of freedom. Equilibrium states at lower temperatures
b . were reached by cooling down from the high-temperature
state in small temperature steps. In each of the cooling steps,
a number of Monte Carlo updating stegpdonte Carlo steps
) ) ) ; per particle(MCS)] were discarded before the measurement
in model Hlll- It Con.s'lstsTO:] ahsur; (;’_flf h‘zr_dj_'Sk dpot:entlal and t(‘j"’o of equilibrium thermodynamic quantities of the system was
square-well potentials. The hard-disk radiusliand the range and - o 1o The number of MCS used to reach the equilibrium
strength of the square-well potentials atkn, Ro) and Uo, Vo), high-temperature state was between 30 000 and 50 000. The
r_espective_ly. The dashed line iI_Ius_tratesaLenr?ard-_Jones-like poterill-umber of MCS discarded in the subsequent tempera.lture
tial, to which the model potential is an approximation. steps was between 10 000 and 25 000. The measurement of
various thermodynamic quantities was performed over a
simulation period of 30 000—50 000 MCS. Among the cal-
culated quantities are the enthalpy, the area, and the spin
1 order parametefthe magnetizationper patrticle. Also calcu-
ViR=72 V(IR-RD(1+S)(1+S) (13)  lated were the corresponding thermodynamic response func-
40 tions, the isobaric specific heat per particle, the area
compressibilityK, and the(spin) susceptibility per particle
andA is the total area of the systetd(R) in Eq. (13 isa X’ which can be expressed by the fluctuation-dissipation
square-well attractive potential of depth, and rangeR,.  '€orem as
V{1 and V{2 together provide an approximation to the at-

FIG. 3. Schematic illustration of the interaction potenidR)

where

2 2

tractive intermolecular interaction between any two chains in szw, (14
the conformationally ordered state. The sum of the hard-core NkgT

potential and the two square-well potentials) and V{2 M2)— (M2

constitutes an approximation to a standard intermolecular po- = w (15)
tential of the Lennard-Jones type, as schematically illustrated NkgT °

in Fig. 3. By analogy with the Doniach lattice model, the

effective interaction between any two chains in model Il is (A —(A)? 16
taken to be zero if either one or both of the chains are in the © kgT(A) (16)

conformationally disordered state. The square-well potential
described byR, andV, controls the minimum of the poten- whereH is the model HamiltonianM the total spin order
tial and hence the lattice parameter of the crystaliswlid) = parameterA the total area of the system, ailthe total
phase. The tail of the potential extending bey®Qdpermits  number of particles. Signatures of thermodynamic singulari-
a possible decoupling between the two meltilmg order- ties (or phase transitionswere identified from these mea-
disordej processes associated with the translational and corsured equilibrium quantities. The phase behavior of each
formational degrees of freedom. This model is a minimalmodel was thereby determined.
model in the sense that it contains only the most essential In the analysis of the simulation data for the 2D liquid-
physics required to model the coupling between translationasolid transition we have, to a certain extent, used the histo-
and internal degrees of freedom in lipid-bilayer systems. gram method of Ferrenberg and Swend$2h,22. Using
The fundamental difference between model Il and thethis method we can extract a free-energy-like function from
lattice model of Doniach is that each chain in model Ill is the Monte Carlo simulation data. Close to the lattice-melting
allowed to have a varying number of nearest neighbors anttansition point this free-energy function has a well-defined
varying distances from its neighbors. Furthermore, the chaindouble-well structure. The transition temperature can thus be
are allowed to diffuse through the whole system, as the esdetermined by using the standard technique of reweighting
sential manifestation of translational invariance of the sys{21], and an estimate of the transition enthalgy(H)) can
tem. The two sets of degrees of freedom are thus coupled ibe obtained from the position of the two equilibrium minima
a natural way through the intermolecular interactions. Onef the free-energy function. We are, however, fully aware
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that these estimates are associated with quite substantial ertbie value of the reduced pressure is changed from 8.75 to
bars due to the lone Monte Carlo correlation time for the 2D9.75, as indicated in Figs(@ and 4b). Using the reweight-
system[23] and it is therefore difficult to draw definite con- ing histogram methof21], we have found the position of the
clusions about the nature of the fluid-solid transition fromtransition to be att* =9.15. We have also estimated the
our simulations. _ _ change in the average area per molecule across the transition
_ tngﬁ preserltatl_(r)rr]] o]f_ tr;e S|rtnulat;0_n resul':]s f;i"S naturallyy, be Aa=a,—a,=0.014, Whereas(|)=(AS(|)/d2N)(2/\/§)

'?] 0 rele pafr S. Ihe Tirst par corf1 ahmsha 3 do_rksummar.y r?cfymdAs(,) is the total area of the solifliquid) phase. As the

the results of our reexamination of the hard-disk system; e, aint on the tether length is relaxed, the lattice-melting

second part gives the results of the simulation study of thPévent shifts to a value of the reduced pressure between 8.25

