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We present a detailed simulational study of the vertical propagation ofweakandstrong impulsesin deep
gravitationally compacted granular columns@see R. S. Sinkovits and S. Sen, Phys. Rev. Lett.74, 2686~1995!#.
The intergrain potential is assumed to beV(d);dn, n>2, whered is the overlap between the grains. Due to
gravitational compaction, the magnitude of the overlap between the grains increases progressively with in-
creasing depth. Therefore the sound velocity increases as an impulse travels vertically downward into a
granular column. Forweak impulses, our large scale simulational studies show that the sound velocitycweak
}z[121/(n21)]/2, wherez is the depth at whichcweak is measured. This result, which has been obtained from
particle dynamical studies, is in perfect agreement with the predictions based upon elasticity theory. We then
extend our analysis to show that~i! for columns with small void fractions,e, cweak}(12e)z[121/(n21)]/2 and
~ii ! for large amplitudeimpulses, the velocity of the perturbationcstrongbehaves very differently compared to
cweakat shallow depths withcstrong→cweakasz→`. We also present a detailed numerical study of the velocity
power spectra of the individual grains as a function of depthz. We close with a discussion of the effects of both
light and heavy impurities on the vertical sound and shock propagation.@S1063-651X~96!04312-7#

PACS number~s!: 46.10.1z, 03.20.1i, 62.30.1d

I. INTRODUCTION

The study of granular systems is a relatively new and
developing research area that draws heavily from nonlinear
dynamics, statistical physics, condensed matter physics, ma-
terials science, mechanics, and mechanical engineering
@1–5#. While a significant body of literature@6# exists on the
structural and the dynamical properties of granular systems
using the ideas of continuum mechanics and fluid dynamics
@7–10#, much less appears to be known from the standpoint
of microscopic grain dynamics@11–13#.

The primary advantage of the latter approach lies in the
possibility of understanding the dynamics of macroscopic
granular beds and piles starting from Newtonian~or
Newtonian-like! dynamics at the level of individual grains
@11,12#. This microscopic approach allows one the flexibility
to investigate the effects of modeling various granular beads
with appropriate potentials to describe them and with simple
and realistic constraints such as friction laws, etc. on the
resultant dynamical equations. Further, given the fact that the
intergrain interactions occur only when the grains are in con-
tact, the ready availability of powerful workstations currently
allows one to study the dynamics in compacted granular beds
in meticulous detail with at least as many as 10 000 grains
and often with many more@12,14,15#. Thus one can carry
out subcontinuum and continuum level simulations for such
granular systems with a modest amount of computational
resources.

A characteristic feature of these systems, as briefly men-
tioned above, is that the grains, which are macroscopic~typi-
cally with radius;1mm, mass;0.1 g!, interact with each
other repulsively only upon contact and are noninteracting
otherwise@11,12,14–16#. Being macroscopic, the grains are
also strongly sensitive to gravity. Granular systems are hence

excellent examples of many particle systems which are
strongly affected by an external field@15,17#. Hence it is
natural to expect that the grain piles will be loosely packed
near the surface and progressively densely packed as one
considers their packing at larger depths@14#. Detailed theo-
retical and experimental studies on the stress networks in
uncompacted granular skeletons have recently been carried
out by Liu et al. @18#. A consequence of this property con-
cerning the packing of grain piles is that at sufficient depths,
the following feature is found: an impulse, such as a sound
wave, travels progressively faster at increasing depths
@14,16#.

