PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996
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The method of cell§MOC) developed by Aboudi provides a powerful means for studying the propagation
of waves through systems having complicated internal cell strufiexe Motion9, 141(1987]. Laminated
materials are a common example. The method can handle harmonic waves atrdra@mtwaves arising
from a finite duration impulse. The method is sufficiently robust to treat impact, as we show here. Both linear
and nonlinear elastic-stress-strain relations can be included. The present work generalizes the method to
include viscoelastic materialsuch as polymejssystems with cell structure deviating from perfect periodicity
(including randony, and systems simulating actual impact experiments. We test the theory by comparing our
results with measurements taken from a flat-plate impact experiment. The system investigated was a bilaminate
composed of unit cells of epoxy and epoxy-graphite subcells. Using known and estimated material parameters,
we find that the MOC gives a reasonable representation of the data. We then address some features of the
experimental data that have not yet been explained by other theoretical methods. The importance of unit cell
periodicity is tested by adding a random incremental width to each unit cell. Finally, the shortcomings of the
MOC caused by using a truncated series expansion for the particle displacements, and neglecting plastic flow
and nonadiabatic effects are discus4&1.063-651X96)10712-1]

PACS numbgs): 03.40.Dz, 03.40.Kf, 62.38:.d, 62.50+p

I. INTRODUCTION results for dispersion relations obtained by invoking the Flo-
quet theory, for example, in the case of harmonic waves
Laminated media serve as mechanical wave filters in th@ropagating through a linear elastic periodic sysféinas it
same way as a lattice of point particles connected by medoes when compared to exact ray thegry for transient
chanical springs. The added complication is that wave propavave propagation. While this method is familiar in engineer-
gation can also take placgithin each component. In this Ing applications, it is less known in physics research. Conse-
sense mechanical energy propagation in one-dimensiongilently, one goal of this paper is to demonstrate its wide
laminates is more analogous to the wave mechanics of ele¥ersatility, including many potential applications in physics.
trons in solids when described in terms of the Kronig-Penney Generally, the MOC is designed for systems that are made
model; in fact the dispersion relations for the two cases arép of a periodic repeating assembly of unit cells. The unit
essentially identica[1]. The standard treatment of wave Cells are further divided into subcells; the unit cells and sub-
propagation in mechanical systems involves the investigatiofe€lls will be labeled by and «, respectively. Here we con-
of material response to sinusoidal disturbances of infinitesider planar laminates normal to thedirection. The dis-
extent. That is, we simply obtain the dispersion relationplacement is uniaxial and in thedirection. The continuous
which gives the relationship between the wave nunkband  local spatial variable within subcedt is denoted by. The
the angular frequency (or equivalently, between the phase MOC method involves expanding the particle displacement
velocity c=w/k and the wave numbgr Transient wave Within each subcell of a composite material in terms of
propagation(for example, waves of finite duratipran be Legendre polynomials. Of course, any complete set of basis
treated in these materials by a Fourier decomposition of théunctions will do, but these appear to be the most useful. For
boundary condition, allowing each Fourier component toexample, we write this expansion in one spatial dimension
propagate with its appropriate phase velocity, and then relwhich is the case of interest hgras
constructing the pulse at some point removed from the input
boundary{2]. In fact, in certain mechanically dispersive sys-
tems the dispersion relation is itself obtained by the Fourier
transform method3]. These results, of course, apply only to
linearly elastic materials, although with considerable efforta|| the time dependence in the displacement is now con-
they may be made to apply to linear viscoelastic solids. Alsogined in thecell coefficientsi/*P(t). The essence of the
in the case of laminated materials, perfect periodicity is reyoc approach is to substitute E@..1) into the equation of

quired. o _ ) i . motion
The application to nonlinear elastic materials and lami-

nates with imperfectly positioned componefi&ither acci- 90 @ P(X 1)
dentally or by designrequire other methods of solution. A - "7
particularly powerful method of treating the nonlinear, in- X
elastic deformation of composite materials in three spatial

dimensions is the method of cellMOC) attributed to and integrate the result over a unit cell. Upon doing so the
Aboudi [4,5]. MOC gives excellent agreement with exact stressg{*P), evaluated at the cell boundaries emerges as an

N
u“y*)(x—,o:IZ0 UP(H) P (2xTd,). (1.2

= papll P (X1), (1.2
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explicit variable in the equations. These are then removed Previous work by Aboudf11] investigated the MOC in
from the equations by imposing stre&nd also displace- comparison with other calculations of transient wave propa-
men) continuity at all internal cell boundaries separatinggation; particularly ray theoryor characteristic theoyyin
materials of different mass densitigg ,. The stresses at the linear elastic materials. The important difference here is that
external cells are forced to match the desired applied boundwe are making a comparison of the MOC with experimental
ary conditions. A more detailed discussion of the MOC isdata. This is an important test of the analytic technique be-
deferred to Sec. Il A. cause it brings into consideration our imperfect knowledge
The MOC has been applied to composites using lineaof material properties. At very low impact stresses, linear
elasticity theory, and to a slightly lesser degree to systemslastic effects are well represented by second-order, adiabatic
where nonlinear elasticity is important. We find in the elastic moduli. In viscoelastic solids there is always the com-
present work that nonlinear elastic contributions are very implication of dissipation at finite strain rates. At higher impact
portant and must be kept. By a simple extension of thestress, nonlinear elasticity and plastic flow can occur. The net
Aboudi theory we have also generalized the MOC to handleffect of comparing the MOC with experimental data is that
(approximately viscoelastic materials. The formalism is \we can see its strengths and weaknesses in actual applied
based onthe standard viscoelastic-solid modd], and is  sjtyations. The need for good experimental information on

developed in Sec. Il B. This extension allows one or more ok ach component becomes an explicit part of the assessment
the components of the composite to have stress-relaxatiogy the method.

properties. While we test the theory using several common
polymeric compounds such as epoxy and PMipalymeth-
ylmethacrylatg there is no reasora priori, that the vis-
coelastic properties of other more viscous and perleaptic
materials (including those of biological relevance such as . . .
those found in Iipig bilayerg9]) coulg not be investigated by amount of disorder was found to have I|tt|§, pUt St'.” observ-
this technique. able, mfluenc_e on the resuI(Sz_ec. .II.I E): This is an impor-