Ising models | and IlI; and the final part describes the result . S :
for the extended Doniach model, model Ill. Each part of the%lnd 8.75, as lllustrated in Figs(c} and 4d). Again, by

presentation is followed by a discussion of the generic physl—JS'.ng th.e reweghtmg 'hlstogram method, the position of the
: o solid-fluid transition is found to be located to be at
ics entailed in the results. .
P*=8.55 and the value of the area change across the tran-
sition is estimated to bAa=0.052.
These results demonstrate that, as the constraint is re-
As we noted in Sec. Il, our random-lattice algorithm pro-laxed, our simulation data converge toward the results for
vides only an approximate description_ of t_he 2[_) translationaP* obtained from other off-lattice studies of the hard-disk
degrees of freedom. The approximation is mainly related t&ystem[24]. For example, the work reported in RéR4]
the use of the constraint of maximum tether length in thesstimates thaP* =8.0 andAa~0.05 in the limit ofL — .
algorithm, which to some extent prevents the algorithm fromoyr results also show that the essential characteristics of the
accessing thentire phase space spanned by the translationgjransition remain largely intact in the random-lattice algo-
degrees of freedom. In order to assess the validity of thigjihm although imposing the constraint of maximum tether
approximation, we have revisited the system of noninteractiy, ot t 4 certain extent results in artificial changes in tran-
ing hard disks by studying the solid-liquid transition in this

. . . - .dsition guantities, such as the small shift in the transition pres-
system in the presence of our constraint. This solid-liqui

o . , . sure. However, since we have not in the present work per-
transition is solely driven by the configurational entropy as- d tematic finite-size analvsis or a detailed study of
sociated with the 2D translational degrees of freedom. Moreio med a systel . y y
over, a recent simulation study by Lee and Strandburg usingje rellaxat|on timeg25], we will not make a closer compari-

a full off-lattice algorithm[24] provides quantitative infor- on with .the resuI'Fs' from other theoretical work on the hard-
mation on the transitional properties and presents numeric&liSk melting transition. _ o
evidence that the transition is of first ordélthough this It is, however, necessary for the discussion in the rest of
subject still remains a contentious issu& numerical study ~the paper that we make a remark on the nature of solid-liquid
of this system using our random-lattice algorithm thereforelfansitions in two-dimensional syster(w 2D melting. The
allows us to assess quantitatively any restrictive effect thafature of 2D melting transitions has been a focal point of
the constraint may have on the representation of the transl@umerous statistical-mechanical studies of two-dimensional
tional degrees of freedom. We expect that, once the corsystems for the past two decadg’,28. Two scenarios
straint is effectively removed by allowing a large value for have been presented and discussed. Halperin and Nelson,
the maximum tether length, our algorithm should lead toand Young[29] developed the basic idea of Kosterlitz and
results that are consistent with those obtained by using th€houless, and BerenzinsKiB0] and proposed the scenario
full off-lattice algorithm[24,25. that the 2D solid-liquid transition can proceed via two con-
In the following, we give a short summary of the resultstinuous (second-ordér transitions corresponding, respec-
for our study of the hard-disk system with the random-latticetively, to dissociation of dislocationghe solid-hexatic tran-
algorithm. A hard-disk system wittN=_L?=12* particles  sitior) and dissociation of disclinationghe hexatic-liquid
was simulated for two cases with respect to the constraint ofansition). A single conventional first-order transition is the
the maximum tether length. In the first case, a strong congiher possible scenario. Despite the significant amount of
straint was employed in the algorithm; in the second casesffort devoted to resolve the issue, no final consensus has
this constraint was relaxed. In the case of the relaxed conseen reached. While most Monte Carlo simulations suggest a
straint the fa_lgonthm was modified to !nc_lude a <_:eII-I|st StruC-first_order 2D melting 24], others suggest a one-stage con-
ture to fa}C|I|tate a fgst check of steric interactions hetwee inuous transitior{25]. In the work presented in this paper,
neighboring hard disk$26]. During the simulations the where we consider the effects of coupling the translational
structure factor of the system was calculated as )
degrees of freedom to internal degrees of freedom of the
R . particles, we are inevitably confronted with this issue. Un-
S(k) = < > e'Ri'k>v (170 fortunately, by studying a more complex model we may not
' be able to provide any new information on the true nature of
. the 2D melting transition. However, for all practical pur-
whereR; is a two-dimensional vector giving the position of poses and without any restriction on the results we report
disk i and( ) denotes a thermal average. In FigS&k) is  here we can consider that the melting is a first-order transi-
shown for different values of the reduced lateral pressurdion. In fact, for the models examined in this paper all the
P*=Pd?/kgT, whered is the hard-disk diameter. For the simulation data obtained for the solid-liquid transition are
constrained case, there is a clear change in lateral order asnsistent with a first-order transition.

A. Hard-disk system
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(c) (d)

FIG. 4. Contour plot of the structure factS(IZ) in the (k,,k,) plane calculated for the hard-disk system of dize 144. In(a) and(b)
(dmap=1.73 andd=0.6. Here( ) denotes a thermal average. (¢) and (d) (dy,.¢=7d andd=1.0. The value of the reduced lateral
pressure iga) P* = 9.75,(b) 8.75,(c) 8.75, and(d) 8.25. The position of the first Bragg peak is ak aalue of 27/d, which for system
(@) corresponds tdk|=10.5 and(c) |k|=6.28.

B. Ising model | and Ising model Il on the random lattice acterizing the nature of the thermodynamic singularities as-
Ising models | and Il were formulated to describe two-Sociated with the phase boundaries.
dimensional systems where both intertspin) and transla- For Ising model I, a convenient choice for the parameter

