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By means of molecular-dynamics simulations, we investigate the elementary process of avalanches and size
segregation by surface flow in two dimensions: a single ball confined to moving along an inclined line
consisting of balls. The global characteristics of the motion depend strongly on the size of the moving ball
relative to the size of the balls on the line, as well as the distribution of the balls on the line. We find that in
the steady state the friction force acting on the ball is independent of material properties such as the Coulomb
friction coefficient and the coefficient of restitution. Contrary to previous notions about the details of the
motion, we find that it is very regular and consists of many small bounces on each ball on the line. As a result
of this regularity, introducing a random spacing between the balls on the line has mainly the same influence as
a regular spacing of adequate length. The insensitivity of the steady-state velocity to material properties and to
the detailed arrangement of the balls on the line allows for an analytical estimation of the mean velocity that
fits the simulation results very well. We find that results from the two-dimensional case can probably not be
transferred to the three-dimensional case of a ball moving on a rough inclined plane as easily as has been
suggested previously.@S1063-651X~96!00912-9#

PACS number~s!: 46.90.1s, 07.05.Tp, 46.30.Pa, 83.70.Fn

I. INTRODUCTION

The flow of granular materials has been studied exten-
sively both experimentally and theoretically due to its ubiq-
uity in nature and its industrial importance. Nevertheless,
many properties of granular flow are still poorly understood.
Here we deal with a special case of granular flow, namely,
that along an inclined rough surface. Examples are flow in
inclined chutes@1# and all kinds of avalanche processes, such
as rockslides@2#, which involve segregation~known as ‘‘in-
verse grading’’ to geologists!, an important phenomenon of-
ten encountered in granular materials@3#. In rotating drums,
avalanche processes are the motor of size segregation@4–7#.
Segregation in surface flow is strongly related to the question
of stability of granular flow on rough surfaces, i.e., to the
determination of the limiting conditions for the existence of a
steady state where the flow is neither stopped nor acceler-
ated. The rougher the surface encountered by the moving
particles, the slower they flow, and they may even come to a
stop. Thus the larger the flowing particles are compared to
the roughness or bumpiness of the surface on which they
flow, the farther they should travel and accumulate~in the
case of flow on a sand heap! at the bottom of the slope.

The threshold for the onset of granular shear flows and the
limiting conditions for which a stable flow~i.e., a steady
state! still exists are insufficiently understood and hard to
determine in realistic situations@8#. In particular, the hyster-
etic properties of granular materials, manifesting themselves,
for example, in the difference between the static and dynami-
cal angle of repose of sandpiles@9#, complicate the situation.
Though the static threshold for the onset of motion on a
rough plane~i.e., the tilt of the surface large enough to set a
resting mass of granular material in motion! has been quite
thoroughly investigated in experiments and computer simu-
lations @10,11#, the dynamical case, i.e., the stability of the
flow, is still poorly understood.

In order to investigate the dynamical situation, we follow
the course taken up by Riguidelet al. @11–13# in their ex-
perimental studies. We consider the elementary process of an
avalanche: a single ball of radiusRmoving down an inclined
plane onto which other balls of radiusr are glued. This fixes
the roughness of the surface. Such a system has been inves-
tigated experimentally and numerically in three dimensions
~i.e., for a ball moving on a plane! @11,12,14# and in two
dimensions~for a ball moving on a line of balls! @13,15#. The
simulations in three dimensions were restricted to the deter-
mination of the static angle of stability for a ball resting on
the plane, whereas all experiments and the simulations on the
line also dealt with the dynamical situation of a ball that
starts on the plane with some initial velocity, which is the
situation we are interested in.

In all cases, three types of motion could be observed,
depending on the size ratioF5R/r and on the inclination
angleu of the plane. These results could be summed up in a
‘‘phase diagram’’~typical for both the plane and line!, for
which we will later give an example from our simulations.
The three types of motion observable in experiments and
simulations are characterized in the following way. In regime
A, the ball gets trapped on the plane independently of the
initial velocity with which it is launched onto it. In regime
B, it reaches a constant average velocityv̄ in the direction
along the plane. In regimeC, it accelerates throughout the
whole length~2 m in the experiments! of the plane, accom-
panied by visible jumps. In the constant velocity regime, the
mean velocityv̄ was found to be proportional toFasinu in
three dimensions, with an exponenta'1.3 @11,12,14#,
whereas in two dimensionsv̄2 depended linearly on sinu
@15,16#. In two dimensions, no simple power law could be
found for theF dependence of the mean velocity. The rela-
tion v̄2;sinu was already derived using very general as-
sumptions by Bagnold for flow of many particles on an in-
clined plane @17#, but no assumption about the

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6845~12!/$10.00 6845 © 1996 The American Physical Society



dimensionality of the system was made there.
An obvious difference between the two-dimensional~2D!

and 3D case is the fact that in three dimensions, the particle
moving down the plane will be deflected in the direction
perpendicular to the plane inclination either by rolling down
the crooked valleys formed by the balls on the plane or by
obliquely impacting a sphere on the plane. We will return to
the importance of this possibility, which is absent from the
simulations we present here, after having discussed the de-
tails of the motion of the ball moving down the line. Re-
cently, a 2D stochastic model has been proposed that repro-
duces the angle dependence of the velocity in three
dimensions, but gives a different exponenta @18#.

