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Temporal behavior of bidimensional photorefractive bright spatial solitons
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The time behavior of bright spatial solitons in biased photorefractive media is investigated within the
framework of a bidimensional band transport model. Biasing the photorefractive media requires an externally
applied electric field or the presence of a photovoltaic effect. These two basically different phenomena are
shown to be equivalent and additive. The mechanism of space-charge field buildup is analytically expressed,
leading to a time-dependent wave propagation equation in generic photorefractive media. The temporal be-
havior of the soliton solutions to this equation is investigated. It shows the evolution of the soliton beam from
the time the external electric field is applied to the final steady-state soliton. On the way, the so-called
guasisteady soliton is retrieved, along with its properties. Furthermore, the photovoltaic soliton is described by
the wave propagation equation: its behavior is the same as that of the steady-state soliton, the transient states
included. Finally, low-power photorefractive bright spatial solitons are generated ip EH®), crystal with a
He-Ne laser and their temporal behavior is investigated, thus providing an experimental validation of our
theoretical considerationgS1063-651X96)06912-1

PACS numbg(s): 42.65.Tg,42.65.5f,42.65.Hw,42.65.Jx

INTRODUCTION propagation equation. Therefore, in order to achieve a further
understanding of the phenomena involved, a simpler model
The photorefractive effect is the result of a complex com-that can lead to a time-dependent wave propagation equation
bination of various physical phenomena. The most comhas to be developed. In this paper, such a theory is proposed
monly studied photorefractive effect stems from chargeand it is suggested that linking the three types of soliton
transport and trapping, which induce a space-charge electrffrough one partial differential equation depending on the
field and thus an index variation. The propagation of a singldime is possible, within the framework of a bidimensional
light beam through such a medium has been the focus d¥and-transport model. The time evolution of the photorefrac-
many recent studies. In particular, bright spatial solitondive soliton profile is numerically evaluated and the key role
have been predictdd—4], leading to the observation of pho- Played by the saturation process is shown. Consistent experi-
torefractive self-focusing effects] and of photorefractive mental evidence on a BiliOy, crystal is then provided.
spatial solitond6—9]. These phenomena occur only if the
photorefractive material is properly biased by an externally - THEORETICAL BASIS AND APPROXIMATIONS
applied electric field or by the presence of a photovoltaic | 5 ¢rystal whose dimensions are considered to be infi-

nonlinearity. nite and under the standard assumption of slow variation
The self-focusing process has been found to lead to thre&long the transversal direction the band-transport model

different types of bright spatial soliton: the quasi-steady-stateqq,ced to one dimension can lead to an analytical expres-
soliton [1,2,10, which has a limited lifetime and does not g5 of the space-charge field. To achieve it, further approxi-

depend on light intensity as long as it is much larger than the, o450 concerning charge-carrier densities are needed and

dark irradiance; the screening solitpfy11], which occurs at detailed below. A wave propagation equation can then be
steady state and is due to the partial screening of the extefrived.

nally applied electric field; and the photovoltaic soliton 114 band-transport model is summarized in a very general

[8,12], which can be obtained without any external electric nanner by the set of equatiof®) developed by Kukhtarev
field, the photorefractive material being biased by the presg; o [16]

ence of the photovoltaic effect.
The ability to generate spatial solitons at optical powers in

the range of the mW/cfrievel seems promising for applica- ENS =(B+5Slem(Np—Np) —&neNp , (13
tions such as all-optical routing or beam reshaping. The ma-

jor drawback of the photorefractive effect is, however, its V- (g08E)=p, (1b)
low response time when compared to that of the Kerr effect,

which has been previously found to allow spatial soliton 4 V.J=0 1
propagation as welll3]. That is the reason why the temporal E’H_ R (10
behavior of the photorefractive soliton beam has to be stud-

ied carefully. A nonstationary bidimensional model leading p=e(N5—Na—ny), (1d)
to numerical simulations has been developed recently .