tional degrees of freedom are present and are coupledPace is given by a reducedr dimensionlesslateral pres-
through microscopic interactions. Consequently, charactesure, defined a®d’/J,, and a scaled temperatuféTc,
ization of the phase behavior of these model systems requirgghereTc is the critical temperature of the spin transition in
knowledge of the macroscopic behaviorbmfth types of de-  the Ising model on the regular triangular lattice. The simula-
grees of freedom. As the macroscopic behavior of the trangion study of Ising model | was performed for a range of
lational degrees of freedom is described as either solid ovalues of the(reduced lateral pressure and thgeduced
liquid and that of the spin degrees of freedom is charactertemperature. The results show that the four phases described
ized as eithefspin) ordered oi(spin) disordered, each model above are indeed all present in the region of the parameter
system can, in principle, have four different phases: a solidspace explored. Moreover, the phase boundaries separating
ordered(SO) phase, a solid-disorderé8D) phase, a liquid- these four phases are simply two intersecting lines: one line
ordered (LO) phase, and finally a liquid-disordergdlD) is predominantly controlled by the solid-liquid thermody-
phase. We will use this terminology below in our descriptionnamic singularity and is considered to be a first-order line,
of the phase behavior of the three models of Sec. Ill. Ourlnd will be termed as the “lattice-melting” transition; the
simulation study of the models concentrates on identifyingsecond line is mainly associated with a critical order-disorder
these possible phases in parameter spaces of the models, tansition of the spin system. Specifically, the high-
cating the boundaries between the different phases and chdaemperature phase is the LD phase, the low-temperature
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10 . . sure, Pd?/J, = 10.0, 30.0, and 50.0, as also cited in the
(a) preceding paragraph. The total number of partidiesL?
varied in the finite-size scaling analysis from 64 to 400. The
finite-size scaling theory for continuous transitions leads to
the following hypothesis for scaling relations of thermody-
namic response functions with the system 4izg81]:

E Xmax™ L, (18)
bad
Cp,max™ La/v! (19)
; ]
sx~L~, (20
L where xmax and Cp max are the peak values of the spin sus-

ceptibility and the specific heat for the finite-size system and
1 ‘ Ox is the half width of the spin susceptibility curve. In our

A\\ (b) analysis, the value 0fax (Cp may) Was taken as an average
o of the maximum value of the susceptibilitthe specific heat
o - ‘%\ over five different simulation runs. The value éf was
\ 0;Q Y taken as the average value of the half width over the five
A different y curves[32]. As it is clear from Fig. 5, the critical
A exponentsy and v found from the finite-size scaling analysis

. are, within the statistical error of the calculations, all consis-
\ tent with those of the 2D regular-lattice Ising model
\ (y=7/4,»=1) [33]. It would be much more demanding to
perform a finite-size scaling analysis of the specific heat
(data not shownbecause of the very weak singularity and
the influence of a nonsingular term @, which cannot be

‘ neglected at finitd.. However, theCp data for the larger

! ]i) 100 system sizes shows a fairly weak dependenc€ ©f,a(L)
onL, indicative of a small specific-heat exponent 0, con-
sistent with the logarithmic singularitya(=0) associated

FIG. 5. Finite-size scaling plots for Ising model | in the cases ofwith the regular-lattice Ising critical behavior. We thus con-
three different values ofPd%/Jy. (8 xmax—L”* and (b) clude that, within the range of lateral-pressure values studied
Sx~L . The upper curve4) corresponds t®d?/J,=10.0, the  in our simulation, the Ising model | defined on thgnamic
middle curve () to Pd%/J,=30.0, and the lower curve®) to  random lattice belongs to the same universality class as the
Pd?/J,=50.0. For clarity the three curves are shifted along theregular-lattice Ising model.
vertical axis.(a) The values for the ratio of the exponengsand Overall, the simulation study of Ising model | shows that
v for the three curves are 1.78.02, 1.73-0.02, and 1.780.05,  there is no significant macroscopic manifestation of the mi-
respectively(b) The corresponding values of the exponentdfe  croscopic coupling between the spin and the translational
0.98+0.04, 1.06-0.06, and 1.020.05, respectively. degrees of freedom. This observation can be rationalized as

follows. In this model, the particle-particle interaction has no
phase is the SO phase, the low-pressure, intermediatelistance dependence and the microscopic coupling between
temperature phase is the LO, and finally the high-pressurehe two types of degrees of freedom is only facilitated
intermediate-temperature phase is the SD phase. For lothirough the fluctuating local connectivity of the lattice. In the
pressures, e.gPd?/J,=10.0, the critical Ising spin transi- condensed systems considered here, not only are the fluctua-
tion has a higher temperature than the lattice-melting transitions in the local connectivity of the lattice small, but there is
tion. As the pressure increases, the temperature differen@dso no change in the macroscopic value of the local connec-
between the two transitions decreases. At the point of intertivity as the systems change from solid to liquid state. In
section, wherd®d?/J,=30.0, the two transitions coincide in other words, the microscopic coupling does not give rise to
temperature. For higher pressures, eRp?/J,=50.0, this any strong coupling between the macroscopic behavior of
ordering in temperature is reversed and the lattice-meltinghe spin and the translational degrees of freedom that could
transition actually has a higher temperature than the Isingouple or alter the characteristics of their corresponding ther-
spin transition. modynamic singularities.

In order to investigate the critical behavior of the Ising Ising model Il describes a more complex type of micro-
spin transition in this model and to compare it to that of thescopic coupling between the spin and the translational de-
regular-lattice Ising model, a finite-size scaling analysis ofgrees of freedom: in addition to the coupling through the
the simulation data for this transition was carried out. Figurefluctuating local connectivity, there is also coupling through
5 shows the results of the analysis of three sets of simulatiothe distance-dependen®{) spin-spin interaction. The em-
data obtained for three different values of the lateral presphasis of our study of this model is to investigate whether the