Our second contribution is to adapt the MOC to model thdant observatloq since cell perIOd.ICIt)./ in the experlment was
conditions found in actual impact experiments. A standard'©t Perfect, as in most real applications. We also point out
technique for achieving large uniaxial stresses in a sample i§1at one should be able to use the MOC to probe wave
to use some controlled means for firing a flat projectile, aPropagation in systems characterized as having significant
so-called flyer plate, at the target material and then studyingisorder. One can then use the MOC to study fundamental
material response in one spatial dimension. To allow for thigssues such as acoustic localization in random layered mate-
scenario requires two changes in the formalism. First, theials. Although illuminating theoretical work has already
combined flyer plate and composite become the new systenyeen devoted to this problep2,13, much of it applies to
stress waves initiated by the impact must be allowed to travehodel systems. The MOC, on the other hand, is designed to
in both materials, including being transmitted and reflected ahandle true physical systems where material parameters play
the flyer-composite interface. Second, appropriate initial ané crucial role. This and related problems remain an active
boundary conditions must be constructed in terms of theirea of experimental researft].
known quantities — the flyer velocity and material param-  An obvious question to ask is why not solve for wave
eters. The first of these requires no true alterations in thgropagation in the one-dimensional system using finite-
MOC formalism, but only changes in the detailed numerics gitference methodfl15]. This would give as much accuracy
The homogeneous flyer is zoned into “fictitious™ unit cells, 55 gesired and could certainly handle all types of material

and stress and displacement continuity are forced at each cglbpayior (nonlinear elastic, viscoelasticity, viscoplasticity,

interface, similar to what is done in the composite. Our aand so on[16]. Indeed many of these material properties are

guments for determining the appropriate boundary condli%

Our next step was to evaluate the role of the nonideal
periodicity of the unit cell structure in the composite. This
was done by adding a small but randomly chosen additional
width to a minimum allowed value for each cell. A small

fions to match the impact experiment are stated in Sec. || nown to be of great importance when high stress fields are
ons to match the impact experiment are state ec. resent although they are also difficult to incorporate into the
and again they rely on using stress and displacement con

nuity, but this time at the impact interface. The crucial step is hoi approaci[flzr;lgll\./lg\lcc:)te,_l;anecdo:V a;zmmtary (t);; t?e
to relate the flyer velocity to the particle spedd, which shortcomings of the W% D€ addresset.1s rue tha

can then be related through mass and momentum consend® could solve for impact of a one-dimensional composite
tion [10] to the stress(and shock speedU.) since system by finite difference, but there are several reasons why
S.

o=pUU,; p is the average mass density. we choose to pursue methods like the MOC.

Having made these generalizations we are then able to FirSt, we are not looking for a precise numerical solution
compare MOC results to high-velocity shock data that ard® @ particular problem in heterogeneous material behavior,
taken from an impact experiment performed on a periodidUt rather a method that will lead to approximakeit still
laminate of epoxy and epoxy graphite. In this experiment deliable representations of transient wave motion at finite
flyer plate traveling at 0.5003 km/s impacted with the lami-wavelengths in layered materials. From a computational
nated target. Since the stress reached a value of 17(&bdr point of view, the MOC method is considerably less compu-
a volume strain of approximately 1Q%his experiment pro- tationally intensive compared to a finite-difference calcula-
vides a rather stringent test on the theory — it also providesion on the same system. A finite-difference approach is chal-
the reader with a means of assessing the reliability of théenged by the fact that material interfaces with large acoustic
MOC in an actual impact situation. A discussion of the com-impedance mismatches will require a very fine zoning of the
parison is given in Sec. Il C. spatial grid. While grid zoning is not a negligible consider-
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mally the theory applieéwith a change of modulgigo shear

P-1 P P+l N deformation as well.
o o e —=

In the initial application of this method11,20, the
Aboudi formalism initiates a stress wave in these systems by
applying a time dependent stresg,(t) to one side of the
composite system. Transient waves are then studied as they
pass various locations within the composite. In the one-
dimensional applications, the composite is comprised of pe-
riodic repeating unit cells; each of these consists of two com-
ponent subcells forming the laminate. The setup is shown in
Fig. 1. The thickness and mass density of each constituent is
denoted byd,, andp,,, respectively. The total width of a unit
cell is thend; +d,. In these studiesr,p(t) is taken to be a
smooth, albeit rapidly increasing, analytic function of time.
For this situation the Aboudi formalism has been reviewed in

o=l o=2 detail[4,19,21,11,2Dand it suffices here to give only a brief
overview before proceeding directly to our extensions of the

FIG. 1. Schematic of a laminated system to which the MOC isformalism as they apply to the systems of interest in the
typically applied. Unit cells, labeled 1 throudh are subjected to present work. These extensions are the followifyg:to in-
an external stress,, (t). Each unit cell contains two subcells clude viscoelastic effectsji), to introduce a shock into the
(a=1,2) with subcell widthgl, andd, and mass densitigs; and  system by allowing a flyer plate to impact with the compos-
p2- ite sample; andiiii ), to allow for arbitrary system geometries

by removing restrictions that the system has perfect cell pe-
ation in the MOC, it seems to be less severe and thus theodicity.
MOC remains tractable even in three-dimensional compos-
ites.

Second, the MOC offers an obvious scheme for making
approximations. To suit the problem at hand one can truncate At the heart of the MOC method is the assumption that
the MOC expansioiil.1) at the appropriate value df. For  the particle displacement can be represented by a low-
some applications it is sufficient to replace the discrete celbrder truncation of a Legendre series of Efj1). Lettingx
structure of the composite with a homogeneous continuumepresent a local position variable measured relative to the
that possesses the same mechanical and dispersive properiester of subceltr of unit cell p, the displacement to second
in an average sense. As an example, the quasistatic, firstrder in the Legendre series can be cast into the form
order theory[expansion ofu in Eqg. (1.1) out to AV’=1] is _ _
very good for a long-wavelength response of laminates, but ul P (x,t) =w*P(t) +xp “P(t)
gives only the average moduli of the composite and none of 1 92
the dispersive propertig¢49]. In these applications the entire +Z 372_LP} u@p)(t). (2.0
unit cell p is thought of as being mapped into a single point 2 4
in coordinate space. This is the case when one calculates the

Iong-vyavelengt_h limit of dis_persion relations for a Iaminated(Here we already anticipate looking at systems with broken
material; the discrete laminate can be replaced by a con- .

. L riodicity and have attached the additional unit cell label to
tinuum model. In other applications, such as those present (55
ol

ime- ici @,p) (a,p)
here, we retain the time dependence in the displacements, tan d{?&g'g? ﬁgznecigp;ﬁleelg? ezlzlglzfon o(ft)t'h(z e LE;)tions
acceleration terms, and the full discrete nature of the lamina:- ' y d

tion. This is done in an attempt to get reasonable dispersioﬂf motion[Eq. (1.2)] combined with stress and displacement

. : . continuity at subcell interfaces.
effects. For thqt purpose truncating the expansiokat is The first step in the procedure is to substitute the displace-
probably sufficient.

ment, Eq.(2.1), into the equation of motion Eq1.2) and
invoke a stress-strain equation to relate the stress to deriva-
Il. GENERALIZED SECOND-ORDER ABOUDI THEORY tives of the displacemeitthe straine). Since we are dealing
with shocks of moderate strength we will allow for nonlinear

In this section we review Aboudi's dynamical second-g|astic effects by going to second order in the strain as con-
order theory of the method of cells. We shall restrict oursjgered by Aboud[20]

discussion to the special case of longitudinal waves propa-

gating normal to the layering in one-dimensional laminates.