[14,15. However, it does not provide an explicit wave J=euncE+uxgTVnet Bp(Np—Np)cClen. (1€
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The densitiesN;, andn, of ionized donors and electrons are single differential equatioid) linking the space-charge field
functions of space and time, as well as the charge and curreht, the total light intensityl, and their spatial derivatives,
densitiesp and J, the electric fieldE, and the beam local N
power densityl,,,. Np and N, are the densities of donors 0 , ' m_ o 08 "
and acceptorsg ands are the thermal and photoexcitation 1o [Epneul " +eu(lB)"+ ke Tul "] = Bpn e (I-1aE
coefficients £ is the recombination constart,s the elemen-
tAary chargeg_o is_the e_Iectric permeability of the vacuum, - iIEE”+ 2I'E"+I1E"|=0. 3
&, is the static dielectric tensoy is the electron mobility, ENpkp [ kT
kg is the Boltzmann constanfl is the temperature, and . ) .
Bon is the component of the photovoltaic tensor along thel—ke_ren0 is the_ freg—electron density generated by an arbitrary
ferroelectricc axis, the other components being neglected. IrHniform illumination | o:
the following, thex direction is along the axis. no  S(Np—Ng)

For the sake of simplicity, we will consider an electro- o_>2D AN
magnetic wave that propagates alongnd is allowed to lo ENA
diffract in only one directiorx along the ferroelectric axis. . . ) .
Under this assumption, the current densityexpressed in d=#/S is the dark irradiancekp = Ve“Na/kgTeoe, is the

(1¢ is then allowed to be directed in only one direction. ThisD€bye wave number, aniyn=BpnéNa/eus is the electric
model does not allow) to do vortices like in Ref[14]. field characteristic of the photovoltaic effect. The quantity

Nevertheless, although this model forces the current distribu-=em? la iS the generalized light intensity, taking in ac-
tion to be along thex direction, the current loop can be count both thermal and photoexcitation, and is thus a func-

closed if the crystal faces are linked by a conductor, which idion of the transverse spatial coordinate
the case if an electric field is applied. Assuming that the recombination rate is high enough so

2 . .
Under this assumption the set of equati¢hsreduces to  that NpsI<éNj [17] and considering thakp>1, the last
the set of equations term of Eq.(3) compared to the first two can be neglected.
Furthermore, if typical quantitative values are considered for
the remaining two terms, the second one can be neglected by

Npse

5N5=(ﬂ+5|em)(ND_ Np)—éneNp , (28 comparison to the first one. Therefore E8) is reduced to
P eul[Epnl '+ (1E)" T+ kg Tul"=0. (4)
——(&0gE)=p, (2b) . . L
2 Introducing a generalized space-charge electric field

E,=E+Ep,, itis straightforward to show that E¢4) can

J ap be reduced to
54‘5—0, (2C)
e+ s 5
p=e(Np—Na—n,), (20 (IE)"+ =~ 1"=0. ®

Ng N This latter differential equation links two functions of the
J=euncE+ prgT—-+ Bpen(Np—Np)lem- (280 space variabld: andE.. It can, however, be integrated so as
to give an expression dt, as a function ifl .
g, is the component of the static dielectric tensor alongxthe
direction. B. Boundary conditions and solution
In typical photorefractive media and provided light inten- ) o »
sity is not too high, the density of free electrons compared to Solving Eq.(5) requires initial conditions on both and
that of donors and acceptors can be negledtggs n,. This I. The _materlal being assume_zd infinite in blgei_lrectlon_, thg _
implies that the densities of ionized donors and acceptors afeeam influence can be considered to be limited to its vicin-

quasiequal, which, along with the slowly varying assump-ty: all the derivatives ofl are considered null far from the
tion, implies that beam. However, only the hypothesis Jim.|'(x)=0 is
strictly needed. Therefore, the useful part of the bdam

JE vanishes at infinity: lim_,..| =14. Furthermore, the electric
ENA>808r5- field far from the beam remains quasiunaffected:, limE

=Eex= liMy_ B, =Eeqt Epn, Eex being simply the volt-
The latter approximation is akin to writing that the Debye age applied to the crystal, divided by the crystal width. Un-
wave numbeKsee Sec. Il A for a precise definitipis much  der those conditions, the generalized electric fielccan be
larger than unity14]. expressed as

Il. STEADY-STATE STUDY E (BEexitEpla wgT I’ 6
T I e I . ( )

A. Further approximations and a space-charge field

general expression Equation(6) shows the similar role played by the external

Under steady-state conditions and under the assumptiorgdectric fieldE,,, and by the photovoltaic effect whose influ-
stated above, the set of equatiaf® can be reduced to a ence is shown b¥,,. This symmetry between these basi-
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cally different two physical processes will be seen through-soliton beam[19]: strictly speaking, soliton beams can be
out the paper to the final wave propagation equatidPE). achieved only if this term is neglected.
The physical meaning of the arbitrary lengty, intro-

C. Wave propagation equation duced to render Eq9) dimensionless, cannot be defined
precisely here. Its real significance can only be inferred from
the mathematical solution of E¢Q). However, well-known

The propagation of an electromagnetic wave in a mediunfiyperbolic secant solutions of the similar nonlinear Sehro
with a low index modulationsn and negligible absorption dinger equation(see Sec. IIC3 belowsuggest thak is