4
/j,
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FIG. 6. Phase diagram for Ising model Il f&/d=1.41. The T e
dashed phase boundary lin®@) corresponds to the critical Ising- 44 P'=50.0
like transitions from a spin-orderg@&O) to a spin-disordered@SO) 0.020 | T T
phase. The solid boundary lin€{ corresponds to the first-order e
lattice-melting transition from a solid phase to a liquid phags@and w
t, are the two critical end points described in the text. Between the T,
two critical end points the spin order-disorder singularity is coupled  0.010 | v
to the lattice melting and is of first order.
more complex microscopic coupling will lead to intricate
coupling at the macroscopic level and, in turn, to more com-  **° L = - - —

plex phase behavior. T,

Indeed, Ising model Il was found to have more complex
phase behavior, in particular with respect to the coupling of rc 7. (a) Area A per particle andb) the corresponding area
the degrees of freedom at the macroscopic level. Displayeg,yressibilityk of Ising model 11 for different values of the lat-
in Fig. 6 is the phase diagram for the model, given in thegry pressureP* =Pd%/J,. The system size isN=256 and
same parameter space of the reduced pressure and the scagdy—1.41. The temperature is given in units of the critical tem-
temperature for a fixeR,/d=1.41. The phase diagram was peratureT, of the regular lattice Ising model. For clarity, tiie
obtained from simulation data and our analysis of that datagurves are shifted along the vertical axis by multiples of 0.005.
Again, as in Ising model I, the four principal phases are all
present and the remnant of the phase diagram of Ising modspecific(pressure-dependeriemperature for all the pressure
| can be seen in the low-pressure and high-pressure regionglues considered. The corresponding response function, the
of the parameter space, where the lattice-melting transitioarea compressibilitiK given in Fig. 7b), displays the signa-
and the critical spin transition are decoupled and where LQure of the same singularity. These data are taken as the
and SD phases intervene between the SO and the LD phasesidence for the first-order lattice melting transition. The
However, the phase boundaries separating these phases aritical spin order-disorder transition, existing in both the
longer consist of two intersecting lines alone: a new phaséow-pressure P< P,) and the high-pressureP-P, ) re-
boundary directly separating the SO and the LD phases igjons, is identified principally from the simulation data such
now present, as indicated by the solid line between the tw@gs those shown in Fig. 8. The temperature dependence of the
special _pointsl andt,. These two poin_ts are actually critical spin order parameter is given in FigaBfor a set of pressure
end points(see below and their locations Rd*/Jo|;, =35,  values. Both at low values and high values of the pressure,
T/Tcl;,=0.945) and Pd2/J0|t2=40, T/Tcli,=1.035), as the spin order parameter varies steeply,dmritinuouslyat a
indicated in the phase diagram, are only estimatelsich ~ particular (pressure-dependgntemperature, concomitantly
include finite-size effecis[34]. Along this phase boundary, With the occurrence of a peak at the same temperature in the
which is of first order, the translational degrees of freedonspin susceptibility functiony in Fig. 8(b). This particular
override the spin degrees of freedom and the lattice-meltinggemperature is thus determined for each value of the pres-
transition preempts the critical spin transition, leading to aSure, giving the location in the parameter space of the critical
first-order singularity also in the spin order parameter. spin transition. As expected, the specific h€at, which

Presented in Figs. 7-9 is a collection of simulation datscarries information about energy fluctuations arising from
obtained for Ising model I, which corroborates the phasefluctuations in both the translational and spin degrees of free-
diagram. Figure & shows the change of argger mol- dom, displays sharp peaks at both transitions, as Fig. 9
ecule with temperature for a set of values of pressure thaglearly demonstrates. The identification of the solid and lig-
cover the parameter range we have investigated. An abruptid characteristic of the phases has also been confirmed by
(effectively discontinuoyschange in the area takes place at aanalysis of the structure fact@(k) (data not shown S(k)
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eosmmamn | 0018 (b) ) FIG. 9. Specific heaCp per particle of Ising model Il as a
S Tops0 function of T/T for different values of the lateral pressure
0.03 - 10010 N | wrp350 P* =Pd%J,. The system size iN=256 andR,/d=1.41. For clar-
1 0.005 it g.jg-g ity the Cp curves are shifted along the vertical axis by multiples of
‘%Esﬂ ’ o P'=d5.0 0.025. For low values of the lateral pressité (P*=10.0 and
 0.02 ‘ . 1 0.000 | 4+ =500 P*=30.0) the temperature of the critical spin transitidp is
©C peo 10g 120 140 higher than the lattice-melting temperatirg, . At higher values of
\: \ b P* (P*=45.0) T, is higher tharl,_4. For intermediate values of
/ . ?f \ k %\ ‘fﬂ&\ /A P* (P*=237.5) the two transitions are coupled ahgly=T., .
0.01 i ' . 1
v a1
% . . . .
/7( f\ Dj ; 4\ regular-lattice Ising model. This is confirmed by the data
00 . ‘ ‘ shown in the inset in Fig. (®), which demonstrate that, in
0.0 05 10 15 2.0 this pressure region, the susceptibility fits perfectly in shape
e (as a function ofT) to the susceptibility of the regular-lattice

Ising model in the neighborhood of the critical temperature.
FIG. 8. (a) Spin order parametevl and (b) the corresponding The phase boundary between the two special pojrasd
susceptibilityy of Ising model Il for different values of the lateral t, (see Fig. & distinguishes the phase behavior of Ising
pressure P*=Pd’/J,. The system size isN=256 and model Il from that of Ising model I. It lies directly between
Ro/d=1.41.M is shown as a function of/Tc, whereasy is given  the SO and LD phases. The first-order nature of this phase
as a function ofT/T,.q, whereT,.q is determined by the peak transition is indicated by the discontinuous change in the
position of x. For clarity they curves are shifted along the hori- 5ra5A [for example, see Fig.(@ for Pd%J,=37.5] at the

zontal axis. The actual peak position for the different curves arg ansition temperature, and more interestingly, by a corre-
0.825T., 0.89r., 0.98Tc, 1.00Tc, 1.03Tc, 1.05T¢, and ' '