In spite of the restriction to one dimension, this situation can ~ ¢(@P)(x 1) =E e *P(x,t)+ L E.[“P(x,)]?, (2.2

be realized in conventional planar impact-plate experiments

in which target samples in lateral directions are sufficiently

large. Under these conditions, release waves originating frorwhereE,, ,E/, are longitudinal elastic modu(not to be con-
the lateral surfaces do not affect the direct longitudinalfused with Young's modulus which applies to uniaxial stress
waves through the duration of the experiment. Also, al-conditions. The strain is derivative of the displacement with
though we are explicitly considering longitudinal waves, for-respect to the local cell position

A. Overview of the Aboudi formalism
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au'@P)(x,t) B. Viscoelastic effects
(.P)(y )= — "7 . . . . .
errxD IX Certain classes of solid materials have physical properties
(D) o 21 (D) resembling both those of elasticity and those of stress relax-
=P +3xUt P (2.3 ation [8,22]. Compounds made up of large molecules, such

. — ) as polymers, are examples. Under the action of an applied
One then multiples E¢1.2) by x™ and integrates the result- gtress these materials do not deform instantaneously accord-
ing equation ove_rsub_cedzl. (_As we shaII_ seein Sec._ Il C, the ing to a simple time-independent stress-strain relation like
full set of equations is derived by weighting the integrandsgq (2.2). Rather, at a given time and location, the stress
with the various moments of out ton=2.) _ generally depends on the deformation history. Also, these
The solutions to these equations are subject either to &fpaterials differ from viscoplastic solids in their ability to
ternal boundary conditions at the outer cells of the systeMgcover their shape when the applied stress is removed. A
(e=1p=1) and (@=2,p=N) common way of handling these “viscoelastic” materials is
by introducing a relaxation time, into a dynamicelastic-
U(l’l)(_dlvllzit):Uapp(t)' (2.4 st);ess—strain gequation. If the application yof stress is suffi-
ciently fast the material will respond elastically in close ac-
cordance with Eq(2.2), with (E,,E]) being the relevant
moduli. On the other hand, in the viscous domain at very low
ﬁjading rates we expect the material will respond according
to reduced or “relaxed” set of moduliM ,,M_). The time
scale for switching from one behavior to the other is con-

a®N(+d,\/2,t)=0, (2.5

for example, or to the conditions for displacement and stres
continuity across eacfinterna) subcell interface. Between
subcells (1p) and (2p) this condition demands

ULP(+dy /2,t) =u@P(—d, [2,t) (2.6 trolled by r, and a scheme that interpolates from one type of
o L behavior to the other is implemented by replacing E42)
P (+d, /2,t) = o 2P)(—d, /2,t) 2.7 by the standard viscoelastic-solid modgd]
’p L 1p 1 L .
Py 1) — e(@P) (x 1 (P iy 1
plus similar conditions at the interface of adjacent unit cells,® PX) = € P (B, + B Pi(x1)
[(2,p) - (1:p+ 1)] U(a’p)(X_,t) -M ae(a,p)(x_’t) _ % M ;[E(a,p)(x_i)]Z
UCP(+dyp2,)=uPtD(—d; 1 /21), (2.8 o To
(2.12

oZP(+dyp2,) =P (—dy i a/2t). (2.9
Note again here thdf,,, etc., are longitudinal elastic moduli
For example, displacement continu(tiZgs. (2.6) and(2.8)]  corresponding ta;; in Voigt notation(not Young’s modu-
immediately yields two equations for the cell coefficients, |us). The formal solution of this equation, which is consistent
with the material being in a state of zero stresg-a0, is

2 . .
WP+ %(ﬁ(l’p” %U(l*p) easily determined

- M,—E] [t
d2 P (X ) =| Eudpp+| ——=| | dt’elt’ "V/7a
2 dap 2p ' T
=w(2P) — 7'¢<2,p)+ T*U<2,p>, (2.10 a 0
W VI M’ —E!
and X P )+ 5| gyt | ———"
2
W(l,p+1>_%¢<l,p+1>+ Muu,pm bt —tir (ap) o 37172
5 " x | dret v [ Pict)®, (213
2 _
—w(2P) _ %d)(z,pu %U(Zp)_ (2.1  Where each integral acts on tak"P(x,t) to the right of it.

To proceed further, the relaxed modul(,,M_) can al-
) L . .ways be written in terms of the unrelaxed moduli as
Here we adopt the shorthand notation of omitting the explicitz — v,M, andE’ =M’ . Without additional knowledge

i i inw(a.p) 4(a.p) (a,p) . e .
time variable inw'®?’, ", andU . to the contrary we now make the simplifying assumption that

The result of carrying out this procedure is a set of equa;, _ v/, that is, the linear and nonlinear elastic moduli are

tions that Wh?n comblned_ with the stress continuity (.:0nd"reduced in the same proportion. This immediately allows Eq.
tions, permit the entire set of cell coefficients (2.13 to be written succinctly as

w(@P) g(@P) y(@P) to pe uniquely determined. We defer ~~

di_scussing th_ese sfteps until Sec. Il D._ The present Work.dealé(a,p)(x_i):/Z-(a,p)(t){EaE(a,p)(X_J/)_{_ %E;[e(“'m(x_,t’)]z},

with composites with one or more of its components being a

polymeric material and hence it is first necessary to assume a (2.149
slightly more generalized stress-strain relation. Including vis-

coelastic effects is our first extension of the Aboudi formal-where we have introduced a viscoelastic-relaxatiperator
ism, as we now discuss. T{@P)(1), as
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Multiplying the equation of motion first by and integrating

1.2 . ) .
oot gives the first-moment equation,
he
Lo | T=0010ps oo . Pa, p @,
=0.025 u§ - (e,p) (a,p)( — _ p (,p)
. Lomsﬁg _____ ‘ ' *P(+d, f2,t)+ o' P (—=d, ,/2,1) —LP P (e
2 7=0200 us -
g 08 2 [+dg 2 o
2 "FICTITIOUS" = ol @P)(x,t)dx, (2.17
2 06 STRAIN —> dap ~d, /2
> and similarly, multiplying byx? and integrating produces the
S 04 second-moment equation,
H
w
2
02 Pap ap) Mum T ( 2 )
3 60 dopldap
0.0 +da,p/2 -
00 01 02 03 04 05 06 07 08 09 10 X J ol @P)(x,t)xdx.
RELATIVETIME (. 8) ~da,p/2

FIG. 2. Stress calculated from E@.19 for a “fictitious” input (218
strain (solid curve for various relaxation times. (The stress is in It iS @ straightforward task to evaluate these integrals upon
units of Mbar) inserting the stress-strain equatifeq. (2.14)]. Thereafter,
Egs.(2.16 and(2.17) can be added and subtracted to yield
the stress evaluated at tfgubcell interface

TP (t)= 5, +

t ’
)fodt’e“ Ve (219

a

dayp - )
poz,pda,p[ Tp¢(a’p)+w(a’p) +2f]’(a,p)(t)¢(a,p)

the integral acts on all time-dependent quantities to the right
of it.