Until now, the increase in sound speed as a function of
depth has been analyzed in terms of the Hertzian contact
theory, which is a long wavelength treatment@16#. Such an
approach is, however, of limited value when one considers
the fact that the small length scale structure of granular me-
dia often exhibits voids and mass mismatches which may
locally affect the propagation of weak and strong impulses
significantly at shallow depths@14,19#. The present study
considers such propagation along the vertical direction in
granular media, more specifically, in granular columns. The
studies have been carried out using the molecular dynamics
simulation technique@20#. The advantage of approaching the
problem of sound and shock propagation in this manner lies
in the fact that one can build the details of the microstructure
in the granular media into the study. For sufficiently deep
columns and weak impulses, typically, with depthz;103

grain diameters or more, one recovers the behavior predicted
by Hertzian contact theory, i.e., continuum physics is recov-
ered @14#. The behavior of large amplitude impulses or
‘‘shocks’’ is more complex. The present study also addresses
the propagation of such shocks.

Nonlinear elasticity and sound propagation in dry granu-
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lar columns at small strains@1,16,21–23# has received some
attention in recent years. The characteristic feature of vertical
sound propagation in granular columns as predicted by the
Hertzian contact theory@22–24# is that the sound velocity
c scales with depthz as z1/6. This power law behavior is
obtained from the assumption that the grains interact via the
well-accepted potential for contact between noncohesive
spheres~which constitute a granular system!, V(d)}d5/2,
r,r c , r c is the cutoff radius and is 0 otherwise, whered
denotes the normal displacement of one grain against another
@see Eq.~1! below# @25#.

The above prediction concerning sound speed is consis-
tent with the experimental results for the sound velocity at
largedepths or pressures. As alluded to above, discrepancies
between the predictions of the Hertzian contact theory and
the experiments, however, persist atshallowdepths@16,24#.
It is recognized that an understanding of the scattering pro-
cesses associated with acoustic propagation at shallow
depths holds the key to the development of the science and
technology associated with the implementation of sonic
probes to explore underground objects such as solid inclu-
sions buried within a dry granular medium@19#. Hence it is
of significant interest to acquire a broader understanding of
sound and shock propagation at all depths.

The purpose of this article is to report a detailed study on
the propagation of both small amplitude~sound! and large
amplitude ~shock! perturbations as they propagate through
shallow as well as large depths. We shall also consider the
effects of microstructure due to the presence of voids and of
light and massive impurities on such propagation. The model
granular systems are intentionally chosen to be very simple.
Future studies will consider the effects of richer structural
features of granular systems@26#.

The details of the models studied, of the molecular dy-
namics simulations, and of the technical aspects of the simu-
lations are presented in Sec. II. The results of our study are
presented in Sec. III. We use molecular dynamics simula-
tions to first recover the elasticity theory based predictions
mentioned above for very deep and pristine one- and two-
dimensional granular columns of;104 grains ~Sec. III A!.
We then extend the existing understanding to the case of the
vertical propagation of large amplitude perturbations or
‘‘shocks’’ in the pristine granular columns. In Sec. III B we
consider the effects of voids~as measured usinge as the void
fraction! in the two-dimensional columns on the behavior of
sound velocityc as a function of the depthz. Section III C
focuses on the effects of heavy and light mass impurities in
the granular columns. Section IV closes with a summary of
the work and the direction of ongoing and future research.

II. THE MODEL AND THE SIMULATIONS

A. The model potential

We model the granular medium as a collection of disks
interacting via the following well-accepted grain-grain po-
tential @16# ~for studies on the properties of granular materi-
als with other potentials, see@11,12#!:

V~d i j !5H ad i j
n , r i j<r c

0, r i j.r c ,
~1!

wherer i j5ur i2r j u is the separation between grainsi and j ,
d i j[r c2r i j[ grain overlap, andr c is the cutoff distance for
the potential.V(d i j ) leads to a repulsive force between those
grains which are in intimate contact@16,25#. In this study we
shall consider grain-grain distances which are more than
r c/2, i.e., we shall not address the behavior of the granular
system under extremely strong compaction.