1.05T ¢, respectively. The inset itb) shows a comparison between
x of the regular-lattice Ising model ang of Ising model Il for 10
P*=50.0.

has clear Bragg peaks in the solid phase and displays only /
diffuse rings in the liquid phase. ° /
The simulation data suggests that the critical temperature 1/v=1.03£0.06 5/
of the spin transition separating the LO and the LD phases in o
the low-pressure region has an observable pressure depen—g f .
dence, whereas the temperature of the critical spin transition= o
separating the SO and SD phases in the high-pressure region ,/
coincides with the critical temperature of the regular-lattice /
Ising model(as expected In order to investigate the critical [ v=1.7620.04
behavior of the spin transitions in more detail in both the ‘
low-pressure and the high-pressure regions, we have also
performed finite-size scaling analysis of the simulation data 1, 0 100
on the spin susceptibility in the low-pressure region, based L
on the scaling hypothesis described in Etf), and the re-
sult of the analysis is shown in Fig. 10. Itis clear from this  FiG. 10. Finite-size scaling plots for Ising model Il for
figure that the universal Ising critical behavior is unalteredpg2/3,=20.0. s is the maximum value of the spin susceptibility
by the fluctuations in the densitgr local connectivity of the  and 5y is the half width of they curve. The values 0f.y and
random latticg. On the high-pressure side of the critical end 5y were determined as described in the text. The value of the ex-
pointt,, both the universal and nonuniversal behavior of theponent y/» is 1.76-0.04 and the value of the exponentr lis
critical transition is expected to be identical to that of the1.03+0.06.

Xe
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A simple argument based on mainly mean-field consider-
ations puts all the above observations and analysis into per-
spective, in relation to the phase behavior of Ising model I.
As described in Sec. Ill, in Ising model Il a new length scale
R, is introduced to define the range of the spin-spin interac-
tion. It is mainly the interplay between this new length scale
and the length scal{P) set by the densityor pressurgof
the system that gives rise to the phase behavior of Ising
model I, which is more complex than that of Ising model I.

If 1(P) is always smaller thaR,, then there is no difference
between the thermal average values of the local coordination
number and the number of the interacting nearest neighbors,
whether the system is in a solid or liquid state; the phase
behavior of Ising model Il is effectively the same as the
phase behavior of Ising model I. If, howevé(P) for low
pressures is larger thaR,, then the average value of the
number of interacting nearest neighbors in the liquid state
can be smaller than that in the solid state.

At very low pressures, the lattice melting takes place be-

T=1.01ZTc, where the spin singularity is coupled to the lattice fore. any qritical fluctuations in the spin degrees of freedom
melting. The system size id=256. The histogram is obtained by setin, Fa_lklng the systerq from the SO phafse to the LO phase.
extrapolation from a nearby temperature using the reweighting techl N€ critical spin transition occurs at a higher temperature,

nique of Ferrenberg and Swendsen. The sampling time to obtain ti&€ll separated from the lattice-melting transition, as in Ising
histogram was 8 000 000 MCS. model I. However, due to the reduced number of interacting

) ) ) ) particles in this case, the transition temperature is sup-
sponding sharp change in the spin order paranje Fig. pressed, compared to that of the solid-state critical spin tran-
8(a) for Pd?/Jy=37.5 that is distinctly different from the sition. In this region of the phase diagram, the macroscopic
temperature dependence of the spin order parameter at lowgghavior of the spin degrees of freedom is expected to have
and higher values of the pressure. In order to demonstra operties similar to the annealed and bond-diluted regular-
unambiguously that the spin order-disorder singularity is gattice Ising model at low dilutiori36]. As the pressure in-

first-order singularity, i.e., that it is slaved by the lattice . 0,505 the Jattice-melting temperature increases and reaches

melting, we have calculated the two-dimensional histogran}i : " . "
X : R g t a point €;) the temperature of the critical spin transition,
P(A,M) (for a fixed system sigewhich is displayed in Fig. (yvhich is still lower than the critical temperature in the solid

%Lré.ngi ig’;‘tﬂgz lfg%er%gg htgltso ghrlsrtg gcr?ergrl\;veéih%?tt: n;e state. Beyond this point, the lattice-melting dictates the mac-
two-state(spin-ordered and spin-disordejestructure, indi- roscopic behavior of the spin degrees of freedom, altering it
' afliscontinuously from the ordered state characteristic of the

cating coexisting SO and LD phases and a finite interfacial">. ! ,
tension. Since the line of the critical spin transition is termi-SClid-state spin order parameter to the disordered state de-

nated from both the low-pressure and the high-pressure sidg§'Ped by the bond-diluted and annealedther than the
att, andt,, these two points are critical end points. solid-stat¢ Ising model and thereby rendering ifiest-order

