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We present a detailed simulational study of the vertical propagatiameakand strong impulsesn deep
gravitationally compacted granular colunjsge R. S. Sinkovits and S. Sen, Phys. Rev. [7&t2686(1995)].
The intergrain potential is assumed toWes) ~ 8", n=2, whereé is the overlap between the grains. Due to
gravitational compaction, the magnitude of the overlap between the grains increases progressively with in-
creasing depth. Therefore the sound velocity increases as an impulse travels vertically downward into a
granular column. Foweakimpulses, our large scale simulational studies show that the sound veldggity
ozt =UN=D12 \wherez is the depth at whiclt,e, is measured. This result, which has been obtained from
particle dynamical studies, is in perfect agreement with the predictions based upon elasticity theory. We then
extend our analysis to show th@j for columns with small void fractionse, Cyegec (1— €)zI*~HUn=DI2 gang
(ii) for large amplitudeimpulses, the velocity of the perturbatiog,,,q behaves very differently compared to
Cuweak @t shallow depths witlgiong— Cueak@S2— . We also present a detailed numerical study of the velocity
power spectra of the individual grains as a function of depiVe close with a discussion of the effects of both
light and heavy impurities on the vertical sound and shock propagd&df63-651X96)04312-7

PACS numbd(s): 46.10+2z, 03.20+i, 62.30+d

[. INTRODUCTION excellent examples of many particle systems which are
strongly affected by an external fie[d5,17. Hence it is

The study of granular systems is a relatively new andnatural to expect that the grain piles will be loosely packed
developing research area that draws heavily from nonlineamear the surface and progressively densely packed as one
dynamics, statistical physics, condensed matter physics, maensiders their packing at larger depfiig]. Detailed theo-
terials science, mechanics, and mechanical engineeringtical and experimental studies on the stress networks in
[1-5]. While a significant body of literaturgs] exists on the uncompacted granular skeletons have recently been carried
structural and the dynamical properties of granular systemeut by Liu et al. [18]. A consequence of this property con-
using the ideas of continuum mechanics and fluid dynamicserning the packing of grain piles is that at sufficient depths,
[7-10], much less appears to be known from the standpointhe following feature is found: an impulse, such as a sound
of microscopic grain dynamids1-13. wave, travels progressively faster at increasing depths

The primary advantage of the latter approach lies in thd14,14.
possibility of understanding the dynamics of macroscopic Until now, the increase in sound speed as a function of
granular beds and piles starting from Newtonidar depth has been analyzed in terms of the Hertzian contact
Newtonian-likg dynamics at the level of individual grains theory, which is a long wavelength treatm¢h6]. Such an
[11,12. This microscopic approach allows one the flexibility approach is, however, of limited value when one considers
to investigate the effects of modeling various granular beadthe fact that the small length scale structure of granular me-
with appropriate potentials to describe them and with simplalia often exhibits voids and mass mismatches which may
and realistic constraints such as friction laws, etc. on thdocally affect the propagation of weak and strong impulses
resultant dynamical equations. Further, given the fact that theignificantly at shallow depthgl4,19. The present study
intergrain interactions occur only when the grains are in coneonsiders such propagation along the vertical direction in
tact, the ready availability of powerful workstations currently granular media, more specifically, in granular columns. The
allows one to study the dynamics in compacted granular bedstudies have been carried out using the molecular dynamics
in meticulous detail with at least as many as 10 000 grainsimulation techniqug20]. The advantage of approaching the
and often with many morgl12,14,19. Thus one can carry problem of sound and shock propagation in this manner lies
out subcontinuum and continuum level simulations for suchn the fact that one can build the details of the microstructure
granular systems with a modest amount of computationah the granular media into the study. For sufficiently deep
resources. columns and weak impulses, typically, with depth 10°