For noncohesive spheres, it can be shown thatn5 5
2 @16#

in Eq. ~1!. For grains with conical imperfections on the other
hand,n53 @16#. We shall study the two-dimensional system
for arbitraryn to recover and extend upon the scaling law for
c at largez obtained from Hertzian contact theory based
analysis@16#. It is possible to extend our numerical calcula-
tions to three-dimensional systems. However, such studies
are strongly computationally intensive. The behavior of
sound and shock propagation may not be very different for
pristine two- and three-dimensional granular columns. This
somewhat rash claim is backed up by the excellent agree-
ment between our numerical studies in two dimensions and
the Hertzian contact theory based analysis which is, in gen-
eral, valid for a three-dimensional system in the long wave-
length regime@14#. In addition, we subject the grains to the
gravitational forceF52mgẑ, ẑ being the unit vector in the
vertically upward direction andm the mass of the grain. In
all of the simulations units are employed in whichm and
2r c are set equal to 1.0 andg is set equal to 0.01. Choosing
a small value ofg allows us to probe the effects of gravity in
compressing the grain column as it develops over an ex-
tended length scale. The system dynamics is obtained by
time integration of the coupled Newtonian equations of mo-
tion for anN @;O(104)# grain system via the third-order
Gear algorithm @20,27# using a time step in the range
1.031023 to 5.031024. The large length scale involved in
this study allows us to probe phenomena at continuum length
scales@29#. Choosing a smaller time step does not signifi-
cantly affect the accuracy of the calculations reported here.
In comparative terms this is a rather large time step for a
molecular dynamics based study@28#. The reasons why these
time steps work very well are~i! the ground state of a close
packed or nearly close packed grain column is well known
and is built into the initial conditions that characterize the
grain column and~ii ! the amplitude of motion of individual
grains is typically of the order of a fraction of the grain
diameter. Given the fact that granular systems are inherently
metastable@15,30#, the dynamical behavior of a granular col-
umn is strongly sensitive to its proximity to the lowest en-
ergy structure during the passage of both weak and large
amplitude impulses.

B. The preparation of pristine granular columns

We first focus on pristine granular columns@see Fig.
1~a!#. The detailed calculations for these systems are pre-
sented in Sec. III A. Given that the sound velocityc depends
sensitively ond, care is taken to ensure that the column is
relaxed~to the extent possible in a numerical study! and is
hence in its ‘‘ground state.’’ Thus the model system pos-
sesses zero effective granular temperature~i.e., total kinetic
energy;0). This step is critical for the study of the pertur-
bation that we initiate into the system via a very low energy
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impact at the top of the grain column to probe the nature of
vertical sound propagation in granular columns.

The method of determining the ground state of the granu-
lar column can be described as follows. For a one-
dimensional system consisting of a single gravitationally
compacted column, the location of the bottom grain is first
fixed. The positions of the remaining grains are then set such
that the repulsive forces due to the overlap between the ad-
jacent grains exactly equal the forces required to support the
grain column. For a system ofN grains in which the bottom
grain is labeled 1, the overlap between grainsi and i11 is
determined via the one-dimensional sum rule

g (
j5 i11

N

mj5and i ,i11
n21 . ~2!

For the two-dimensional case, the initial configuration is
taken as thegravitationally compactedperfect triangular lat-
tice. The coordinates of the bottom row of grains are fixed
and periodic boundary conditions are imposed in the hori-
zontal direction. In most of the two-dimensional simulations,
a large height to width aspect ratio>1000 was chosen. In
complete analogy with the one-dimensional systems, the
overlap between the grains in adjacent rows is determined
via the corresponding two-dimensional sum rule

g (
j5 i11

N

mj5and i ,i11
n21 A121/~222d i ,i11 /r c!

2 ~3!

for d i ,i11. The two-dimensional sum rule is obtained by al-
lowing the separation between grains in adjacent rows to be
reduced fromr c to r c2d so that thez components of the
intergrain forces balance the weight of the supported column,
while the distances between grains in the same row are kept

constant. The separation between adjacent rowsi andi11 is
then reduced from the uncompacted triangular lattice row
separation by the amount

Dz5A3

2
r cS 12A12

4

3r c
~2r cd2d2! D . ~4!