The strain from Eq(2.3) can now be inserted into Eq. =20 P (+d, p/2,1) (219
(2.14 to give the stress at any position in cell (p,a) at  gng
any time once the cell coefficientay(*P) $(*P) and

U@ are known. Further, if the material is purely elastic @D ) () «P)() plP)
the relaxation ratia’,=1 and Eq.(2.14) still applies. Papdap 6 d’ 27 P (1) ¢
To give the reader a feel for the behavior of this relax- (@p)
ation function, a plot of dictitious strain e(t) and the stress =20""P(=d,p/2}1). (2.20

calculated from the linear term in ER.14) is shown in Fig.

2 for various values of. The input strain field used in this
figure is for illustration only and bares no direct connection
to the numerical results of the following sections. The elasticp pdlp[ dlp p lp)_H'N(lp)] pzypdzvp{ % - 2Dy 2p)]

Inserting these into the stress continuity condifiii. (2.7)]
for two adjoining subcell§(1,p) — (2,p)] yields

modulusE is assigned a value of unity so that the stress™ 7 6

exactly equals the strain when the relaxation contribution is

zero. Thus any deviation in the stress curve from the strain  =7(2P)(t) 2P — TP (1) p(1P) | (2.21)
reflects the importance of the relaxation function. The relax-

ation ratio » was chosen to be 0.7. Two observations are2nd Wwo adjacent unit cellEq. (2.9 (2p—1)—(1,p)]

notable. First, the longest relaxation timéhke biggestr)

correspond most closely to an elastic solid — relaxation ef- P2p- 12d2p 1[ dzg L p2P=1) 4 y(2p- 1>]
fects are smallest. Conversely, the shorter the relaxation

time, the greater the stress tends to lag any change in the plpdlp dyp - (1) (1)
deformation. Second, short duration, large strain-rate pro- —5 [ —L2 10—y p]

cesses are influenced less by the relaxation term.
:fﬂl,p)(t)d)(l,p)_7—(2,p71)(t)¢(2,p71) . (222
C. Stress equations
This gives two more(second-order integral-differentjal
equations for the cell coefficients. A third equation follows
immediately by evaluating the integral in the second-moment
equatlon Eq(2.18. The result is

We now return to integrating the equation of motion, as
outlined in Sec. Il A. Since the inclusion of viscoelastic ef-
fects produces only a minor complication to the Aboudi
ggua;tlons via the introduction of the relaxation operator

@«P)(t), we will maintain our attempt to keep the discus- .
sion kgri)ef. P P %W(“’p)—%U(“‘p)ZT“‘p)(t)U(“’p)- (2.23

Integrating the equation of motion over subcellgives

the zeroth moment equation, D. Method of solution

o P (+d, ,/2,t) = P (—d, )f2,t) = p g pd g oW P Equations(2.10), (2.11), (2.21), (2.22, and(2.23, along
(2.16  with the appropriate boundary conditions for the external
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Q(t+At)=(A1)’A IR(t) +2Q(1) — Q(t— At) .
1 P P+l N (2.26

We now determine the appropriate boundary conditions to
simulate an impact experiment. These will provide the cell
coefficients necessary to initiate the step-through solution of

Eq. (2.26.

COMPOSITE SAMPLE

E. Flyer-target impact

Rather than introducing a stress wave into the system with
Tapp(t), @s was done by AboudiL1,20, in this section we
derive the initial and boundary conditions consistent with the
experimental setup of a flyer plate colliding with a stationary
target. This is a standard experimental method for achieving
large transient stress fields in a material. The flyer and target

FIG. 3. Schematic of composite impact plate experiment. Theare not necessarily made of the same substance and the flyer
homogeneous flyer material is also divided into cells for computacan also be made up of sections of different materials. For
tion purposes. The impact interface is between subcelfgY2and  example, in the experiment discussed below, the flyer plate
(1pc+1). consisted of a small slab &-cut quartz at the impact end,

backed with a substantially larger slab of polymethyl-
cells, provide a sufficient number of equations, to give amethacrylate PMMA). The PMMA is used to dampen the
unique solution of the cell coefficients. AboU@O0] has pro-  high frequencyringing in the flyer upon acceleration and
vided a useful algorithm for solving these equations, whichbefore impact, and the entire system after impact. Conse-
for completeness we now outline. For each cell, there are siguently, it acts to stabilize the experiment. In fact, all internal
independent equations. The structure of these equations tgansient motion in the flyer plate, arising when the flyer is
such that they couple a given subcell with its two adjacenket into motion, is assumed to have ceased by the time of
neighbors.(One subcell belongs to a neighboring unit cell, impact —the flyer is assumed to be in a state of equilibrium.
and one is the partner subcell to its own unit ge&llne can  We assume that the sample sections remain intact, and the
map, starting wittp=1 cell, occupying the first six rows, the flyer and sample remain in contact throughout the measuring
p=2 cell, occupying the next six rows, and so on, up to unittime for the experiment. These conditions are met in the
cell p=N, the entire set of equations onto a matrix equationexperiment.
of the form For discussion, we consider the reference frame where,
. before impact, the flyer plate approaches the target with a
AQ(t)=R(t), (2.24  yniform velocityv, and the target sample is at rest. To ini-
tiate the step-through procedure outlined in the preceding
where we have followed the notation of RE20]. The ma- section, we seek values for the cell coefficients,
trix A is a BNX6N parameter matrix constructed from the {w(«P) g(@P) y(@P)l att=0 and att=At, i.e., at impact
d,p and p,,. The column matrixQ(t) is composed of and one time step after impact.

second-time derivatives of the cell coefficients To incorporate the flyer plate into the Aboudi formalism
we first divide the homogeneous mategalmaking up the
wED(t) flyer into (fictitious) unit cells (and each of these into two
- 2) subcells for easy codingFigure 3 shows a schematic of the
WA () setup. Lefp. denote the impact unit cell of the flyer; then cell
g}sﬂvl)(t) p.+1 is the first unit cell of the composite target. The im-
»23(1) pact subcell within celp, is thea=2 subcell. Likewise the
4 impact subcell of the target cell is the=1 subcell. Thus
Q(t)=| UAD(t) (225 cells {1,2,...,p;} refer to the flyer plate and cells

{pc+1pct+2,... N} refer to the targetParenthetically, a
window plate, attached to the target for detection is often
also part of the systertsee Sec. Il Al.

We definet=0 to be the time just at the instant of impact
. — the cells are in contact but no compression of the cells has
uEN(t) yet occurred. At that time, the unit cefl4,2, . . . ,p.} are all

moving with uniform velocityv,, and unit cells in the tar-
and column matriXR(t) consists of all terms in these equa- get, {p.+1,p.+2, - -,N} are at rest. The relative displace-
tions containing no time derivatives. They include terms withments and the stresses between each unit cell and between
the viscoelastic relation operat@®®P)(t). Upon inverting each subcell are zero. Next, we can always chabiséthe
A and representing the second-time derivative as a finite difarguments for estimating an upper bound dnhare unam-
ference, the solution of the entire set of differential equationdiguous and are given belgwmall enough such that at time
is gotten by the time evolution of At, the subcells (B;) and (1p.+1) are now in a state of

U@ (t)
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compression, all others are not. Subcells
{(1,1),(2,1),(2,2),(2,2),..,(2p.—1),(1py)} remain
moving with uniform velocity v,, and target subcells,
{(2pc+1),(1pc+2), ...,(2N)} are still at rest.