Here we discuss the mechanism by which the ball keeps a
constant velocity on the inclinedline and how, from the un-
derstanding of this mechanism, the transition to the stopping
and accelerating regime can be explained. We will show that
the 2D case isqualitativelydifferent from the 3D case, i.e.,
that the effect of disorder on the plane cannot be modeled by
disorder on a line. Possible reasons for the success and the
adequateness of the 2D stochastic model of Ref.@18# in de-
scribing the 3D case are discussed.

The outline of the paper is as follows. After presenting
our simulation method in Sec. II, we will show in Sec. III
that the simulations reproduce experimentally observed mac-
roscopic behavior, which we will discuss qualitatively. We
then proceed to a detailed analysis of the microscopic prop-
erties of the motion and give an explanation of the mecha-
nism stabilizing the motion of the ball in the two-
dimensional case. The influence of material properties on the
motion is investigated. On the basis of our simulation results,
we present in Sec. IV a simplified model for the motion of
the ball that allows the analytical derivation of the mean
velocity in the two-dimensional case. The results of this
model agree with the simulation results. Possible reasons for
the difference between the two-dimensional and the three-
dimensional system are discussed.

II. SIMULATION METHOD

We model the 2D case by the molecular-dynamics~MD!
technique@19#, which was introduced to the simulation of
granular materials by Cundall and Strack@20#. The MD tech-
nique consists of time-integrating Newton’s equations of mo-
tion for a system of grains starting from a given initial con-
figuration. Since our simulations are two dimensional, the
grains have only three degrees of freedom, two translational,
one rotational. Two grains of radiiRi , positionsrW i , veloci-
ties vW i , and angular velocitiesv i ( i51,2) are in contact
when their~virtual! overlapj5 max(0,R11R22urW22rW1u) is
larger than zero~‘‘soft’’ grains!. Two unit vectorsnW and sW
are used to decompose the forces and velocities into normal
and shear components

nW 5
rW22rW1

urW22rW1u
, ~1!

sW5„~nW !y ,2~nW !x…. ~2!

The forces between grains are then given by

FW i j5FnnW 1FssW, ~3!

where

Fn52knj2gnj̇, ~4!

Fs52min~ ugsvsu,umFnu!sgn~vs!. ~5!

Herem denotes the Coulomb friction coefficient. The rela-
tive normal velocityvn and the relative shear velocityvs
~i.e., the relative velocity of the surfaces at the point of con-
tact! are defined as

vn5~vW 22vW 1!•nW , ~6!

vs5~vW 22vW 1!•sW1v1R11v2R2 . ~7!

A number of different force laws is commonly used in
MD simulations of granular materials; a discussion of their
properties can be found in@21#. Our choice ofFn corre-
sponds to a simple linear spring dashpot; the tangential force
Fs is the Coulomb friction law for sliding friction, which was
regularized for smallvs to avoid the discontinuity of the
Coulomb law atvs50. The tangential damping constantgs
should have a sufficiently high value such that the case
Fs52gsvs occurs only for very smallvs . Only then does
the interpretation ofFs as a mere regularization of Coulomb
friction hold. This force law has the advantage of holding
equally well in free impacts of spheres@21,22# and in long-
lasting contacts@23# if the particles can be considered as
rough hard spheres~i.e., if tangential elasticity can be ne-
glected!. It also gives a velocity-dependent coefficient of tan-
gential restitution, a feature found to be important in a sto-
chastic model of the situation@18,24#.

Throughout our simulations we used the parameters
kn523106 N/m, gs5100 kg/s,m50.13, r55 mm, and
M5 4

3pR
3r for the mass of the rolling ball withr57.8

g/cm3. The values of these parameters were chosen to match
the steel balls used in@13,16#; the choice ofkn leads to a
collision time of the order of 1025 s, which is a typical value
for steel balls of this size. The value ofgs is high enough
such thatFs is reasonably close to the exact Coulomb fric-
tion law in the sense explained above. The dampinggn is
determined by fixing the normal coefficient of restitution
en52vn

f /vn
i , defined by the ratio of final and initial normal

velocities. Unless stated otherwise, the results presented in
Sec. III were obtained usingen50.7 and the above-
mentioned parameters. The influence of the material param-
etersen andm on the behavior of the system will be dis-
cussed later. The only external force acting on the ball is
gravity; the gravitational acceleration in thex (y) direction is
given by gsinu (2gcosu). The integration method we em-
ploy is a constant-time-step fifth-order predictor-corrector
method@19#.

Figure 1 shows a schematic drawing of the ball on the
line. The spacing between two balls fixed on the line is
2er , wheree is a number that in the disordered case is cho-
sen uniformly distributed in the interval@0,emax#. The impact
angleg is defined as the angle enclosed by the line joining
the centers of the impacting balls and the normal to the
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plane. It is taken to be negative when the ball collides with
the uphill facing side of a ball on the plane, positive on the
downhill side.