A characteristic feature of these systems, as briefly mengrain diameters or more, one recovers the behavior predicted
tioned above, is that the grains, which are macrosc@pm- by Hertzian contact theory, i.e., continuum physics is recov-
cally with radius~1mm, mass~0.1 g), interact with each ered [14]. The behavior of large amplitude impulses or
other repulsively only upon contact and are noninteracting'shocks” is more complex. The present study also addresses
otherwise[11,12,14-1% Being macroscopic, the grains are the propagation of such shocks.
also strongly sensitive to gravity. Granular systems are hence Nonlinear elasticity and sound propagation in dry granu-
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lar columns at small strairf4,16,21-23 has received some wherer;;=|r;—r;| is the separation between grainandj,
attention in recent years. The characteristic feature of verticab; =r,—r;;= grain overlap, and, is the cutoff distance for
sound propagation in granular columns as predicted by theéhe potential V(5;;) leads to a repulsive force between those
Hertzian contact theory22-24 is that the sound velocity grains which are in intimate contac6,25. In this study we

c scales with deptiz as z'/°. This power law behavior is shall consider grain-grain distances which are more than
obtained from the assumption that the grains interact via the /2 je. we shall not address the behavior of the granular
well-accepted potential for contact between noncohesivgystem under extremely strong compaction.

spheres(which constitute a granular systgmv/(8)= 57, For noncohesive spheres, it can be shown thag [16]

r<rg, I is the cutoff radius and is O otherwise, whe¥e i g4 (1) For grains with conical imperfections on the other
denotes the normal displacement of one grain against anothgt, |, - 5 [16]. We shall study the two-dimensional system

[see Eq(1) below] [25]. . .
The above prediction concerning sound speed is Consisfpr arbitraryn to recover and extend upon the scaling law for

tent with the experimental results for the sound velocity at & 'ﬂ!rgez ob_talned _from Hertzian contact theory based
large depths or pressures. As alluded to above, discrepanci@alys's[le]' It IS poss_lble to extend our numerical calcula_—
between the predictions of the Hertzian contact theory an§ons to three-dimensional systems. However, such studies
the experiments, however, persistsiiallow depths[16,24. are strongly computatlonglly intensive. The be_hawor of
It is recognized that an understanding of the scattering prosound and shock propagation may not be very different for
cesses associated with acoustic propagation at shallo@/istine two- and three-dimensional granular columns. This
depths holds the key to the development of the science angPmewhat rash claim is backed up by the excellent agree-
technology associated with the implementation of sonignent between our numerical studies in two dimensions and
probes to explore underground objects such as solid inclithe Hertzian contact theory based analysis which is, in gen-
sions buried within a dry granular mediur9]. Hence it is eral, valid for a three-dimensional system in the long wave-
of significant interest to acquire a broader understanding oength regime[14]. In addition, we subject the grains to the
sound and shock propagation at all depths. gravitational forceF=—mgz, z being the unit vector in the

The purpose of this article is to report a detailed study orvertically upward direction andh the mass of the grain. In
the propagation of both small amplitudsound and large all of the simulations units are employed in whiat and
amplitude (shock perturbations as they propagate through?2r. are set equal to 1.0 arglis set equal to 0.01. Choosing
shallow as well as large depths. We shall also consider thg small value ofj allows us to probe the effects of gravity in
effects of microstructure due to the presence of voids and ofompressing the grain column as it develops over an ex-
light and massive impurities on such propagation. The modeended length scale. The system dynamics is obtained by
granular systems are intentionally chosen to be very simpldime integration of the coupled Newtonian equations of mo-
Future studies will consider the effects of richer structuraltion for an N [~O(10%)] grain system via the third-order
features of granular systeri26]. Gear algorithm[20,27] using a time step in the range