These conditions are sufficient to determine cell coeffi-
cients att=0 andAt. Continuity of stress and displacement
are forced at the impact interfa¢é2,p.) —(1,p.+1)]. At
t=At this translates into the two equations,

0=pap UzpUzp =P1p +1YU1p +1U1p +1  (2.27)

and

(Vo Upp )At=Ug, ;1AL (2.28

2

d
wZpo) % H(2P0 +% U2P)=p At

2

d d
wlPet 1) 4 % HLPcH 1>+$U(ch+ v_g
(2.3)
3d
p200— 2P y2p0 g,
3d1p +1

¢(1,pc+1)+ U@pct=0.

The solution of Eqs(2.30 and (2.31), with Ulypcﬂ deter-

mined from Eq.(2.29, provide the desiret=At boundary

conditions

whereua,p andU, , are the particle and shock speeds, re-
spectively. Since the strain under these conditions is

e*P=u, /U, , [10], we arrive at three equations for the
three unknowng(*Po), e(MPe* 1), anduy, .

E,+ %Eié(l'chrl)(X—,t) =E,+ %Eéf(z'pc)(x_vt)'

Prpg+1(VoUzp)?=[Ext 3B P V(X D)]

X[V P,

P2pUap, =[BT zE2 2P (X D[P (XD T2,
(2.29

1pe+1)— 1/
W( Pc )_3u1’pc+lA‘t7

Lll, +1
o= P Ay
1pg+1

u
U(Lperl) 2 “LPet

1p.+1
(2.32

Uip.t+1

w(ZP) = (2v0+Upp 1AL,

1 .
¢(2,Pc):—d (Ugp +17Vo)AL,
2,

where 7{(*P)(t)—1 is applicable. Only the values a'n‘zpc

U(Z,DC): 2 (Ul +1— 0 )At
SdZ'Pc Pe o

(andUlvch) are needed. Though it is not necessary to do so,
rather than solving Eq€2.29 self-consistently, an analytic Finally, a few words on estimatinyt are in order. Neglect-

solution ofijzypc is possible if cubic strain terms are dropped

.ing all considerations besides the impact itself that could
"require further restrictions on the choice att, one can

this step is easily justified and was done to avoid UNNeceShoose At to be some fraction of the lesser of

sarily complicating the numerical work.

Continuity of the displacement at the impact interface

yields the following constraint on the cell coefficients:

2

200y 0P L 2py 920 2py
WP+ —= 2P+ — = U=y AL,

2

dip +1 dip,+1

(Lpctl) _
wiPe
2

PLPctD) ¢

U(l'p°+ D= ijlvchr 1At .

(2.30

szypclc(f’pc) and Axlypcﬂlc(Ll’pCH). Here, Ax, , are the

widths of the spatial grid for the two subcells nearest the
impact interface[Note that even the composite subcells can
be zoned on finer mesh than the actual material subcell if
necessanysee Sec. Il Al. Similarly, c{*P are the corre-
sponding longitudinal sound speeds. Since
c{*P=E,/p,p At can be estimated entirely in terms of
the material properties. Taking one tenth of the smaller of the
two numbers gives a reliabliet.

Ill. NUMERICAL RESULTS

In this section we compare the generalized MOC results
to data from the flat-plate impact experiment. Our goal is

Similarly, the displacement and stress continuity at interfaceswvofold. First, this comparison provides a rather stringent

[(1.pe) —(2pc)] and [(1,pc+1)—(2,p.+1)] give four

more equations:

test of the theory. We find that because of the complexity of
the setup(a large number of materials, etestimates of
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TABLE I. Flyer, sample, and window dimensions and densities
in the composite experiment.

Component Length (mm) p (glent)
Flyer
PMMA? 5.000 1.15
Z-cut quartz 1.557 2.65
Composit8
Epoxy subcell 0.027 1.270
Epoxy-graphite subcell 0.120 1.630
Window
PMMA 5.000 1.15

PMMA is the standard abbreviation for polymethylmethacrylate
bThe composite consisted of 19 unit cells making up a total length
of 2.806 mm.

COMPOSITE UNIT CELL

FIG. 4. Schematic of the experiment. The flyer consisted of adjrection, was backed by a PMMA window, and had a thin
Z-cut quartz impactor, backed by a larger plate of PMMA. The (0.025 mm aluminum foil between the target and window to
composite was made of epoxy, epoxy graphite unit cells. The parprovide a reflective surface. This reflective surface allowed
ticle velocity at_the composite-PMMA-window interface was mea- tjme-resolved particle velocity information to be measured
sured by laser interferometry. using a VISAR(velocity interferometer system for any re-

flecton velocity interferometer{23]. The VISAR system

many material properties are necessary. This includes naised for the experiment was configured with a relatively long
only the viscoelastic- and » for the polymeric compounds, delay leg to yield high particle velocity resolution. Particle
but also the nonlinear elastic mod@i for all the materials.  velocity was measured at the target-window interface yield-
We emphasize that it imot our goal to do an extensive ing an approximatén situ measurement.

search over a large-as-feasible parameter space, but rather toThe composite portion of the system consisted of 19
use whatever data we have on these materials to deduce regearly equal-width unit cells, each containing two subcells.
sonable estimates for the parameters. We believe this pr@ne subcell consisted of an epoxy-graphite mixture, and the
vides a more honest representation of versatility of thesecond, much thiner subcell was made of pure epoxy. We
method, albeit probably not the best fit to the experimentatefer to the epoxy-graphite subcell as 1, and the pure epoxy
data but one that emphasizes the importance of having adubcell as 2. Approximately 39% of the volume of subcell 1
equate material property data independent of the experimemjas graphite and the remaining volume was filled with ep-
being analyzed. oxy. The graphite was shaped into unidirectional fibers ori-

Second, we hope to shed light on some of the saliengnted parallel to neighboring subcell walls and distributed
features of the experimental results that have not yet beemniformly throughout the subcell.
explained by other theoretical methods. In our first set of
calculations we assume that the composite has translation
symmetry in its cell structure. This hypothesis is tested in : . .
Sec. Il E by allowing subcell widths in the composite to 10 @pply the MOC to this system requires substantial
vary randomly. In fact, this example has more than Ion|al_<nowlfadge of th_e_ elastic and viscoelastic properties of the
gogic importance because the composite in the experimeﬁE‘ate“als comprising the system. For a material like PMMA

has a visible amount of irregularity in its cell widths. much is known from previous high-quality experimere]
Unlike for many homogeneous materials, however, the elas-

_ tic properties of the epoxy-graphite mixture are not previ-
A. Experimental measurement ously tabulated. Nevertheless, sufficient information was