C. Preparation of the granular columns
with voids and mass impurities

To prepare a weakly disordered system with a small den-
sity of voids we proceed as follows@see Fig. 1~b!#. Starting
from the equilibrium configuration for the gravitationally
compacted two-dimensional triangular lattice, we remove the
grains in a ‘‘semirandom fashion,’’ i.e., a grain is removed
from a randomly chosen site for everyi rows. The configu-
ration thus obtained, though significantly ordered in the
sense that each grain still very nearly resides at a perfect
triangular lattice site, possesses considerable disorder in the
force network. The removal of grains using the above men-
tioned procedure allows one to tune the porosity and the
degree of disorder in the system. The simulations were lim-
ited to cases with up to 12.5% of the grains removed~i.e., up
to void concentrations of 12.5%). It is difficult to stabilize a
column with a significantly higher void density even though
we have chosen a relatively small value ofg ~50.01! for our
studies. Such systems, typically, tend to reorganize them-
selves to lower their energies.

Upon removal of the grains from the lattice, the system is
no longer in its ground state. Obtaining the new global
ground state would require relaxing the system until all of
the voids were filled and the compacted triangular lattice was
recovered. Instead, we wanted to obtain a metastable state in
which the energy is at a local minimum and the voids are
trapped in the lattice. We have tried several approaches to
find the metastable configuration. Although it is not the only
viable approach, we found that integrating the Newtonian
equations of motion with an additional time-dependent vis-
cous damping term of the formFv52b(t)v is an efficient
way to relax the system into a metastable configuration in
which the positions of the voids are preserved and the effec-
tive granular temperature does not rise significantly after the
viscous damping is turned off@see Fig. 1~b!#.

The preparation of granular columns with mass defects
was done in a very similar fashion except that there are no
limits on the fraction or placement of the mass defects.
While the inclusion of mass defects result in local inhomo-
geneities in the intergrain force network, all grain contacts
are still present and there are no instabilities in the two-
dimensional column.

D. Calculation of the speed of sound

In all of our simulations, the sound speed was determined
by monitoring the position of the weak perturbation in the
column as a function of time. The perturbation was initiated
at timet50 by imparting an initial downward velocity to the
top grain or row of grains. For thepristine one- and two-
dimensional systems, initiating the weak perturbation in this
manner results in a spatially well-defined pulse that travels
downward through the column~see Fig. 2!. Although there

FIG. 1. ~a! A pristine two-dimensional granular column.~b! A
column with randomly distributed voids as discussed in Sec. II C.
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was some tendency for the pulse to broaden slightly over
time, the shape of the pulse remains approximately invariant
over the course of the simulation. The location of the pulse
was defined by the position of the particle or row of particles
with the highest velocity and the local speed was determined
from the time derivative of pulse location.

It may be noted that some years ago Nesterenko@31# and
independently, Miller@32#, theoretically studied the general
problem of propagation of a compression pulse in granular
and porous media. The work of Miller, which was an exten-
sion of Nesterenko’s study, revealed that a propagating com-
pression pulse is analogous to a solitonic excitation as it
travels along a linear chain of spherical particles in the ab-
sence of gravity. Our analysis is similar to that of Miller’s
except for the fact that we consider gravitational compaction
in our system. The slight broadening in the shape of the
pulse in our problem is indicative of the fact that relatively
weak gravity may not have the effect of making the pulse
strongly dispersive.

To simplify the analysis of the results, the system param-
eters were chosen so that the density of the column as a
function of depth does not change significantly due to com-
paction. As alluded to above, this requires thatd1,2!r c/2, or
in terms of the system parameters (mgN/an)1/(n21)!r c/2.
Since sound speed scales asc;Am/r @25#, m being the bulk
modulus, andr being the density, variations inc as a func-
tion of depth in the column are due entirely to changes in the
stiffness of the system.