The details of the models studied, of the molecular dy-1.0x 10 3 to 5.0 10" 4. The large length scale involved in
namics simulations, and of the technical aspects of the simuhis study allows us to probe phenomena at continuum length
lations are presented in Sec. Il. The results of our study arecales[29]. Choosing a smaller time step does not signifi-
presented in Sec. Ill. We use molecular dynamics simulacantly affect the accuracy of the calculations reported here.
tions to first recover the elasticity theory based predictiongn comparative terms this is a rather large time step for a
mentioned above for very deep and pristine one- and twomolecular dynamics based stu®8]. The reasons why these
dimensional granular columns ef 10* grains(Sec. Il A). time steps work very well ar@) the ground state of a close
We then extend the existing understanding to the case of thgacked or nearly close packed grain column is well known
vertical propagation of large amplitude perturbations orand is built into the initial conditions that characterize the
“shocks” in the pristine granular columns. In Sec. Ill B we grain column andii) the amplitude of motion of individual
consider the effects of voidas measured usingas the void  grains is typically of the order of a fraction of the grain
fraction) in the two-dimensional columns on the behavior of diameter. Given the fact that granular systems are inherently
sound velocityc as a function of the depth. Section IIlC ~ metastabl¢15,30, the dynamical behavior of a granular col-
focuses on the effects of heavy and light mass impurities inimn is strongly sensitive to its proximity to the lowest en-
the granular columns. Section IV closes with a summary ofrgy structure during the passage of both weak and large
the work and the direction of ongoing and future research. amplitude impulses.

Il. THE MODEL AND THE SIMULATIONS B. The preparation of pristine granular columns
We first focus on pristine granular columisee Fig.
1(a)]. The detailed calculations for these systems are pre-
We model the granular medium as a collection of diskssented in Sec. Ill A. Given that the sound velodgtdepends
interacting via the following well-accepted grain-grain po- sensitively ons, care is taken to ensure that the column is
tential[16] (for studies on the properties of granular materi-relaxed(to the extent possible in a numerical stidnd is
als with other potentials, sd¢é1,12): hence in its “ground state.” Thus the model system pos-
n sesses zero effective granular temperatuee, total kinetic
ady, rijsre (1)  energy~0). This step is critical for the study of the pertur-
0, ryj>re, bation that we initiate into the system via a very low energy

A. The model potential

V(6i)=
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constant. The separation between adjacent iocavedi +1 is
then reduced from the uncompacted triangular lattice row
separation by the amount

Az= Erc 1- 1—3—rc(2rcb‘—5) . (4)

C. Preparation of the granular columns
with voids and mass impurities

To prepare a weakly disordered system with a small den-
sity of voids we proceed as followsee Fig. 1b)]. Starting
from the equilibrium configuration for the gravitationally
compacted two-dimensional triangular lattice, we remove the
grains in a “semirandom fashion,” i.e., a grain is removed
from a randomly chosen site for eveiryows. The configu-
ration thus obtained, though significantly ordered in the
sense that each grain still very nearly resides at a perfect
triangular lattice site, possesses considerable disorder in the
force network. The removal of grains using the above men-
tioned procedure allows one to tune the porosity and the
degree of disorder in the system. The simulations were lim-
ited to cases with up to 12.5% of the grains remotiesd, up
to void concentrations of 12.5%). It is difficult to stabilize a
impact at the top of the grain column to probe the nature otolumn with a significantly higher void density even though
vertical sound propagation in granular columns. we have chosen a relatively small valuegof=0.01) for our

The method of determining the ground state of the granustudies. Such systems, typically, tend to reorganize them-
lar column can be described as follows. For a onewselves to lower their energies.
dimensional system consisting of a single gravitationally Upon removal of the grains from the lattice, the system is
Compacted column, the location of the bottom grain is ﬁrStno |0nger in its ground state. Obtaining the new g|oba|
fixed. The positions of the remaining grains are then set sucfround state would require relaxing the system until all of
that the repulsive forces due to the overlap between the aghe voids were filled and the compacted triangular lattice was
jacent grains exactly equal the forces required to support thgecovered. Instead, we wanted to obtain a metastable state in
grain column. For a system of grains in which the bottom  which the energy is at a local minimum and the voids are
grain is labeled 1, the overlap between grairendi+1 is  trapped in the lattice. We have tried several approaches to
determined via the one-dimensional sum rule find the metastable configuration. Although it is not the only

viable approach, we found that integrating the Newtonian
@) equations of motion with an additional time-dependent vis-

cous damping term of the formA,= —b(t)v is an efficient

way to relax the system into a metastable configuration in
) ) o ) ~_ which the positions of the voids are preserved and the effec-