1. General expression of the WPE

can be expressed as closely related to the beam half-width.
g i ik 2. Simplification of the WPE
9z 2K ox2 &= n oné. (7) by neglecting diffusion-related terms

As suggested by Ref18], an interesting approach to Eq.
z is the propagation directiow, is the direction in which the (9) is the case when the diffusion mechanism of transport
beam is allowed to diffract is the amplitude of the beam plays no significant role:N?>Dg|U|%/aX. This is true
electric field,k is the wave vector, and is the base refrac- if the drift mechanisms due to the external field and to the
tive index. photovoltaic effect are strong enoughEg,+Eq>

Via the Pockels effector electro-optic effegt the index  (x,T/e)(1/14)(al/9x). In that particular case, the wave
modulation is directly proportional to the space-charge elecpropagation equatiof®) reduces to

tric field, via the effective electro-optic coefficients:
U 120 U
on=—3n3r 4E. (8) =7 t55x2 N |U|T+1=0' (12)

If we leave out the constant refractive index change inducegtqyation(12) is a generalized nonlinear Sciiinger equa-
by 14, a new wave propagation equation can be derived fromign of the form

Egs.(6)-(8),
2 2 '3U+162U+f(|u|z)u 0
U 140°U alu U i—+t57 =0.
i~ + 5= — | N°— ol Tz 7=0, (9 9z = 29X
9Z ' 2 X X | |Ul?+1

It is now known to exhibit soliton solutiondl 8].
with U=&/l4, X=x/X,, and Z=2z/kX3, where X, is an
arbitrary length. 3. Case of intense dark irradiance

N? is characteristic of the quasilocal mechanisms of non- Both Egs.(9) and(12) clearly show the key role that the
linearity and is due to drift and photovoltaic mechanisms ofyark irradiance plays in the photorefractive self-focusing
transport: process. Since the dark irradiance models the thermal charge

carrier generation, it is possible to artificially increase and
(10) control it by shedding a background uniform light upon the
whole crystal[7].
In this condition, it is meaningful to consider the case
The drift mechanism of transport is due to the externallywhen the dark irradiance is much more intense than the peak
applied electric fieldE,,, while the photovoltaic effect is intensity of the soliton beamU|<1. The part of Eq(12)

represented in Eq10) by Ey,. Equation(10) again shows  that accounts for the normalized index variatiém* is
how and why these two basically different phenomena can

be considered similar. Their influence on the wave propaga- . , 1
tion is shown to be additive. on*=—N [UZ+1° (13

An equation of the same type #38) has been found to
exhibit bright soliton solution§18]. These particular soliton Leaving out the constant part of the index modulation, the
solutions can, however, only be achieved\f is positive, above approximation implies thén* ~N?|U|2, leading to
which physically means that the nonlinearity is such that

k2n2r effx(z)( Eext+ Eph)

2:
N 2

refractive index diminishes if the local optical intensity rises U 1070
[11,18. If N2 happens to be negative, the beam is then self- 127 Taax@ N [U[Fu=0. (14
defocused.

The quantityD is characteristic of the diffusion mecha- This is the well-known nonlinear Schiimger equation,
nism of transport and is expressed by which again exhibits soliton solutions. It has been studied

thoroughly(see, for instance, Ref20]) and it exhibits well-
defined solutions for the small positive integer valueNof
which is called the soliton order.

The linear dependence @h* upon|U|? shows that un-
The diffusion mechanism of transport is essentially depender the conditions detailed above, the steady-state photore-
dent on the crystal type and on the charge-density gradient. ftactive effect is similar to the Kerr effect, apart from its
has been numerically found to induce self-deflection of thenuch slower response time. The ability to generate spatial

2~2
_ k“n reffXOKBT

2e (1)
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photorefractive solitons is therefore expected and confirmedusly defined, the beam extent is considered to be small with
by the above analysis. Furthermore, EtB) shows that the respect to the crystal width and its effect is assumed to be
steady-state photorefractive effect behaves, in certain condiimited to its vicinity.
tions, like a saturated Kerr effect whose coefficiéft can The initial condition fort=0 is not straightforward. In-
be controlled externally with, for instance, an applied volt-deed, because of the photorefractive memory effect, the ini-
age. In the next section, we will show that this has greatial state of the refractive index pattern and thus of the space-
influence on the temporal behavior of the soliton beams. charge field depend on the crystal history. Therefore, we will
propose an incomplete general solution and analyze it for
Il. TEMPORAL ANALYSIS three different assumptions on the space-charge-field initial

state.
A. Partial steady-state and space-charge field equation

The temporal behavior of the band-transport model is B. General WPE and its solutions
governed by Egs(1a and(1c). Equation(1la) describes the
process of charge generation and recombination. It gives the
characteristic carriers recombination time&rd. Equations Assuming that the light power density varies slowly
(1c) and (1) express the current distribution continuity and enough with time so that its last term can be neglected, Eq.
give the dielectric relaxation timeye, /eun,, which is the  (16) can be analytically solved and yields the expression of
time needed for a photorefractive grating to build up. Therethe generalized space charge fi@lgas a function of ,
fore, the ratio of the characteristic relaxation time of the