A last, but not the least important, observation we havesingularity. At pointt,, the lattice-melting temperature coin-
made from the simulation data concerns the interplay be(-:'d_es W't_h the critical temperature of th_e solld-_st&_mgular- .
tween the two types of degrees of freedom in the low-lattice) Ising model and the first-order singularity in the spin

pressure and the high-pressure regions. Although in the grees of freedom turns into the critical singularity again. In

regions the first-order singularity associated with the translal® high-pressure region, the lattice-melting temperature, be-

tional degrees of freedom is decoupled from the critical sinind Pounded from below by that of the noninteracting hard-

gularity arising from the spin degrees of freedom, as manidisk system, is higher than the critical temperature for the

fested in the two separate transitions corresponding to th@agnet@c trans_it_ionl(P)_ becomes irrelevant to the critical
lattice melting and the critical spin transitions, respectively,Magnetic transition, which separates the SO and SD phases.
there is evidence that the macroscopic behavior of one typg€ Phase behavior in this region is again similar to the
of degrees of freedom is affected by the thermodynamic sinPhase behavior of Ising model I in the high-pressure region.
gularity arising from the other. For example, the critical spin
fluctuations at the spin transitions, both in the low-pressure
region and in the high-pressure region, enhance the density
fluctuations, as indicated in Fig(ly) by the peaks inthe area  As discussed in the Introduction and Sec. 1ll, model ll1, a
compressibility occurring at the spin transitiof@lthough  Doniach model defined on the random lattice, was con-
they are less pronounced than the peaks related to the latticetructed as a minimal model that describes phase equilibria
melting transitions Vice versa, at the lattice-melting transi- in phospholipid-bilayer systems that are characterized by
tions, the spin degrees of freedom are expected to display teanslational degrees of freedom as well as internal degrees
weaker first-order singularity, the signature of which is tooof freedom corresponding to the different conformational
weak to be identified unambiguously from the simulationstates of lipid-acyl chains. In this model, the spin degrees of
data. freedom represent the chain conformational degrees of free-

FIG. 11. Two-dimensional histograf(A,M), whereA is the
total area of the system amd is the spin order parameter, obtained
for Ising model Il at parameter value®d?J,=37.5 and

C. Model lll: Doniach model on the random lattice
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FIG. 12. Phase diagram for the extended Doniach model, model 0.25 ‘ ‘ i
I1l. All three phase boundaries are first-order phase boundaries. The sF 10 ®
insets show snapshots of typical microconfigurations for the three °
different phases labeled S@olid-ordered, LD (liquid-disordered 020 1 gr 1% 2
and LO (liquid-ordered. Chains in the disordered state are plotted = 1o g
asO and chains in the ordered chain state@sThe three snap- 015 L = T
shots are not given to scale. In comparison with experiments the £ ar " I
SO-LO phase line is interpreted as the submain phase transition and ©
the LO-LD phase line as the main phase transition in long-chain o.10
phospholipid bilayerst; is the triple point described in the text. T
0.05 - ? e
dom. The principaldimensionlessparameters in the model <;\Q
are Pd?/J,, Ry/d, VolJo, and kgT/J, (see Fig. 3 Our 005°  1o06d 0040000000000 i o0
simulation study of the model explored the two-dimensional 000 520 0.25 0.30 0.35
parameter space spanned\y/J, andkgT/J, for fixed val- KaTh,

ues of the other two parameterBd?/J,=0.925 and
Ry/d=1.41 and the simulation results are summarized in the FIG. 13. Simulation data of the extended Doniach model, model
phase diagram given in Fig. 12. I, for a system size of N=256 and parameter values
The topology of the phase diagram, characterized by threBd?/J,=0.925,V,/J,=0.25, andR,/d=1.41.(a) shows the area
phase boundaries merging into a special pointa triple  per particleA (A) and the area compressibility (®). (b) shows
point in this case, resembles the low-pressure part of ththe heat capacity per particles . The inset in(b) shows the full
topology of the phase diagram of Ising model II, with the scale curves for the heat capacity X and the enthalpy per particle
difference that the spinfor chain conformation order- (- - -). To.q is identified as the chain melting transition afg, as
disorder transition in this model is first order, driven by thethe submain transition in long-chain phospholipid bilayers.
internal (or conformationgl entropy and thus referred to as
the chain-melting transition. This distinct topology indicatesdicate that two distinct first-order phase transitions take place
that, again, as in Ising model Il, the thermodynamic singu-at two different temperatures. At the lower temperature
larity arising from the lattice melting can be either coupledT_,=0.218),/kg, a low-enthalpy, lattice-melting transition
or decoupled from the singularity associated with the chainakes the system from the SO phase into the LO phase. At
melting, depending on the values of the parameters. Thehe higher temperaturg, 4= 0.335),/kg, the chain-melting
three phase boundaries, all being of first order and corretransition changes the system from the LO phase to the LD
sponding to a lattice-melting transition, a chain-melting tranphase.
sition, and a transition at whichoth melting processes take Our calculation also showed that in the region of the pa-
place, divide the explored region of the parameter space inteameter space where the two melting processes are decou-
three phases: the SO, LO, and LD phases. The three msetspjre(j ie. VO/J0<VO/JO|t , the temperature of the chain-
the figure show, respectively, a characteristic m'crOSCOp'(?neltmg transition T, actually depends on the model

configuration of each phase. ; -
. . arameters in a rather simple way. Explicitly,.4 can be
Figure 13 displays a selection of the simulation data tha etermined as the solution to the equation

led to the construction of the above phase diagram. The data

shown consist of the temperature dependence of the various 1 < )

thermodynamic quantities, the area per part{@, the area  — 5 5 (Jo+()Vo) ~Kg/To.aINDy| + PA(A)=0,
compressibilityK, the specific heat per particte,, and the (21)
enthalpy per particléH) and were obtained for a system

with N=256 particles and for the following specific values

of the model parameters: the internal entropyskgInDy ~ where(z) is the mean value of the local coordination num-
=14.&5; the conformational energy of the chain disorderedber of the dynamic lattice and(A) is the change in the
state,E4/Jy=1.303; andVy/Jy=0.25. The data clearly in- surface area per particle as the system undergoes the spin
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order-disorder transitior{q;) is the mean fraction of the
nearest-neighbor pairs that interact with the strength of the 0355 L [
deeper square well, a quantity that most significantly reflects
the interplay between the translational and the chain-
conformational degrees of freedom. It is rather straightfor- 0345 | [
ward to understand this result. The Hamiltonian of model I,