For the two-dimensional case, the initial configuration istive granular temperature does not rise significantly after the
taken as thgravitationally compactegerfect triangular lat-  yiscous damping is turned ofee Fig. 1b)].
tice. The COOI‘dinates of the bOttom row of grainS are ﬁxed The preparation of granu'ar Co|umns W|th mass defects
and periodic boundary conditions are imposed in the horiwas done in a very similar fashion except that there are no
zontal direction. In most of the two-dimensional simulations,|imits on the fraction or placement of the mass defects.
a large height to width aspect rati®1000 was chosen. In \whijle the inclusion of mass defects result in local inhomo-
complete analogy with the one-dimensional systems, thgeneities in the intergrain force network, all grain contacts
overlap between the grains in adjacent rows is determinefre still present and there are no instabilities in the two-

FIG. 1. (a) A pristine two-dimensional granular colum¢b) A
column with randomly distributed voids as discussed in Sec. Il C.

N
_ n—1
g 2 mj—anéi’iﬂ.
j=i+1

via the corresponding two-dimensional sum rule dimensional column.
N D. Calculation of the speed of sound
— n—1 2 . . .
gj=i2+1 m; —an5i,i+1\/1_ 1/(2=2681141/7¢) ©) In all of our simulations, the sound speed was determined

by monitoring the position of the weak perturbation in the

column as a function of time. The perturbation was initiated
for & j+1. The two-dimensional sum rule is obtained by al- at timet=0 by imparting an initial downward velocity to the
lowing the separation between grains in adjacent rows to bop grain or row of grains. For thpristine one- and two-
reduced fromr to r.— & so that thez components of the dimensional systems, initiating the weak perturbation in this
intergrain forces balance the weight of the supported columnmnanner results in a spatially well-defined pulse that travels
while the distances between grains in the same row are kepiownward through the columfsee Fig. 2 Although there
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FIG. 2. Average kinetic energy as a function of depth for sound
propagation in two-dimensional column with 3.3% void fraction,
Vimpac= 0.1, andn=>5/2.

FIG. 3. Speed of vertical disturbances as a function of depth,
¢ vs z, with the solid line showing the scaling law predicted by
Hertzian contact theory. The calculations have been done for
n=>5/2 in one dimension. The slope is 1/6.
was some tendency for the pulse to broaden slightly over
time, the shape of the pulse remains approximately invarianides of the initial perturbations which we callyact. Al-
over the course of the simulation. The location of the pulsehough experimental and theoretical studies suggest that the
was defined by the position of the particle or row of particlespotentials that best describe systems composed of real sand
with the highest velocity and the local speed was determinedre V() ~ 6°2 for contact between perfect spherical grains,
from the time derivative of pulse location. and V(8)~ &° for contact between grains with conical im-

It may be noted that some years ago NesterdBdand  perfectiong16], calculations were carried out using a range
independently, MI”eI’[?)Z], theoretically studied the general of exponents fror‘m:g to n=10. The motivation for doing
problem of propagation of a compression pulse in granulathis is to study the power law dependence of sound speed as
and porous media. The work of Miller, which was an exten- function of depthz andn and also to check for possible
sion of Nesterenko's study, revealed that a propagating comeviations in the behavior of sound speed as a function of
pression pulse is analogous to a solitonic excitation as iflepth from the predictions of the Hertzian contact theory for
travels along a linear chain of Spherical particles in the ab'i'mpu|ses W|th |arge amp"tudes for Various\/a'ues_
sence of gra.Vity. Our ana|ySiS iS Similar to that of |V|i||er'S The basic equation that describes the dependence of
except for the fact that we consider gravitational compactiornsgynd velocityc on depthz, measured from the surface of
in our system. The slight broadening in the shape of thene column, can be arrived at as followsfif ., ; denotes the
pulse in our problem is indicative of the fact that relatively force between two adjacent grainandi +1 that have an
weak gravity may not have the effect of making the pulsepyeriap ofs; ;+1, then the spring constaktbetween the two