1. Time-dependent wave propagation equation

donor density to that of the current density is E —E.exd — eu @It l1—exd — eun @It

o= puelege €. In typical photorefractive materials§<1. T 0 gog; lg gogr lg

For instance, its maximum value isx420™* in LiNbOs, ,

1x10°2 in BaTiO; [14], and 5¢<10°2 in BSO [21]. This lg  wgTl"

; : ; f X (Eext+ Eph) (17)
implies that the charge density reaches its steady state much I e |

before the current distribution, as confirmed by Yéf].
Therefore, after a time longer than the charge recombinaEo, the space-charge-field initial state, depends on the space

tion characteristic time, Eq(la) can be considered as a variablex.

steady state. The set of equatidfs) describes this partially In Eq. (17) and in all that derive from it, the exponential

steady band-transport model reduced to one dimension  terms that describe the time response of the space-charge
field depend on the intensity It is important to notice thalt

0=(B+Slem(Np—Np)—€neNp (158 is the value of the local generalized optical power density

[see below Eq(3) for its precise definitioh It depends on

d the transverse spatial coordinateas doe< .. This implies
3_X(€0€rE):P’ (15 that the space-charge-field buildup time constant depends on
the transverse spatial coordinate and is, in particular, shorter
a3 ap where the optical power density is larger.
YRy =0, (150 The space-charge fiel, induces a refractive index

variation given by(8) that affects the wave propagation ac-
cording to(7). The wave propagation equati¢b8) can thus

p=e(N5—Na—ny), (15d  pe derived from(17) using Egs(7) and(8),
3 £y Tane+ Ne— NI 15 U . 14U l4(1+|U[?)t \2 D(9|u|2
=€eungET kg X BoNp—Np)lem. (156 I&_Z a2 |t T s “Px
With no more approximations than those detailed in the U |d(1+|u|2)t
above steady-state study, the set of equatid® can be ><W—EN(X,Z)GX R S U=0.
reduced to a partial differential equation on space and time (18)
linking the generalized light power densityto the general-
ized space charge fieH,, S =(ege,len)(lg/ng) is an energy density determined by
5 5 the crystal physical parameters. It is characteristic of the re-
o d(IE,) T £+ lod Ef_eﬂ_o 16) laxation of the self-focusing process. It is a very intimate
K ox KBl g2 T E0tr Nodtox ot characteristic of the crystal. We shall choose its value so as

to fit our experimental observations/l ;=10 s, see Sec. V

Solving the partial differential equatidii6) requires the ac- below).
curate definition of the boundary and initial conditions for  The last two terms, divided by, represent the normal-
both| andE.. Its solution thus depends on the precise ex-ized generalized space-charge field: it is of prime importance
perimental conditions. to know the spatial and time dependence of this quantity.

Assuming that the light beam has been present for a tim&y(X,Z) is the initial normalized generalized space-charge
considered as infinite, an external electric fiElg; is applied  field. As stated above, its value cannot be defined by the
to the crystal at=0. E, and| are then assumed to be stable general study, for it depends on the crystal history. In the
and to reach the steady state described by(&qAs previ-  following, three typical cases are analyzed in details.
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FIG. 2. Normalized space-charge field fort/T,
=0,0.1,0.2,0.5,1,2,5,19, the order being shown by the arrows for
a soliton beam 30 times more powerful than the dark irradiance.
HereN?=10"2 andD=1: diffusion dominates.