III. RESULTS

A. Sound and shock propagation in pristine columns

In this subsection we present the results of our simula-
tional study. We first discuss the results on the propagation
of weak impulses, i.e., sound waves, in one- and two-
dimensional pristine granular columns. Next we extend the
analysis to the case of the propagation of strong impulses,
i.e., shocks, in these pristine columns.

1. Sound propagation

We have performed the studies for a family of potentials
with a set of values forn in Eq. ~1!, and for a set of magni-

tudes of the initial perturbations which we callv impact. Al-
though experimental and theoretical studies suggest that the
potentials that best describe systems composed of real sand
areV(d);d5/2 for contact between perfect spherical grains,
andV(d);d3 for contact between grains with conical im-
perfections@16#, calculations were carried out using a range
of exponents fromn5 5

2 to n510. The motivation for doing
this is to study the power law dependence of sound speed as
a function of depthz andn and also to check for possible
deviations in the behavior of sound speed as a function of
depth from the predictions of the Hertzian contact theory for
impulses with large amplitudes for variousn values.

The basic equation that describes the dependence of
sound velocityc on depthz, measured from the surface of
the column, can be arrived at as follows. Iff i ,i11 denotes the
force between two adjacent grainsi and i11 that have an
overlap ofd i ,i11, then the spring constantk between the two
grains upon contact is

ki ,i115
d fi ,i11

dd i ,i11
. ~5!

Given that V(d i ,i11);d i ,i11
n @see Eq. ~1!#, the force

f i ,i11;d i ,i11
n21 . Hence d i ,i11; f i ,i11

1/(n21) . Therefore one can
write

ki ,i11;d i ,i11
n22 ;

f i ,i11

d i ,i11
; f i ,i11

121/~n21! . ~6!

But the sound velocitycweak is

cweak;Am;Aki ,i11; f i ,i11
[121/~n21!]/2 , ~7!

where m is the bulk modulus of the granular medium.
Clearly, at large depthski ,i11 , f i ,i11 become independent of
i . Thus

cweak; f [121/~n21!]/2. ~8!

The results of our simulations for the one-dimensional
columns are plotted in Figs. 3 and 4 for two specific cases,

FIG. 2. Average kinetic energy as a function of depth for sound
propagation in two-dimensional column with 3.3% void fraction,
v impact50.1, andn55/2.

FIG. 3. Speed of vertical disturbances as a function of depth,
c vs z, with the solid line showing the scaling law predicted by
Hertzian contact theory. The calculations have been done for
n55/2 in one dimension. The slope is 1/6.
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n5 5
2, and n56, respectively. For smallv impact, i.e.,

;0.01, cweak determined from the one-dimensional simula-
tions scaled with depthz as

cweak;z[121/~n21!]/2. ~9!

At large depths, the grains are very strongly compressed.
Since the pressureP at depthz is rgz, wherer is the density
of the material andz is the depth, it naturally follows that
Eqs. ~8! and ~9! are completely equivalent. The arguments
given here are independent of dimensionality.

We present our results from simulations of sound propa-
gation in two-dimensional granular columns in Figs. 5 and 6.
The results are essentially indistinguishable with respect to
the one-dimensional cases reported in Figs. 3 and 4.

2. Shock propagation

One would envisage from the arguments given above that
the scaling law forcweakpresented above will not be valid at
shallow enough depths or alternately, for large enough im-
pulses~i.e., largev impact). This is indeed what we find in our
studies. The data forv impact>0.1 in Figs. 3–6 show a clear
departure from the scaling law in Eq.~9! above for small
z. The deviations become more pronounced asv impact is in-

creased in magnitude. In these studies,cstrongdoes not show
a simple power law behavior~i.e., z1/6 or similar! until
greater depths are reached where it asymptotically ap-
proaches that found in the lowv impactstudies.cstrongincreases
more slowly withz thanz[121/(n21)]/2 for small z ~see Figs.
3–6!. The relative difference betweenc for largev impact and
v impact→0 can be defined as

j~z![~cstrong2cweak!/cweak. ~10!