strongly dispersive. . grains upon contact is
To simplify the analysis of the results, the system param-
eters were chosen so that the density of the column as a df;isq
function of depth does not change significantly due to com- ki,i+1=m- 6)
ii+

paction. As alluded to above, this requires thas<r /2, or
in terms of the system parametem@Nan) "™ Y<r/2.  cion that V(8,.1)~ 6", [see Eq. (1] the force

Since sound spee_d scalescas\/_mp [2_5],_,u bglng the bulk fiie1~ "L, Hence s, .~ Y"1 Therefore one can
modulus, ang being the density, variations in as a func- write ' ' '
tion of depth in the column are due entirely to changes in the
stiffness of the system. , fiisr
Kijiv1~ i1~ 5 ~fin. (6)
lll. RESULTS il
A. Sound and shock propagation in pristine columns But the sound velocityeax iS
In this subsection we present the results of our simula- Coveai~ \/;N kmlwfi[‘li;}/(n—l)]/z, @

tional study. We first discuss the results on the propagation

of weak impulses, i.e., sound waves, in one- and tWOyhare o s the bulk modulus of the granular medium.

dimens_ional pristine granular column_s. Next we ex_tend theCIearIy, at large depthk ., ;,f; .., become independent of
analysis to the case of the propagation of strong impulses, 1,5 ’ ’

i.e., shocks, in these pristine columns.
ka[lfl/(nfl)]IZI (8)

1. Sound propagation Cuea

We have performed the studies for a family of potentials The results of our simulations for the one-dimensional
with a set of values fon in Eq. (1), and for a set of magni- columns are plotted in Figs. 3 and 4 for two specific cases,
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FIG. 4. Plot ofc vs z for n=6 in one dimension. The slope of

s - ] ) FIG. 6. Plot ofc vsz for n=6 in two dimensions. Observe that
the solid line predicted by Hertzian contact theory is 2/5.

there is very little difference between Figs. 6 and 4.

n=3 and n=6, respectively. For smallvimpcy i€, creased in magnitude. In these studiggng does not show
~0.01, cyeq determined from the one-dimensional simula-a simple power law behaviofi.e., z® or similan until
tions scaled with depth as greater depths are reached where it asymptotically ap-
proaches that found in the lomy, . Studies Cgongincreases
Cuear~ 2t M= D12, (9 more slowly withz thanzl*~Y/("= D12 for smallz (see Figs.

3-6). The relative difference betweenfor largevimpactand
At large depths, the grains are very strongly compresseq,impacﬁo can be defined as
Since the pressutie at depthz is pgz, wherep is the density

of the material and is the depth, it naturally follows that £(2)=(Cstrong~ Cweak/ Cweak- (10
Egs. (8) and (9) are completely equivalent. The arguments
given here are independent of dimensionality. A functional form for&(z) is expected to decrease monotoni-

We present our results from simulations of sound propacally as z increases and show the limiting behaviors
gation in two-dimensional granular columns in Figs. 5 and 6Jim,_,¢é(z)— and lim,_,..§(z)—0.
The results are essentially indistinguishable with respect to One way to understand the departure from the scaling law

the one-dimensional cases reported in Figs. 3 and 4. that describes the propagation of a weak impulse is to rec-
ognize that the grains, which barely touch one another in the
2. Shock propagation shallow reaches of the column, are suddenly strongly com-

ressed against one another when a large impact is intro-
uced into the system. As a result, the propagation of the
perturbation is intrinsically strongly anharmonic in nature.
Having attempted many different functional forms to fit
&(2) we conclude thag(z) does not follow a simple power
law behavior. This conclusion suggests that there may be a
single or a set of length scales that enter into the description
of {(2), i.e., in the manner in whiclg,,{2) converges to
Cwead 2). The results of nonlinear curve fitting show that the
functional form ofé(z) is well approximated by a function in