remains roughly Gaussian. On the other hand, if the beam is
much more powerful than the dark irradiance, then the pho-
torefractive effect saturates. The final shape is no longer
Gaussian but resembles a clipped Gaussian. The interesting
part is that, during the slow process of saturation, the refrac-
tive index pattern is still Gaussian. This suggests, as pre-
sented in Sec. IV, that the soliton beam could be narrower
during the transient state than at steady state or that the self-
focusing effect could be stronger during the transient state.
Although the uniform initial state cannot be physically

reached when diffusion is not neglected, the study of this
case is interesting for understanding buildup mechanisms.
Figure 2 shows, still for a Gaussian beam, what happens if
the diffusion mechanism dominates the other ond¥ (
=102, D=1), the beam peak intensity being 30 times the
dark irradiance. In that case, the quasilocal part of the pho-
torefractive effect is shown to disappear: self-focusing is no

o , longer achieved.
The space-charge-field initial pattern is here assumed to

be uniform. This assumption cannot be physically accurate
for a beam exists prior to the sudden application of the ex-
ternal field. However, it is meaningful when charge diffusion ~ The initial state of the refractive index pattern is here
can be neglected, even if no external electric field is applied@ssumed to be due to the prior existence of the beam and to
and in the absence of any photovoltaic effect. This is true, irfliffusion mechanism of transport, the photovoltaic effect be-
particular, for a Bj,TiO,, crystal. This means that, before ing neglected. In these conditions, tBg(X,Z) term in the
the electric field is applied, the crystal is a linear medium. wave propagation equatiqi8) becomes

Under these conditions, the wave propagation is described
by Eq.(18), where a|uU)?

(b)

-4 -2 0 2 4

FIG. 1. Normalized space-charge field fort/T,
=0,0.1,0.2,0.5,1,2,5,18, from top to bottom, forN°=1 and D
=10"2. (a) The soliton beam is five times more powerful than the
dark irradiance(b) The soliton beam is 30 times more powerful
than the dark irradiance.

2. Initial state: Uniform space-charge field

3. Initial state resulting from diffusion

En(X,Z)=N2. (19) En(X,Z)=N2— (20)

D [Ul?+1°
Using N>=1 and D=10 2, we meet the above require-

ments. In Fig. 1 the time-dependent normalized value of thdf the diffusion effect can be neglected by comparison to the

space-charge field is shown against the normalized transkift mechanism created by the applied electric field, then the

verse directionX for a Gaussian beam profile and for two initial state can be considered uniform and the study reduces
ratios of soliton beam peak intensity over dark irradiance: 30 what has been shown in Fig. 1: the photorefractive effect

and 30, respectively. is quasilocal.

Figure 1 evidences the time behavior of the saturation On the contrary, if the diffusion effect dominates the in-
mechanism of the photorefractive effect. On the one handjuced drift mechanism, then the applied electric field has no
for a not too powerful beam, the photorefractive effect doeshoticeable effect and the refractive index pattern does not
not saturate and can be considered as quasilocal. The finahdergo any transient state. The final steady state is shown in
shape of the space-charge field or refractive index profild=ig. 2 fort=oo.
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FIG. 3. Normalized space-charge field fort/T,
=0,0.1,0.2,0.5,1,2,5,18, from top to bottom for a soliton beam 30 Ese
times more powerful than the dark irradiandd?=1 and D
=101 1.5
1.25
If N2=1 andD=10"1, the two mechanisms of diffusion
and drift are on the same scale and the quasilocal and non-
local mechanisms compete. The time behavior of the space- (b)
charge field for a Gaussian beam 30 times more powerful o
than the dark irradiance is shown in Fig. 3. In that case, a i
strong asymmetry due to the diffusion effect appears in the S| X
i 8 o -4 -2 2 4

space-charge field distribution: this suggests that the beam -0.25
intends to bend towards the deeper part. This may be an 0.5

explanation to both beam bending and beam fanning phe-

nomena, though this needs to be investigated more thor- . .
oughly, like in Ref.[19]. FIG. 4. Normalized space-charge field fort/T,

=0,0.1,0.2,0.5,1,2,5,18, from top to bottom for a soliton beam 30

times more powerful than the dark irradiance. The initial pattern

results from the diffusion and photovoltaic effecta) N°=1 and

D=10"2, diffusion plays no significant role(b) N>=1 and D
The initial state is here considered to result from the prior=10-1, diffusion and drift mechanisms compete.

existence of a beam in a generic photorefractive material

where we consider the two mechanisms of transport that re- . . .