A functional form forj(z) is expected to decrease monotoni-
cally as z increases and show the limiting behaviors
limz→0j(z)→` and limz→`j(z)→0.

One way to understand the departure from the scaling law
that describes the propagation of a weak impulse is to rec-
ognize that the grains, which barely touch one another in the
shallow reaches of the column, are suddenly strongly com-
pressed against one another when a large impact is intro-
duced into the system. As a result, the propagation of the
perturbation is intrinsically strongly anharmonic in nature.

Having attempted many different functional forms to fit
j(z) we conclude thatj(z) does not follow a simple power
law behavior. This conclusion suggests that there may be a
single or a set of length scales that enter into the description
of j(z), i.e., in the manner in whichcstrong(z) converges to
cweak(z). The results of nonlinear curve fitting show that the
functional form ofj(z) is well approximated by a function in
z which is best expressed as

(
k52`

1`

bkexp~2dkz!, ~11!

where the coefficientsbk and dk follow the recursion rela-
tions

bk115bka ~12!

and

dk115dkb, ~13!

with a andb constants that depend on the choice of system
parameters. As an example, a best fit ofj(z) over the range

FIG. 4. Plot ofc vs z for n56 in one dimension. The slope of
the solid line predicted by Hertzian contact theory is 2/5.

FIG. 5. Plot ofc vs z for n55/2 in two dimensions. Observe
that there is very little difference between Figs. 5 and 3.

FIG. 6. Plot ofc vs z for n56 in two dimensions. Observe that
there is very little difference between Figs. 6 and 4.
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100,z,10 000 forv impact51.0 andn53 to a triple expo-
nential function gives the result

j~z!'0.04 10710.2519 exp~20.000 3244z!

10.4527 exp~20.001 911z!

10.8019 exp~20.010 19z!, ~14!

which has four parameters~see Fig. 7!. For this case
a.1.8 andb.5.8. a and b are both greater than unity,
ensuring thatj(z) converges for allz.0 and diverges at
z50. Althougha andb depend onv impactandn, in all cases
studied both quantities are found to be greater than 1. It is
reasonable to argue that at each value ofz, as the strong
perturbation propagates progressively downward, some en-
ergy is used up in promoting local excitations. It follows then
that asz→` this energy loss becomes vanishingly small.
Our calculations suggest that the origin of the above recur-
sion relation lies in this iterative process. At this time we are
unable to provide a simple derivation or a simple explanation
for the above functional form forj(z) for this highly non-
linear process. Our analysis suggests that each of the expo-
nential terms in Eq.~14! roughly relates to each decade in
z traversed by the strong perturbation. The precise magni-
tudes of the prefactors and the coefficients ofz are perhaps
sensitive to details such asn andv impact.

3. Velocity power spectra of grains in the column

In order to understand the dynamics of individual grains
as the perturbation propagates downward through the column
it is instructive to calculate the velocity power spectra of the
grains at various depths. Typical velocity power spectra ob-
tained by calculatinguv(v,z)u2 for grains at five different
depths in the one-dimensional column during the passage of
a vertical disturbance are shown in Fig. 8.

As one goes deeper and deeper into the column, one finds
that the grains are more strongly confined to their equilib-
rium positions. Therefore one would expect that as depth
z→`, one would recover the known results for the velocity
power spectrum of any mass in an infinite harmonic oscilla-
tor chain.

The calculations suggest that this is indeed the case
@33,34#. For a deep lying grain the total force on the grain is
approximately F52a(d2dz)n211a(d1dz)n212mg,
wheredz is the displacement of the grain from its equilib-
rium position. The leading term in a power series expansion
of the force aboutdz50 is22a(n21)dn22dz, hence for a
strongly confined grain in the limit of small amplitude oscil-
lations the behavior approaches that of a harmonic oscillator.
Subsequently the velocity power spectrum of the grains at
progressively larger depths approaches that of any mass in an
infinite harmonic oscillator chain~see Fig. 8!, which is given
by @33#

^uv~v!u2&[A2

pE0
`^v~ t !v~0!&

^v~0!2&
cos~vt !dt. ~15!