1025

0.350

HV

as defined in Eq(12), can be written as &diluted) Ising j o350y
model in an external temperature-dependent field, similar to < oass |
the original Doniach lattice model, except that the field, 0330 |
which depends om; andq; as

0.325

1 Z; 0.320 | 1

h(i)eﬁ(T) = E Ed"'E(Jo"' ino) - kB/To.ded}, 0.65 0.‘15 o.és 0.55 o.lts o.és

Viido

(22

. . ) FIG. 14. Entropy change at the lattice-meltifigr submain
becomes dluctuatingquantity of the random lattice through yansitiona s, , for different values of the model parametés/J,

the fluctuations irg; andq; . For the systems simulated with iy model Il (see Fig. 12 The inset gives the corresponding values
periodic boundary conditions, the local coordination numbeisf the transitional enthalpgH, .

z; is conserved on average, i.€z)=6. Furthermore, for a

condensed 2D liquid systers; was found to have a very  oyr study of model Il predicts for lipid-bilayer systems a
narrow d_|str|but|on around 6. Similarly, the fluctuations of 5ther generic picture of the phase behavior or, more specifi-
g; about its mean value were also found to be small. Hencggjly, of the mode in which the chain conformational and
the chain-melting transition temperature is very well ap-molecular translational degrees of freedom are coupled at
proximated by the temperature set by the conditionmacroscopic level. In particular, it is shown that the loss of
(he(To —a)) + PA(A)=0, which is simply that given by Ed. the |ateral(or in-plane ordering, represented by the lattice-
(21). For small values o¥,/J, the gap between the SO-LO melting transition, can take place without the complete loss
and the LO-LD phase boundaries is quite large and the LQ¢ the collective ordering in chain conformations; conse-
states close to the chain-melting transition contain manyyuently, an intermediate phase, the LO phase, can St
“defects,” interacting pairs having interparticle distances There is noa priori reason why the lattice-melting transition
larger tharR, and hence has a rather small valug@f). For  and the chain-melting transition should synchronize, al-
instance, forV,/Jo=0.25, we find(q;)=0.77 for the LO  though it is generally accepted that the main transition in
states just below the chain-melting transition. As we movephospholipid bilayers involves both the lattice-melting and
closer tot; the number of the defects in the LO states de-the chain-melting processes.
creases and fo¥,/Jo=0.625 we find(q;)=0.96. Beyond In a recent high-sensitivity calorimetric study by
the triple pointVq/Jol;, the low-temperature phase remains jargenser{40], a distinct submain transition was discovered
crystalline ordered, due to the strong interactions imposed bto be present in fully hydrated multilamellar bilayers of long-
larger values o¥/,, and the number of pair defects is essen-chain lipids in the homologous series of di-acyl phosphati-
tially zero. An increase in temperature leads to the chaindylcholines DGPC, with 1&<n=20. The experimental data
melting process, which renders the particle-particle interacshow that the entropy change per lipid molecule across this
tion ineffective and consequently brings about the latticesubmain transitiom S, is very small, being in the range
melting process. Thus the phase boundary is essentiallyetween 0.2z and 0.5&5 . Our model calculation offers an
determined by the chain-melting process, for which@4), interpretation of this recently discovered submain transition
with (g;)=1, still gives a largely valid description. as a decoupling of the lattice-melting transition from the

The enthalpy change across the lattice-melting transitioichain-melting transition. As we have discussed in a recent
can be found from the enthalpy histogram at the transitiorpaper[41], the latent heat or, correspondingly, the transi-
temperature. An estimate of the enthalpy change per partictéonal entropy predicted by our study of model Il for the
AH,, leads to a value of approximately OKgbper particle lattice-melting transition compares favorably with the ex-
for the corresponding entropy chand&, . In contrast, the perimental data for the submain transition. This may imply
chain-melting transition exhibits a very large latent heat, corthat model 1ll, despite its simplicity, has captured some of
responding to an entropy change per particle of approxithe essential mechanisms underlying the interplay between
mately 1&g . The heat content in the lattice melting is thus the chain conformational and the translational degrees of
only a few percent of the heat content in the spin orderfreedom in lipid-bilayer systems.
disorder transition for the chosen set of model parameters.

The dependence of the_ Iattlce—meltlng_ transition tempera- V. CONCLUSION
ture onV,/Jg is apparent in the phase diagram. The transi-
tional entropy also was found to have a systematic depen- Motivated by the rich phase behavior of lipid-bilayer sys-
dence on the parameter. As the valuevgfJ, is increased tems, the work reported in this paper has focused on inves-
from below towards the triple-point value, the simulation tigating the equilibrium thermodynamic behavior in two-
data given in Fig. 14 shows a steady increasA #, with  dimensional condensed many-particle systems where both
the parameter value. translational and internal degrees of freedom are present and
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FIG. 15. Move from configuratioita) to configuration(b) that
changes the orientation of the surface normal. The local orientation FIG. 16. Extreme situation that may occur whet,,/d> /3.
of the random lattice is indicated by the arrows on the tethers. Hard disks are shown as circles and tethers between disks are