One would envisage from the arguments given above th
the scaling law forc,., presented above will not be valid at
shallow enough depths or alternately, for large enough im
pulses(i.e., largevimpacd) - This is indeed what we find in our
studies. The data fari,pace=0.1 in Figs. 3—-6 show a clear
departure from the scaling law in E€Q) above for small
z. The deviations become more pronounced gg,c is in-

200 .
z which is best expressed as
+ oo
> beexp(—dy2), (12)
k= —o0
©100d a A & anbBA - .
where the coefficients, andd, follow the recursion rela-
A Vimpa=1:0 tions
g Vlmpact_
| o vimpact=o'01 by 1=bya (12
50 I . . ——— . —— and
100 1000

dyr1=diB, (13

FIG. 5. Plot ofc vs z for n=5/2 in two dimensions. Observe With a and 8 constants that depend on the choice of system
that there is very little difference between Figs. 5 and 3. parameters. As an example, a best fig(f) over the range
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FIG. 7. Relative velocity differencé(z), as defined in Eq10), FIG. 8. Velocity power spectra for grains at five different

for vimpac=1.0 andn=3. The markers are results of numerical depths,z=100, 200, 400, 800, and 1600, in a one-dimensional
simulations and the solid line is the best fit of the data to a triplecolumn due to the passage of a vertical disturbance. Shown for
exponential function. comparison is the velocity power spectrum for a particle in an in-

finite harmonic oscillator chain. The system parameters are

100<z< 10 000 forv;mpac= 1.0 andn=3 to a triple expo- N=5/2 andvimpaci=0.05.

nential function gives the result i .
The calculations suggest that this is indeed the case

£(2)~0.04 10 0.2519 exp—0.000 3244) [33,34). For a deep lying grain the total force on the grain is
approximately F=—a(d—d2)" '+a(6+d2)" *—mg,
+0.4527 exp—0.001 91¥) wheredz is the displacement of the grain from its equilib-

(14) rium position. The leading term in a power series expansion
of the force aboutiz=0 is —2a(n—1)8""2?dz, hence for a
which has four parameterésee Fig. 7. For this case Strongly confined grain in the limit of small amplitude oscil-
a=1.8 and$=5.8. « and 8 are both greater than unity, lations the behavior approaches that of a harmonic oscillator.
ensuring thaté(z) converges for alz>0 and diverges at Subsequently the velocity power spectrum of the grains at
z=0. Althougha and 8 depend om p:andn, in all cases progressively larger depths approaches that of any mass in an

studied both quantities are found to be greater than 1. It i#finite harmonic oscillator chaitsee Fig. 8 which is given

reasonable to argue that at each valuezphs the strong by [33]

perturbation propagates progressively downward, some en-

ergy is used up in promoting local excitations. It follows then 2 (=(v(t)v(0))
that asz—o this energy loss becomes vanishingly small. (Jv(w)|?)= —f W
Our calculations suggest that the origin of the above recur- Tlo AY
sion relation lies in this iterative process. At this time we are
unable to provide a simple derivation or a simple explanatiorin the above equation, (v(t)v(0))/{v(0)?)=(2kgT/

for the above functional form fog(z) for this highly non-  m)Jg(wgt), wherekg is the Boltzmann constant, is the
linear process. Our analysis suggests that each of the expgmperaturew,= \/ﬁ () denotes canonical ensemble av-
nential terms in Eq(14) roughly relates to each decade in erages, and, is a zeroth-order Bessel function. Recall here
z traversed by the strong perturbation. The precise magnihatm=1 in our study. The resultant power spectrum is
tudes of the prefactors and the coefficientzalre perhaps

sensitive to details such @sandvimpact-

1
v(w)|?)=—F——, 0<w<2w (16)
3. Velocity power spectra of grains in the column { % v4wé— w? °