main in the absence of any external field: diffusion and pholr@mework of a one-dimensional model. The photorefractive

tovoltaic. The termEy(X,Z) in the wave propagation equa- effect has been shown to behave, in certain conditions, like a
tion (18) becomes ’ saturated quasilocal effect. In these cases, bidimensional

self-focusing and soliton phenomena are expected and will
a|u|? be shown in Sec. IV.
aX The saturation phenomenon is evidenced by the flat “bot-
(21 tom” of Fig. 1(b). It induces an index pattern that does not
match the beam Gaussian shape: the induced waveguide is
where NSh is N2, in which the electric field is reduced to too wide to effectively guide the beam. Nevertheless, during
Epn- the transient state, the index profile is closer to that of the
Figure 4 shows the time behavior of the space-charg®eam: a stronger self-focusing, or a narrower soliton beam, is
field if diffusion is neglectedN?>=1 and D=102) and expected. Its time behavior is analyzed in detail below.
when the quasilocal and nonlocal mechanisms compéte ( The asymmetric shape of Figs. 2, 3, arfd)4which stems
=1 andD=10"1). The Gaussian beam is 30 times morefrom charge diffusion, suggests that the nonlocal effect could
powerful than the dark irradiance in both cases. I-M%@is induce a bending of the soliton beam towards the “deeper”
considered to be 10 times lower th&if. Figure 4 does not part of the space-charge field profile. This inference is con-
evidence a different behavior from Figs. 1 and 3. However, ifirmed by the numerical analysis of Ref49,22. Our analy-
shows that the photovoltaic effect could, if needed, replacsis suggests that the bending of the beam could be controlled

4. Initial state resulting from both diffusion
and the photovoltaic effect

N2,—D

= 2—‘,——
EN(X!Z) N |U|2+1 ’

the externally applied electric field. by an external electric field that would dominate the diffu-
_ _ sion effect so as to straighten or steer the soliton beam. In a
5. Discussion more general manner, it suggests that both the bending and

The time behavior of the space-charge field and thus ofhe width of the soliton beam can be controlled by an exter-
the refractive index profile has been analyzed in detail in thenal electric field.
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FIG. 5. Time evolution of the normalized soliton profile for ~ FIG. 6. Time evolution of the normalized soliton HWHM for
N2=1 andr =100, typical experimental values. the same conditions as in Fig. 5.
IV. TIME EVOLUTION OF THE SOLITON PROFILE methods. Figure 5 shows three examples of the time evolu-

tion of the normalized soliton profile towards the so-called

The termD of Eq. (18) has been numerically found to screening solitofil1], reached at steady state. The numerical
induce adiabatic self-deflection in the soliton be@h®]. values taken for Fig. 5 atd?=1 andr =100, typical of our
Therefore, Eq(18) cannot exhibit strict soliton solutions un- experiments. The high value forexplains the large screen-
lessD is considered null. In this section we investigate theing soliton diametefor low self-focusing powér Neverthe-
time behavior of the soliton profile by neglectiiyy in Eq.  less, Fig. 5 shows that, during transient state, the self-
(18), which means that the diffusion mechanism of transporfocusing power is stronger.
is neglected. Therefore, for simplification purposes and with  Such calculations allow us to compute the time evolution
no loss of generality, we will assume that the initial space-of the soliton half-width at half maximurtHWHM) shown
charge field can be considered as uniform. This is particuin Fig. 6. The time normalization factdr, used in Figs. 5—8
larly the case in the experimental observations opB0O,, is T,==/l4. For high saturation valugse., r >1), the soli-
presented in Sec. V. The equation that describes the wawen HWHM reaches a minimum during transient state. This
propagation under these hypotheses is then(Eg). is the so-called guasisteady solitft0].

Let us assume thai (X,Z,t) is a soliton beam: its shape  Figure 7 shows the diameters of the screening soliton
does not change throughout the propagation. It can therefor@lain curve and of the quasisteady solitédotted curve. It

be expressed as shows that, as suggested in Rdf5,.2], the diameter of the
7 quasisteady soliton does not dependroas long as it is
U(X,Z,t)=ry(X,1)e"?, (22 Jarger than 1. On the contrary, for small values rofthe

soliton HWHM minimum is reached at steady state, since the
photorefractive process does not saturate anymore. The qua-
sisteady soliton and the screening soliton thus merge for
small values ofr and their common spatial behavior is that
of the Kerr soliton.

Figure 7 summarizes the main results of the above tem-
poral analysis. It confirms the existence of photorefractive

in whichr is the ratio of the soliton beam peak intensity over
the dark irradiancey is the propagation constant, which will
be determined later, angl is the normalized soliton profile
bounded between 0 and[%(0)=1, y(e)=0].