_ o . , shown as solid lines. Whed,,/d= /3 two disks that are not
are coupled through microscopic interactions. To this endgonnected by a tether can actually have a distdsbewn by the
we first developed a random-lattice description of two-dashed ling that is equal tod, the hard-disk diameter. When
dimensional translational degrees of freedom. We then forg__ /d> 3 the distance between nonconnected hard disks can be
mulated, and studied using computer-simulation techniquesess thard.
a series of three statistical-mechanical models, which de-

scribe the internal degrees of freedom essentially as the stathe panish Research Academy, the National Science and En-
dard Ising model does the spin degrees of freedom, but havgineering Research Council of Canada, and le FCAR du

different emphasis and levels of complexity in the descrip-Quebec under both a centre and a team grant.
tion of the coupling microscopic between the translational

and internal(spin degrees of freedom. These models were
shown to lead to quite rich phase behavior, although they APPENDIX: TECHNICAL REMARKS
describe only microscopic interactions that are simple and ON THE ALGORITHM

generic. The most important feature in the phase behavior of ;g appendix contains a few remarks on the technical

these models is that, depending on the model parametergeqyiis of the implementation of the random-lattice algorithm
thermodynamic singularities associated with the internal degagcribed in Sec. Il. The first remark concerns the question
grees of freedom can be either coupled to or decoupled frorg¢ o, we establish a nearest-neighbor structure that is con-
a first-order thermodynamic singularity in the collective be-\ oniant for treatment of 2D systems of particles with short-

havior of the translational degrees of freedom that Corre,nqe interactions. In off-lattice simulations, in contrast to

sponds to a lattice-melting process, manifesting at the maGayice simulations, there exists no unique definition of near-
roscopic level the interplay between the two types of degreegg neighbors. The usual definition is the set of particles that

of freedom. In particular, as in Ising model Il, when the i \yithin 5 certain distance of a given particle. The nearest-
internal degrees of freedom are strongly coupled to the tran?ieighbor structure we have used differs from those con-

lational degrees of freedom macroscopically, their ordery cteq via other schemes of tessellation, e.g., Voronoi tes-
disorder singularity is slaved by the first-order singularity Ofsellation and Delauney and Dirichlet triangulation, of

the lattice melting and becomes first order, in contrast to th‘?nicroscopic configurations of hard disk3]. The local con-
critical singularity they exhibit when the coupling is weak at o civity of our random lattice is constrained since the lattice

the rl?acroslpoplchlevel._ Itis flurth_er SI’T)OV;]m that 'P thhe_case OI s composed of hard disks of diametérconnected by teth-
weak coupling, the universal critical behavior of the internaleys”that do not exceed a maximum length,... If d. . is

degrees of freedom remains unchanged and, in fact, is in ﬂ\ﬁithin the ranged—y3d, the link structure of the network

same universality class as the regular-attice Ising mOde'provides an easy access to local distribution of particles and

Finally, we haye d|scqssed the prediction OT one of the mOdé\ good representation of a nearest-neighbor structure. Since
els, model lll, in relation to a recent experimental observa-

tion of a (submain phase transition in phospholipid-bilayer OmaxiS rescaled d“r”?g the _S|mulat|0d|max/d can sometimes
systems. exceed/3 as the simulation proceeds. However, with an

We conclude the paper with a final remark on the prosped ppropriately chosen range of values for the lateral pressure

of the type of random-lattice models as proposed in the pa;’ those configuration§ will have negligible effect on the

per. The formulations of such models are general and may b e{?gdﬁncin,:hc %rr?]pelr(tle;;tgth?os;gste{n. tion that could. in
applied to any two-dimensional condensed systems where. . Second remark retates sttuati at could, |

different types of degrees of freedom are present and reprlnmple, arise, where the link :'struct_urg Ca.””Ot be. directly
evant. In particular, this approach may open up new IoossiL_Jsed to represent the local particle distribution. To illustrate
bilities in studies of structural and thermodynamic propertie he situation, we define an |nS|de-ogt§|de o.ner'\tatlon of a
of complex systems such as multicomponent lipid riangular surface element by associating with it a normal

bilayers—a highly biologically relevant example being lipid- vector. If dma,/d< |3, the sense of local orientation of any
cholesterol mixture§42—and lipid-protein systems. tnangular_element of th_e n_etwork stays t_he same throughout
a simulation. Thus an inside-outside orientation across the
ACKNOWLEDGMENTS whole surface is well defined. If, howeved,,,,/d> 3, a
random move that changes the local orientation of a triangu-
This work was supported by the Danish Natural Sciencdar element, leading to local overlapping of triangles, then
Research Council, the Danish Technical Research Councihecomes possible, as depicted in Fig. 15. Such moves are
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excluded in the simulation algorithm; only those moves thaif 4, . /d> /3 it is obviously not sufficient only to check
preserve the inside-outside orientation of the surface are agghether the hard-disk condition is violated by particles that
cepted. , o ~are linked by tethers, since the random moves of particles
The last remark deals with the practical implementation of.5n |ead to situations where two particles are physically
the hard-disk condition for the particles. A rigorous imple- o ,qor than the distance of the hard-disk diameltevithout
mentation of the condition would, in principle, require build- being connected by a tethéee Fig. 18 By extending the

ing up a cell structure that encompasses the whole SySte@wck for violation of the hard-disk condition to particles

[26]. However, such a procedure would require a consider- . .
able amount of computing time and would significantly re.connected by two successive tethers we can, provided that

duce the efficiency of the algorithm. We have therefore emYmax/d iS not too much larger thad_g_’ ensure that no two
ployed a faster, although not as rigorous, method by whicpparticles violate the hard-disk condition. As an example_, we
we only check those particles that are directly linked by ond@ve found that foidy,,/d=1.85 only approximately 1 in
tether and those that are connected by two successive tethet§) 000 microconfigurations violates the hard-disk condition.
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