In order to understand the dynamics of individual grains
as the perturbation propagates downward through the columand is zero otherwisg85]. Our numerical calculations reveal
it is instructive to calculate the velocity power spectra of thethat at finite depths within the grain column the velocity
grains at various depths. Typical velocity power spectra obpower spectrum does not have a cutoff aty2 This cutoff is
tained by calculatindv(w,z)|? for grains at five different asymptotically approached as depth-.
depths in the one-dimensional column during the passage of
a vertical disturbance are shown in Fig. 8.

As one goes deeper and deeper into the column, one finds
that the grains are more strongly confined to their equilib- It is well known that granular materials are, in general,
rium positions. Therefore one would expect that as depttioosely packed and often contain a large void fraction
z—o, one would recover the known results for the velocity[36,37. This section presents our numerical investigations
power spectrum of any mass in an infinite harmonic oscilla-on how sound propagation may be affected by the presence
tor chain. of a small fraction of voids.

+0.8019 exp—0.010 12),

cog wt)dt. (15

B. Sound propagation in columns with voids
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FIG. 9. Speed of the vertical disturbance in two-dimensional
columns with voids fom=5/2 in the limit of weak impact. Solid
lines are the best fits to data of forosaz®. Inset shows the pref-
actora plotted against + €. The linear behavior o& for small e
suggests thate (1— €)zYS.

This study is technically somewhat challenging. Itis non-  FIG. 10. Picture of a column with randomly distributed masses
trivial to stabilize voids in a column. Typically, the voids of two different magnitudes as indicated by the shadéojn Ob-
introduced into a system by randomly removing grains fromserve that the positions of the grains remain very nearly the same as
a regular array of grains tend to disappear upon relaxing ththat in the pristine system i@).
system to its lowest energy state. As described in Sec. Il C,

the locations of the voids were carefully chosen so as teelocity is decreased linearly by the void fraction. The ef-

avoid the removal of adjacent grains. The voids were frozeRects of larger void fractions on sound propagation remain a
into the lattice by first integrating the equations of motion challenging problem.

with an additional viscous term until the metastable state was
obtained before initiating the pulse. Due to the inherent fra-

gility of the column with voids we report our studies of C. Sound propagation in columns with mass defects
sound propagatiofi.e., Uimpacél)ohere for columns with A number of simulations were carried out to study the
void fractions of up to about 12.5%. propagation of weak vertical disturbances in two-

The presence of voids in the two-dimensional column hagimensional columns with randomly distributed mass defects
a profound effect on the sound propagation. First, a larggsee Fig. 19 The systems were prepared by replacing a frac-
fraction of the energy in the vertically propagating distur-jon of the grains in the pristine column with grains of an
bance is converted into random motion of the grains in theyentical size but different mass. Generalizing E4.to ac-
bulk of the column, particularly near the surface of the col-cqnt for the dependence of the sound speed on the mass,

umn as shown in Fig. 2. Second, the sound velocity now has, ;sinac...~ Ju/o. of the grains leads to the scalin
the scaling behavior given bigee Fig. 9 relation U Cweal™ VI Py g g

_ _\o[l-1(n-1)]/2
cx(l—e)z : 17 Cueac~ (ML~ HO=102) (19

wheree is the void fraction. These two results are due to the
fact that the presence of voids in the column leads to stron§igure 11 shows the quantity*c plotted as a function of
inhomogeneities in the force network. depth for both pristine columns and columns with a bimodal

Although we have not carried out calculations of a three-mass distribution for the casé(8) = %2 For columns con-
dimensional system due to computational limitations, ourtaining a mixture of grain masses) represents the average
studies suggest that one should expect behavior similar to thgrain mass. The data in Fig. 11 collapse nicely onto a single
one cited in Eq(17) in close packedhcp) three-dimensional curve indicating the validity of Eq(18) not just for perfect
systems. columns, but also for columns with mass inhomogeneities.