Integrating Eq.(19) using (22) and the above boundary
conditions, an analytical expression mtan be found:

2 2
S YR L 1= (ST LR O D (.
v=— n(l+r) ; i 2( r) i S HWHM
+i[ef(ldtli)(lﬂ')_efldt/E]‘ 23) 20
|dtr
.. L . . 15
Here Ei is an exponential integral function defined by
Ei(2)=—J7 (e 't)qt. 10
The soliton profiley is then given by the differential
equation onX (24), derived from(19) and (22), .
—( =) (141 4?) 2 Y
—2vy+y'—(1—e (d/=A+17) | 2N i1 2 0
Y r
) 0.01 0.1 1 10. 100. 1000.
_2,yef(ldt/2)(l+ry )ZO, (24)

_ o _ FIG. 7. Soliton HWHM as a function af: solid line, the screen-
where v" is the second derivative of with respect toX. ing soliton(steady state dotted line, the quasisteady solittmini-
This equation can be numerically integrated by conventionalum HWHM reached during transient state
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FIG. 8. Time to reach the quasisteady soliton state, as a function FIG. 9. Experimental setup for the observation of the soliton
of the peak power to dark irradiance ratioEach point shows one Phenomenon in BpTiOxo.
calculated time, whereas the solid line is a mere guide to the eye.
The points off the line are due to the lack of computer precision. A 1 mm aperture is placed at 12 cm away from the exit
The curve linearity suggests that(t/T,) is a constant. face of the crystal. The light transmitted through it is gath-
ered onto a photodiode. This is a spatial filtering technique

quasisteady solitons and retrieves their main propertieghat allows, as shown below, one to directly measure the

found previously by analytical means in Reff,2], such as  Output beam diameter. .

their independence upon the absolute light intensity and on Letd be the radius of the aperture ahdts distance to the

its ratio to dark irradiance, provided it is larger than unity. crystal. The wave surface on the exit face of the crystal is

Furthermore, it confirms the existence of photorefractive@Ssumed to be plane, which is precisely true if a soliton beam

screening solitons predicted by REL1]. is generated3]. Thoug.h it is not stnct_ly nee(_jed, we WI|! _
Figure 8 shows the time needed to reach the quasisteadpSume the wave profile to be Gaussian. This hypothesis is

soliton as a function of. For smallr, this time tends to Used to help carry out the calculations, but the general dif-

infinity. This explains the points off the line, due to the lack fraction properties of light are so that the method remains

of computation precision. The curve linearity shows that thisvalid for profiles that are not strictly Gaussian.

response time is inversely proportional to a power afe- Using the complex curva_ture method, it is stralghtf_orward

fined by the slope of the line. FO#2=1, it can be deduced t© shov_v that the beam profile on the aperture plane is, when

from Fig. 8 that* (t/T,) is a constant. This suggests that the"ormalized to 1,

response time can be as short as desired, providszh be w22

increased enough. However, further analysis of the soliton 1(x) = € ! with W, = AL

HWHM time behavior seems to show that the lifetime of the W7l W,

guasisteady soliton is roughly proportional to its time re-

sponse, which may be a limit to the use of short-response-lere W, is the radius of the beam on the exit face of the

time quasisteady soliton. crystal. It can then be readily shown that the total normalized

light intensity transmitted through the aperture is

V. EXPERIMENTAL RESULTS

1

In order to have a first validation of the previously de- la 77( ! e<deo/>\L>2>'
tailed theoretical results, we have experimentally investi-
gated the photorefractive self-focusing with the experimentaDn our experimental apparatus=633 nm,L=125 mm,
setup shown in Fig. 9A 4 mW polarized HeNe laser is and d=0.5 mm. Figure 10 shows that in that cas$g,is
focused onto a BTiO, crystal, so that its waist is around quasiproportional toV, as long as it is less than 1Q@m.
30 um. Its polarization is set to be parallel to the electric Therefore this spatial filtering technique allows, by measur-
field applied to the BLTiO,q crystal. Its intensity is reduced ing |5, to have a real time measurement of the output beam
with two rotating polarizers so that its power density on thediameter.
entrance face of the crystal is of the order of the mW/cm  Figure 11 shows the output beam diameter against time
level. The crystal is 3.17 mm in length and the electric fieldwhen the externally applied voltage is suddenly switched on
is applied onto the 4.17-mm-long transverse dimension. Thand then switched off after 40 s. The beam undergoes a
remaining dimension is 4 mm in lengtAh 5 mW, 670 nm temporary self-focusing lasting a few seconds before relax-
diode laser is used to provide a uniform background light tang to a less focused state. This is consistent with the above
the crystal so as to simulate the effects of the dark irradiancegheory and fits with Fig. 6, as well as with the numerically
An interference bandpass filter tuned to the 633-nm laseevaluated beam profile time behavior from Rdf5)].
wavelength is used to separate the soliton beam issued from Figure 12 shows the influence of photorefractive satura-
the HeNe laser from the 670 nm light that is channeled intdion upon both the transient and the steady state. The relative
the self-induced waveguide. output diameter is plotted against the ratio of the beam peak