A schematic of the flyer, composite sample, and windowMeasured on the experimental system to deduce these.
for the experiment is shown in Fig. 4; the dimensions and The longitudinal sound velocity and the average density
mass densities for these are given in Table I. The flyer plat¥€ré both measured for the entire composig:=2.855
in this experiment wag-cut quartz, backed by PMMA and Mm/us andp=1.564 g/cm. The longitudinal sound veloc-
inserted into an aluminum projectile. Quartz in this orienta-ity for pure epoxy, its mass density, and the mass density of
tion was chosen for its high Hugoniot elastic linfiEL).  Pure graphite are all knowi25] or measured indepen-
The projectile was accelerated using a single stage 72 m#ently here: ¢¥=2.520 mm/s, p,=1.27 glcri, and
bore gas gun facility, achieving a velocity of 0.5003 km/s. Pgraphite=2-20 g/crd, respectively. Finally, the average sub-
Projectile tilt was not measured in this experiment, but fromcell widths d; and d,, were extracted from an optical
previous measurements is assumed to be less than 2 mradetallograph  of the composite d{=0.120 mm,
This implies a very planar impact which means the composé,=0.027 mm). With this information in hand, we can es-
ite target was subjected to uniaxial strain. The compositéimate the elastic moduli of subcell 2 and the average moduli
target was oriented with laminations normal to the impactfor the entire composite. We find,E,= p,[c{?]?

B. Elasto-mechanical properties
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TABLE II. Flyer, sample, and window elastic moduli, relaxed moduli, and relaxation times for the
composite experiment.

Component E (g cm/us?) E’ (g cm/usd) v 7 (uS)
Flyer
PMMA 0.089 —-0.72 0.75 0.01
Z-cut quartz 1.072 —-5.83 1.0
Composite
Epoxy subcell 0.186 -0.93 0.90 0.015
Epoxy-graphite subcell 0.146 —0.88 0.88 0.025
Window
PMMA 0.089 —-0.72 0.75 0.01

3See comment on epoxy in Sec. Il D.

=0.081 Mbar, andEzp_cfzo.127 Mbar. (Note that 1 value ofs approximately equal to 2, pertaining to stress that

Mbar = g cmjus?). Next we seekp;, the effective mass the PMMA is subjected to in the experiment. From our esti-

density of the epoxy-graphite component. To that end, wénate E'=—4Es, we then arrive atE’=—-0.72 Mbar.

note that the volume fraction for subcell 1 relative to fhk ~ Schuler and Nunziato also provide a means of estimating the

unit cell is ¢, =d, /(d;+d,). Since relaxation time. They found that their data fit well a stress-
L dependent relaxation function of the form,
p=p2(l=¢1)+p1¢1 (3.

we find immediately thap,=1.630 g/cm. Similarly, since = Toexr{ _(
the average modulus for the composite is related to its con-
stituent moduli by

O— 0

k

, (3.9

wherer,=0.25 us andk=0.8 kbar are constant parameters
1 1 1 fitted to the data. Hererg is the equilibrium stress, i.e., the
E—_(l— ¢1)E—2+ ¢1E_1’ (3.2 stress state to which the material relaxes at constant strain,
when the strain is held fixed for all time, awndis the instan-

we can solve for the elastic moduli for the epoxy-graphiteta“eous stress. At 17 kbar one can extract from their mea-

subcell. The result i€,=0.146 Mbar. This gives a sound Surements, — values —of o—og in the range
speed of 0.299 crpds for that material. 2 kbars o0— og=4 kbar, giving a rather wide range of pos-

The nonlinear elastic moduli’, have to be estimated for Sible relaxation times of 0.002:s< 7<0.02 us. Their data
the PMMA, quartz, epoxy, and epoxy-graphite mixture. This2'® consistent with a relaxation ratio f&0.75.
can be done as follows. It is well documented, 26 that The tabulated valug5] of s for pure epoxy and quartz
the shock speedJ) varies linearly with the particle speed &€ 1.543 and 1-36,’ respectively, giving values of
(U,)over a substantial range; the relationUg=c+sU,,  E2=—0.50 Mbar andEg;~ —5.83 Mbar. For the epoxy
wherec is the zero pressure bulk sound velod®7] andsis  graphite mixture we estimate= 1.5, which follows simply
the slope. Material porosity, elastic-plastic transition, andoecause this value is common to many materials. The relax-
phase transitions are the usual causes of departure from lidtion timesr for the epoxy is not expected to deviate sub-
earity. For the materials of interest to us hede, U, mea-  Stantially from those of the PMMA. The elastic moduli in
surements have been done elsewhere and theie tabu- Table Il were obtained in this manner.

lated [25]. We can use our knowledge sfto arrive at an ~ Finally, we mention our layoutzoning of the subcell
estimate forfE’ sinces=pU,U, ande=U, /U imply that widths used in our numerical work. The entire system was

divided into 158 subcells. Rather surprisingly, the quartz im-
a=pUsUp=p(cL+sUp)Up=(pcf)e+(2pcfs)ez+ e pactor did not require fine zoning; it was found to be suffi-
(3.3 cient to divide the entire plate into 10 equal-width subcells
with d;=d,=0.015 57 cm. On the other hand, the compos-
Comparing with the static-stress-strain equatieg. 2.2 al-  ite required more careful consideration. With nonlinear elas-
lows us to identifyE with pc? and E’ with 4Es. (In our ticity included[the second term in Eq2.2)] unphysicalos-
numerical work we apply the convention that stresses areillations were found to be a common problem in the
negative in compression and this,= —4Es, is used. numerical solutions. This could be eliminated somewhat by
The mass density and elastic modulisare well known  making the composite subcells to be approximately equal
for PMMA. To obtain values foE’, v, andr we look to the  width. To do this we further divided the epoxy graphite sub-
work of Schuler and Nunziati24] whom have investigated cells into three equal-widtlisubsubcells, each with width
the elasto-mechanical properties of PMMA in considerabled.004 cm. After this, each unit cell had three identical neigh-
detail. Using a plate impact experiment, they measured thboring graphite-epoxy subcells and otg=0.0027 cm ep-
shock speed as a function of the particle speed, from whiclxy subcell. Altogether the composite consumed 78 compu-
we can estimate the slope From their data we extract a tational subcells. Finally, it was found that the impact side of
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wave, there is a rather abrupt drop in the particle velocity,
indicating that a release wave has arrived at the observation
point. Its origin is the following. At impact, stress continuity
4 tells us that a backward propagating compression wave in the
Z-cut quartz impactor must accompany the forward propa-
gating wave in the composite. The strength of the compres-
sion waves are equal at impact, and their respective speeds
EXPERIMENT are given by the solution of Eqg2.29. The backward
02 | 4 propagating compression wave will travel unimpeded in the
flyer until it reaches the quartz-PMMA interface at which
time a portion is transmitted into the PMMA and a portion is
01 F 1 reflected back towards the window.
Al Because of the long length of the PMMA, and its lower
,,mﬂ]Li . . . . sound speed, the portion transmitted into the PMMA will
0.0 0.5 1.0 15 2.0 25 3 have detectable consequences only at times much larger than
TIME (ps) the measuring times in the experiméand theory. Conse-
quently, from here on we will only follow the reflected por-
FIG. 5. Experimental and theoretical velocity profiles for wavestion of the wave. Since the backward propagating compres-
propagating in the system shown in the preceding figure. Measuresion wave is traveling in a higher acoustic impedance
ments are taken at the composite-window interface. The oscillationmateria|(quartz) and is partially reflected from the interface
at (A) are unphysical. The particle velocity plateau Bj (is from of a lower impedance materié@MMA) the reflected wave
the initial loading wave. The velocity atQ), and then again at || e a release wave, i.e., a rarefaction wénete, acoustic
(D), results when release waves arrive at the window. impedance= \/p_E). Also, only a portion of the backward
. . ) . : moving compression wave is reflected, so the magnitude of
the PMMA window _al_sc_J required very fine zoning. This Was the rarefaction is only a fraction of the initial compression.
accomplished by dividing the forward segment of the win- . L
s the reflected wave strikes the quartz-composite interface,