It is worth mentioning that the amount of the amplitude of It should be noted that there are substantial differences
sound velocity(and hence the kinetic enengghat is lost to  between the behaviors of the columns containing mass de-
the voids ends up being transported approximately horizonfects and those containing voids. A void cannot be thought of
tally at the depth in which a void is present. In this sense thas a defect of zero mass. Treating voids in this way leads to
physical mechanism underlying the behavior given in Eqthe prediction that the sound speed increases as grains are
(17) is very similar to what one finds in fracture physj@8]. = removed from the colum— a result in direct contrast to the
Hence the presence of this energy is simply not picked up bypumerical simulations. Removing a grain from the system
the vertically propagating perturbation as it travels down-not only reduces the density of the column, but leads to the
ward past the voids. As a result the amplitude of the soundbss of the corresponding intergrain contacts.
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00 1 T S U can be extracted from this study in which sound and shock

. propagation is strongly influenced by the gravitational field,
; ;gg/c,ﬁ’mr:/‘f one may anticipate that most of the features(@) reported
% 30% m=1/4 here will also be found in pristine three-dimensional col-
o m=1 umns. However, it is important to note that for imperfect
& 4 :;822 m=4 three-dimensional columns, say due to the presence of voids
='%°7 o 100% m=4 el - and mass impurities, the details of sound and shock propa-
gation could be different and hence three-dimensional col-
45t umns need to be studied separa{&ig].
o 987" To our knowledge, much remains to be done experimen-
T - tally in terms of addressing the issué€®—(4) above. Our
50 1 | model uses periodic boundary conditions in the horizontal
oo T '1'0'00 T direction and it has been assumed all along that in the simu-

lation cell, the depth far exceeds the width. This latter feature

in turn allows the pressure to increase with depth instead of

FIG. 11. Mass-scaled speeds of vertical disturbances in granule{la_p'dly reaching saturation as might be the case with a very
columns with mass defects for=5/2 in the limit of weak pertur- wide granular bed. The results presented here are therefore

bations. Legend refers to the fractionrof=1 grains that have been a@pplicable to dry granular columns such as columns of dry

replaced by mass defects. sand(or perhaps to a situation with negli_gible st_atic friction
We would like to encourage our experimentalist colleagues
IV. SUMMARY AND CONCLUSION to probe the effects of voids and impurities on sound and

In this article we have reported our results from extensiv .hOCk propagation in granular columns and explore the va-

molecular dynamics based studies on the problem of sounbdlty cl)lf our resutl)ts for regll systedms. SléCh :jeste1arckh may in
and shock propagation in one- and two-dimensional granulai"™ @low us to better understand sound and shock propaga-

columns. Our key findings ard) we recover and generalize Ell(r)]n in gt;?nula; golukmnsttanpl pe;h;_pts agso In gfranula[] b”eds.
the co.z6 scaling law usually obtained using Hertzian con- € problem of backscattering of disturbances irom shallow

tact theory for vertical sound propagation at large depthé'”npurities and.voids gan_also !ead to insight; into_possible
from particle dynamics studie$?) we extend this result to V&S 9f Qetectlng buried |nclu§|ons via acoustic prob@. :
include columns with smallas defined by the upper limit of Such insights can be helpful in developing special acoustic
€) void fractions,coc(1— €)zY6, 0<e<0.125; (3) we dis- probes for studying the position distribution of buried land

cuss the case of propagation of a large amplitude perturba[t1j|nes and similar inclusions in dry granular soil.
tion; and(4) we study the problem of sound propagation in a
colum_n with random bimodal mass distribution. _ ACKNOWLEDGMENTS
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