6874 N. FRESSENGEAS, J. MAUFOY, AND G. KUGEL 54

I, (arbitrary untt)

o
.g 1'1 L4 L T uI
3 B 1.05 B oy
] x
2 ;/ x
25 £ 1 i Sy o x
2 3 D\
2 095 N - " i
o a
1.5 S \
a2 o9} Nk, 4
1 £ »
L oss5} Nt 1
0.5 3
og' 0.8 A A x , 1
Wo (1) 3 0001 001 0.1 1 10 100
0 20 40 60 80 100

Peak power to dark irradiance ratio

FIG. 10. Transmitted intensity through the aperture as a function

. FIG. 12. Measured ratio of the output beam waist over the input
of the output beam waist.

beam waist versus peak power to dark irradiance ratio, for an input
beam waist of 3Qum. The squares show the raw measurements of
power over the dark irradiance. A relative output diameter ofthe steady-state ratio, the solid line being a simple guide. The
1 means that the beam has propagated with no change ofosses show the measured minimum transient ratio, the dotted line
shape: a soliton beam has been achieved. Below 1, it meafBowing the expected and explained behavior.

that the beam overfocuses: the nonlinearity is too strong to

generate a first-order soliton. A value of 1.05 means that ndiameter achieved during transient state. It joins the solid
effect can be noticed. Indeed, it is the value reached with ngurve for small values of the peak intensity to dark irradiance
electric field applied, the material then being considered lintatio: if the beam peak local intensity is lower than that of
ear. the dark irradiance, the photorefractive effect does not satu-

It should be noticed, though, that the physical phenom+ate and the minimum achieved diameter is that of a steady
enon measured in Figs. 11 and 12 is not exactly what istate. It is not quite clear why the same thing happens for
plotted in Figs. 6 and 7. Indeed, the former show the ratio ofarge values of the intensity ratio. Nevertheless, this is prob-
the output diameter over the input one, which could be calle@bly due to the fact that, as Fig. 8 suggests, the transient state
the self-focusing power, whereas the latter show the solitoiis too short in time for our measurement apparatus to catch
diameter, which is assumed to exist. Though these phenonit. If this assumption is correct, our experimental results are
ena result from the same basic physical effects, they are ndt good agreement with Fig. 7 and with the experimental
strictly identical. Therefore these two pairs of curves, thougruasi-steady-state soliton results of Ref4]: they all sug-
they are quantitative, cannot be strictly compared quantitagest that the quasi-steady-state soliton does not depend on
tively. provided it is large enough.

The solid curve in Fig. 12 corresponds to the steady-state Aside from this latter point, the experimental results pre-
experimental results. It is in good agreement with Fig. 7 andsented here are in good agreement with the above theoretical
with Ref.[18], along with the experimental results presentedstudy. Further experimental investigations aimed at charac-
in Ref.[23]. The dotted curve of Fig. 12 shows the minimum terizing the steady-state and transient self-focusing as well as
spatial soliton beams on other and better quality crystals are

on the way.

Voltage for4 mm Output diameter (arbitrary unit)

mm=me————- : 11.35 CONCLUSION

[}
2000V ! ' y We have investigated the temporal behavior of the photo-

! - 4125 refractive effect, on the basis of a bidimensional band-

. transport model. We have shown that the photovoltaic effect

1000 V| 1115 and the drift mechanism of charge transport could be thought

of as similar and their effects are additive. We have derived
1 a time-dependent wave propagation equation in generic pho-
\ 41.05 torefractive media, which describes the propagation of any
--------- J light beam, provided that its transverse profile is smooth
) ) ) ) 95 enough so that the slow variation approximation is valid.
0 20 40 60 80 108‘ This equation exhibits bright spatial soliton solutions whose
Time (s) evolution against time has been investigated. It describes
successfully the behavior of the three previously found
FIG. 11. Measured output beam waist using the spatial filtering?fight soliton types, namely, the quasisteady, steady-state,
technique, for an input beam waist of an. The dotted lines show and photovoltaic solitons, whose properties are consistent
the applied voltaggto a 4-mm-wide crystal The output beam with previous theoretical studies. In particular, the quasi-
waist, shown by the solid line, undergoes temporary self-focusingteady soliton diameter is found to be independent of the
and relaxes to a self-focused state until the voltage is switched oftatio of the light peak intensity over the dark irradiance, pro-

ov
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vided it is larger than unity. Furthermore, it has been inti- ACKNOWLEDGMENTS

mated that the quasisteady soliton state could be reached as

rapidly as desired, provided the above intensity ratian be
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