dow into 50 equal-width subcells, each having width of " " oo d reflecti K | ing. f
0.0025 cm. The remaining window and the PMMA portion again transmission and reflection takes place. Ignoring, for
; ' the moment, the structure of the composite, the component

gntglfsfggirelrlevc\‘l?éiﬁg i?]ntlr{eaw(i:r?g(r)?/ve gggr ;E]eeir:]ef’&nssc:]{a::hﬁransmitted into the composite acts to release some of the
' P stress built up from the initial the loading wave. The final

was to be certain .that our n_umer_lcal solution would be S.eni'mportant fact is that waves propagating in the compressed
sitive to all incoming deviations in the stress and velocity,

including the very high frequenciinging that arises from region behind the shock front will propagate fastsuper-

. e . sonically) than in the uncompressed material. Consequently,
reflections V‘.”th'n the smallest subcells of the compogite the releasewave catches up slightly and reaches the obser-
our case, this was the epoxy subcglls

vation point about 1.3«s after the initial impact.

In the figure the initial loading wave elevates the particle
velocity to 0.42 km/s. The particle velocity stays at that
In Fig. 5 the experimental and theoretical particle velocityvalue(the flyer continues to push the targentil the release
profiles (velocity as a function of timeare shown. The ori- wave arrives, thus reducing the particle velocity to
gin of the time axis is placed at the instant of impact deter0.3 km/s. Yet, one more major reverberation occurs in the
mined by the theory. Since absolute times were not recordeeixperiment 1.8us after impact. At that time a second release
in the experiment, we have taken the liberty of positioningwave, after traversing the quartz twice, arrives at the obser-
the experimental curve to match the theoretical one at thgation point. Again, this wave reduces the stress and the

steepest rise in the velocity, i.e., at the acceleration maxiparticle velocity (down to pointC in the figurg but by a
mum. In the theory, the particle velocity is simply the time correspondingly smaller amount.
derivative of the MOC displacement given by Eg.1). In Overall, the agreement between the MOC theory and the
both the experiment and the theory, measurements were rexperiment is quite satisfactory. For the material parameters
corded at the composite-window interface. We begin by firsthosen, the MOC particle velocities tend to be slightly
giving a rather “generic” explanation of the physics behind higher than those of the experiment. These material param-
the profile as seen by the detector located at the compositeters represent our best objective estimates from independent
window interface. measurements. We reemphasize that our goal was not to do
About 0.9 us after impact the velocity wave reaches theanad hocadjustment of the material parameters until achiev-
observation point. Within a very shofbut finite) duration, ing a suitable fit. (In fact, increasing Epyma from
the particle velocity goes from zero to a value of approxi-0.09 Mbar to 0.10 Mbar is all that is needed to make the
mately 0.42 km/s. This peak in the profilabeledB in the = MOC plateaus agree with the experimental onhds. Sec.
figure) is caused by the main compression wave of the shockl D we comment on the small but well-defined oscillations
reaching the observation point. For obvious reasons thigisible in this figure. Not surprisingly, the MOC calculation
wave is commonly referred to as the loading wave. Theeveals that these oscillations are a manifestation of the com-
physical region in front of the shock wave is still uncom- posite structure. Further, nonlinear elasticity plays an impor-
pressed, but behind the shock the system is in a state ¢ént role in achieving a quantitative description of this fine-
compression. At about 0.38s after the arrival of the loading detailed structure, and will also be discussed.

0.5 T T T T T

04

PARTICLE VELOCITY (km/s)

0.0

C. Comparison of theory and experiment
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ments similar to those in the derivation of E§.3) we can
arrive at an expression for an averdgahat effectively in-
cludes effects of second-order terms

Eeri=(VE+sUp\p)?, (3.5

which yieldsE.s~0.138 Mbar, upon inserting the material
parameters.

In Fig. 6 we also illustrate the important role that the
composite cells have in determining the low amplitude well-
defined oscillations observed at poing)(and (C), and to a
lesser degree atD)) in Fig. 5. We first homogenized the
composite by replacing the material cells with a single ma-
terial that has effectively the same average properties. Upon
doing so we find that the small oscillations are largely re-
moved.[The anomalous precursor oscillatiofa A) and the
very high frequency oscillations aBj, associated with the
nonlinear elastic term, remain howevefhe homogeniza-

& LINEAR ELASTICITY

PARTICLE VELOCITY

P VOV S S S T SR S W tion used the experimentally determined sound speed and
06 08 10 12 14 16 18 20 22 24 average density for the entire composisee Sec. Ill B:
TIME (ps ) c_=2.855 cmius andp=1.564 g/cm. Recall that these

are consistent witle=0.127 Mbar. As usual, it is difficult to

estimate values for, v andE’. Since this calculation is only
for demonstration, we simply used the epoxy values of the
preceding section. The composite length remained as before.
Previous calculations on this system based on the MOC have
invoked homogenization from the start and find similar flat,
structureless plateaus in the velocity profit8] The present

As explained in preceding sections, nonlinear elasticity icalculation is the first one based on the MOC that keeps the
incorporated into the theory by keeping terms to second orfull cell structure for this(and to our knowledge any other
der in the strain in the stress-strain relation Eg14. By  plate impact problem.
including this contribution one can assess both its attributes
and its undesirable qualities. First, the nonlinear terms are
responsible founphysicalhigh frequency oscillations in the
stress and velocity wavepoint A in Fig. 5 preceeding the We now examine the effect of adding a small amount of
main (physica) pulse. By increasing the modulus’ to  “disorder” to the composite. Obviously, one can do this in
larger and larger values, these oscillations can become viseveral ways. For example, the amount of graphite in a given
ible in regionB. (It was for this reason that we reduced our composite subcell varies somewhat from cell to cell. The cell
estimate ofE’ for the epoxy subcell by 20% of the4sE  dependence of the mass density is sufficient to break the
value) translational symmetry of the composite. In the experiment