In the above equation, ^v(t)v(0)&/^v(0)2&5(2kBT/
m)J0(v0t), wherekB is the Boltzmann constant,T is the
temperature,v05Ak/m, ^& denotes canonical ensemble av-
erages, andJ0 is a zeroth-order Bessel function. Recall here
thatm51 in our study. The resultant power spectrum is

^uv~v!u2&5
1

A4v0
22v2 , 0,v,2v0 ~16!

and is zero otherwise@35#. Our numerical calculations reveal
that at finite depths within the grain column the velocity
power spectrum does not have a cutoff at 2v0. This cutoff is
asymptotically approached as depthz→`.

B. Sound propagation in columns with voids

It is well known that granular materials are, in general,
loosely packed and often contain a large void fraction
@36,37#. This section presents our numerical investigations
on how sound propagation may be affected by the presence
of a small fraction of voids.

FIG. 7. Relative velocity differencej(z), as defined in Eq.~10!,
for v impact51.0 andn53. The markers are results of numerical
simulations and the solid line is the best fit of the data to a triple
exponential function.

FIG. 8. Velocity power spectra for grains at five different
depths,z5100, 200, 400, 800, and 1600, in a one-dimensional
column due to the passage of a vertical disturbance. Shown for
comparison is the velocity power spectrum for a particle in an in-
finite harmonic oscillator chain. The system parameters are
n55/2 andv impact50.05.
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This study is technically somewhat challenging. It is non-
trivial to stabilize voids in a column. Typically, the voids
introduced into a system by randomly removing grains from
a regular array of grains tend to disappear upon relaxing the
system to its lowest energy state. As described in Sec. II C,
the locations of the voids were carefully chosen so as to
avoid the removal of adjacent grains. The voids were frozen
into the lattice by first integrating the equations of motion
with an additional viscous term until the metastable state was
obtained before initiating the pulse. Due to the inherent fra-
gility of the column with voids we report our studies of
sound propagation~i.e., v impact!1) here for columns with
void fractions of up to about 12.5%.

The presence of voids in the two-dimensional column has
a profound effect on the sound propagation. First, a large
fraction of the energy in the vertically propagating distur-
bance is converted into random motion of the grains in the
bulk of the column, particularly near the surface of the col-
umn as shown in Fig. 2. Second, the sound velocity now has
the scaling behavior given by~see Fig. 9!

c}~12e!z[121/~n21!]/2, ~17!

wheree is the void fraction. These two results are due to the
fact that the presence of voids in the column leads to strong
inhomogeneities in the force network.

Although we have not carried out calculations of a three-
dimensional system due to computational limitations, our
studies suggest that one should expect behavior similar to the
one cited in Eq.~17! in close packed~hcp! three-dimensional
systems.

It is worth mentioning that the amount of the amplitude of
sound velocity~and hence the kinetic energy! that is lost to
the voids ends up being transported approximately horizon-
tally at the depth in which a void is present. In this sense the
physical mechanism underlying the behavior given in Eq.
~17! is very similar to what one finds in fracture physics@38#.
Hence the presence of this energy is simply not picked up by
the vertically propagating perturbation as it travels down-
ward past the voids. As a result the amplitude of the sound

velocity is decreased linearly by the void fraction. The ef-
fects of larger void fractions on sound propagation remain a
challenging problem.

C. Sound propagation in columns with mass defects

A number of simulations were carried out to study the
propagation of weak vertical disturbances in two-
dimensional columns with randomly distributed mass defects
~see Fig. 10!. The systems were prepared by replacing a frac-
tion of the grains in the pristine column with grains of an
identical size but different mass. Generalizing Eq.~7! to ac-
count for the dependence of the sound speed on the mass,
i.e., usingcweak;Am/r, of the grains leads to the scaling
relation

cweak;~mz! [121/~n21!]/2/Am. ~18!