The fact that the oscillations are unphysical is self-evidenthis is probably a small effect since the epoxy graphite mix-
— they propagate ahead of the shock wave. Further, whiléure appears to be quite homogeneous. Another example, the
their intensity is linked slightly to complicated cell struc- one tested here, is to allow the calidth to vary from sub-
tures, these oscillations persist in an homogenized approxiell to subcell. This was the case in the composite used in the
mation for the compositédiscussed momentarjlyRegard-  experiment. The values of subcell widttlg andd, used in
less of this undesirable property we state unequivocally thathe preceding section, are estimates of the average subcell
obtaining results in quantitative agreement with experimentvidths. In fact, it is difficult to determine quantitatively the
require keeping the nonlinear elastic tern® illustrate this, amount of variation in the cell widths. Consequently, we
we show in Fig 6 a velocity profile obtained by keeping only hope to use the MOC to help answer this question.
linear terms. Even though the agreement is visibly ptioe A random component can be incorporated into the cell
rise time of the loading wave is too large and the physicawidths in several different ways. For our purposes we have
oscillations are greatly reducgdan adjustment was still re- chosen to keep each unit cell widtd; +d,, fixed at the
guired to achieve this level of agreement; we replaced th@alue of 0.0147 cm used in previous sections. Within each
nonlinear material(variable acoustic impedancavith an  unit cell, however, we will allow the subcell widths to vary
equivalent linear elastic material with a constant acoustic imfrom one unit cell to the nextwith the above restrictionIn
pedance corresponding to this level of compression. To makeur numerical work, this was done by adding a randomly
the experimental and theoretical plateau heights comparablehosen width increment to a minimum tolerable width. The
we increasedEpyya from the known value of 0.09 Mbar to result was then normalized to fix the unit cell width
0.138 Mbar. We obtained the latter value by using the ex{d;,+d,,=0.0147 cm). By proceeding this way, any given
perimental observation that upon loading, the particle velocsubcell width could be kept from becoming measurably less
ity in the PMMA reaches a value of 0.42 km/s. By argu- than its neighbors, a circumstance that can compromise the

FIG. 6. Theoretical velocity profiles arrived at by omitting non-
linear elastic contributiongbottom profile and by replacing the
discrete cell structure of the composite by a continutop profile.
The experimental profile is also shown.

D. Nonlinear elasticity and homogenization

E. Effects of disorder
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FIG. 7. Distribution of composite subcell widths, with a random

component added. The horizontal dashed lines represent the subcell L L L L 1 L L L ! !
widths used in the periodic cell calculation. Although the individual 06 08 10 12 1";IM];'6 18 20 22 24
subcell widths are random, the total width of each unit cell is fixed (ps)

at the value used in the periodic case. ) ] ] ) )
FIG. 8. Comparison of theoretical velocity profiles obtained

) ) ) _ with periodically repeating unit cells in the composib®ttom pro-
accuracy Of_th? nU_me'f'Cal solution. In Fig. 7, a representativ@e) and with the subcell width distribution shown in the preceding
cell width distribution is displayed. The long&hortej cell  figure (top profile.

widths belong to the epoxy graphitepoxy subcells. The
horizontal dashed lines indicate the average widths used in in .
the preceding sections for subcells 1 and 2. commeqts reg.ardlng the MOC i i

The effects on the velocity profile from including disorder 1€ first point we mention is obvious but important: The
into the system can be seen from Fig. 8. For comparison, thi?€0ry requires considerable input from material parameters,
experimental profile is also included. The theoretical peri-S0me of which are phenomenological parameters needed in
odic and disordered calculations used exactly the same set Bfe Viscoelastic theory. The elastic moduliscan be ob-
elastic and relaxation parameters as in(ﬂ]‘bse listed in tained in principal, from adiabatic stress-strain measurements
Table ll). It is clear from the figure that random subcell or adiabatic sound wave experiments, or from microscopic
widths, to the amount given in Fig. 7, has several visiblecalculations and even computer simulations. To a lesser de-
effects on the profile. The high frequency structure residinggree, this is also true fdg’. On the other hand, only in a few
on the loading portion of the velocity profilpointB in Fig.  exceptional case@®MMA is an examplghave studies been
5) is considerably more chaotic and less well defined than ilone to determine the relaxation parameters for viscoelastic
the periodic case. On the other hand, the oscillations in rematerials in high stress fields. As a result, depending on the
gion C, after the arrival of the first release wave displayscomplexity of the setup and the materials, one can find them-
only small changes. This rather surprising result may beselves in a situation of having too many “adjustable param-
caused by the fact that the region behind the release wave éfers” to achieve trustworthy results. Certainly for the com-
at a much lower pressure than behind |_n|t|al Ioadlng waveplicated setup in the experiment it is important to have
To test this hypothesis we lowered the impact velocity to gngependent, reliable experimental data at hand for the indi-
valug of 0.3 km/; and obsgrved the effects of disorder on _th9idual constituents.
loading wave(point B). This result supports the hypothesis o+ second point concerns truncating the Legendre series

since the incorported disorder had noticably less effect thaﬂ)r the displacement. To be confident of the quality of the the

for thg higher impact case. This demonstrates th_e Complil'\/IOC expansion it would be desirable to carry out a calcu-
cated interplay between the cell structure, the nonlinear ela?étion for V=1 and thenV=2 and so on. until the numeri-

ticity, and the wave propagation in this calculation. Finally,{;al results are independent of théused. In our work, we
returning to the original question, our conclusions are that’; ) ) !
9 g d did this for N=1 and 2. As a result, we found that the

the composite used in the experiment has very little cell- i '
width disorder since the small oscillations are well definedV=1 €xpansion captured the magnitude of the stresses and
and clearly visible in the experimental data. velocities with surprising accuracy, but ov_er_all the_ results are
more choppy than fa\V=2 expansion. This is easily under-
stood because the stress calculated at the l&fell is in-
dependent of the local variabie the stress within a subcell
From the results of the previous sections it is clear that thés a constant. Thus the stress, when plotted as a function of
MOC is a useful and versatile tool for investigating transientposition has a histogramlike shape. Going to higher and
propagation in rather complex materials. Even though thidigher order in the truncation gradually removes this defect.
may be the case, we close the discussion with some critic&#for example, atv= 2 the stress varies linearly withallow-

IV. SHORTCOMINGS OF THE MOC
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ing for the possibility of more closely matching of slopes ondata in the case of a moderately simple, layered composite.
the two sides of an interface. Improvements in these calculations require comprehensive

Third, the MOC is entirely a mechanical theory. Without data on the component materials and perhaps extension of
incorporating more formalism into the method we have prethe theory to displacement expansions of orders higer than
cluded a proper treatment of the thermodynamics of dissipal/ = 2. These are not easy problems to overcome in practical
tive processeg$28|, including nonadiabatic effects, and a situations. Thus, when it appears necessary to include de-
proper treatment of plastic flo@wvhich is important in com- tailed effects of composite material behavior in applied
posites made of metals with low yield strengths, e.g., coppewave-propagation situations, it would probably be prudent to
and aluminum Certainly this does not exhaust the list of examine the overall commitment and experimental resourses
possibilities. that can be brought to bear on the problem.

V. CONCLUSIONS
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