Figure 11 shows the quantitym̄1/3c plotted as a function of
depth for both pristine columns and columns with a bimodal
mass distribution for the caseV(d)}d5/2. For columns con-
taining a mixture of grain masses,m̄ represents the average
grain mass. The data in Fig. 11 collapse nicely onto a single
curve indicating the validity of Eq.~18! not just for perfect
columns, but also for columns with mass inhomogeneities.

It should be noted that there are substantial differences
between the behaviors of the columns containing mass de-
fects and those containing voids. A void cannot be thought of
as a defect of zero mass. Treating voids in this way leads to
the prediction that the sound speed increases as grains are
removed from the column — a result in direct contrast to the
numerical simulations. Removing a grain from the system
not only reduces the density of the column, but leads to the
loss of the corresponding intergrain contacts.

FIG. 9. Speed of the vertical disturbance in two-dimensional
columns with voids forn55/2 in the limit of weak impact. Solid
lines are the best fits to data of formc5azb. Inset shows the pref-
actora plotted against 12e. The linear behavior ofa for small e
suggests thatc}(12e)z1/6.

FIG. 10. Picture of a column with randomly distributed masses
of two different magnitudes as indicated by the shade in~b!. Ob-
serve that the positions of the grains remain very nearly the same as
that in the pristine system in~a!.
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IV. SUMMARY AND CONCLUSION

In this article we have reported our results from extensive
molecular dynamics based studies on the problem of sound
and shock propagation in one- and two-dimensional granular
columns. Our key findings are~1! we recover and generalize
the c}z1/6 scaling law usually obtained using Hertzian con-
tact theory for vertical sound propagation at large depths
from particle dynamics studies;~2! we extend this result to
include columns with small~as defined by the upper limit of
e) void fractions,c}(12e)z1/6, 0<e<0.125; ~3! we dis-
cuss the case of propagation of a large amplitude perturba-
tion; and~4! we study the problem of sound propagation in a
column with random bimodal mass distribution.

This work demonstrates that present day computational
power allows one to carry out detailed analysis of sound and
shock propagation in dry granular media in both small and
large length scales. Thus both the small length scale physics
associated with the structural details of the granular media
and their elastic properties can be extracted from this kind of
an approach. Because of the fact that the elastic properties

can be extracted from this study in which sound and shock
propagation is strongly influenced by the gravitational field,
one may anticipate that most of the features ofc(z) reported
here will also be found in pristine three-dimensional col-
umns. However, it is important to note that for imperfect
three-dimensional columns, say due to the presence of voids
and mass impurities, the details of sound and shock propa-
gation could be different and hence three-dimensional col-
umns need to be studied separately@26#.

To our knowledge, much remains to be done experimen-
tally in terms of addressing the issues~2!–~4! above. Our
model uses periodic boundary conditions in the horizontal
direction and it has been assumed all along that in the simu-
lation cell, the depth far exceeds the width. This latter feature
in turn allows the pressure to increase with depth instead of
rapidly reaching saturation as might be the case with a very
wide granular bed. The results presented here are therefore
applicable to dry granular columns such as columns of dry
sand~or perhaps to a situation with negligible static friction!.
We would like to encourage our experimentalist colleagues
to probe the effects of voids and impurities on sound and
shock propagation in granular columns and explore the va-
lidity of our results for real systems. Such research may in
turn allow us to better understand sound and shock propaga-
tion in granular columns and perhaps also in granular beds.
The problem of backscattering of disturbances from shallow
impurities and voids can also lead to insights into possible
ways of detecting buried inclusions via acoustic probes@19#.
Such insights can be helpful in developing special acoustic
probes for studying the position distribution of buried land
mines and similar inclusions in dry granular soil.
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