III. SIMULATION RESULTS

A. Global characteristics of the motion

In all simulations presented here, the ball was launched
onto the line with a rather high velocityvx in thex direction
and quite lowvy . If the inclination angleu and size ratio
F5R/r are in a suitable range, the moving ball very
quickly, usually after passing only a few balls on the line,
reaches a steady state with well-defined mean velocities in
thex andy directions. Clearly, the average overvy is zero in
our problem, so the only interestingmeanvelocity is the
average overvx , which we denote byv̄. To obtain this mean
velocity, we first average over a certain number of time steps
~usually 500!. This value is large enough to average out the
comparably large fluctuations occurring during collisions,
while it is still so small that the ball moves only a very short
distance~much less than the radius of the balls on the line!
during this time. This averaged value clearly still gives a
fluctuating velocity, but the fluctuations are very small and
v̄, the mean value of these averaged velocities, is well de-
fined.

We investigated the motion of the ball both on lines with
equally spaced balls and on lines with randomly spaced
balls. We found that the essential features of the motion are
alike in both cases. Figure 2 shows the velocity of the rolling

ball for variousF and equal spacing of balls on the line with
e50 as obtained from simulations using the above-
mentioned parameters. For the casee50, experimental data
are available~though only for size ratiosF<2.0) @13,16#.
Our stable mean velocities are of the same order of magni-
tude, but in the simulations the range of inclination angles
for which v̄ is well defined, i.e., a steady state is reached, is
a bit narrower than in the experiments. This might be due to
the difference in the experimental setup. There, a ball moved
down a line of balls sitting in a V-shaped groove, and it is to
be expected that contact with the groove walls influenced the
motion as an additional source of dissipation due to friction
and collisions with the walls, but it is unclear how strong this
influence was. For a direct comparison of simulation and
experiment, it would be desirable that a ‘‘more’’ two-
dimensional experiment be done, such as, for example, a ball
moving down a row of cylinders, to rule out these boundary
effects.

For angles lower than the one for which the smallest
steady-state velocity is reached for a givenF, the ball loses
all the initial velocity it had and very quickly stops, usually
after passing only very few balls on the line~which defines
regionA of the phase diagram!. We will denote this mini-
mum angle, for which a steady state withv̄Þ0 still exists, by
uAB(F). This defines the phase boundary between regions
A andB.

All velocity curves in Fig. 2 exhibit a sudden increase of
v̄ to a value where it remains roughly constant. This sudden
increase has also been observed in experiments@13#. For
angles smaller than the one where this happens, the velocity
of the ball shows only very small fluctuations and the steady-
state velocityv̄ does not depend on the initial velocity of the
ball. At the inclination angle where the velocity suddenly
shoots up, the behavior changes qualitatively. The fluctua-
tions ofvx increase significantly and the behavior of the ball
now depends on the initial velocity. Depending on the start-
ing velocity, the ball can accelerate~usually if the starting
velocity is larger than the stable mean velocity! and start to
jump visibly, or it can reach a constant velocity~if released
with an initial velocity smaller than the stablev̄ in this re-
gion!. However, even when the ball does not accelerate, in
this regionv̄ can depend somewhat on the initial velocity.
We thus denote the angle at which the sudden increase takes
place byuBC(F) since it defines the upper boundary of the
constant velocity regionB independently of the initial veloc-
ity of the ball.

If u increases even more, the ball accelerates and starts to
jump significantly~the length and height of the jumps reach
a few ball diameters!. We did not investigate this jumping
motion any further, for the following two reasons. In the
simulations the ball accelerated up to 50 m/s and more,
which is a velocity the ball would never reach in experiments
due to air resistance. Thus the question of whether the ball in
the jumping regime can reach a steady state only due to
collisions with the plane will not be discussed here, even
though it is of theoretical interest. The second reason is that
for grazing impacts at high velocities, an artifact of constant-
time-step algorithms, the so-called brake failure effect@25#
may set in, which leads to anomalous dissipation of energy.
Its onset can be shifted to higher velocities by increasing the
spring constantkn , i.e., the stiffness of the balls. This, how-

FIG. 1. Schematic drawing of the ball on the line.

FIG. 2. Dependence of the mean velocityv̄ on the inclination of
the line for various size ratiosF: F51.5 ~circles!, F52.0
~squares!, F52.5 ~triangles!, andF53.0 ~stars!.
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ever, decreases the time step, thus increasing the simulation
time tremendously. The constant-time-step algorithm then
becomes a very ineffective way of simulating the motion,
since the ball spends most of its time in free flight, where a
time step small enough to integrate collisions correctly and
to avoid spurious effects is essentially a waste of computa-
tion time. In this regime, event-driven~ED! simulations
would be more appropriate, which is why we will not discuss
the motion in the ‘‘high-bounce’’ regime. One might argue
that since the ball moves down the line in a series of
bounces, an ED algorithm might in any case be a more effi-
cient and appropriate way to simulate the motion. As we will
see later, this is not the case, as both short- and long-lasting
contacts occur, the latter of which are not treatable by an ED
algorithm in a straightforward way@26#.

The velocity curves obtained from experiments as well as
from simulations suggest the functional form

v̄5v0~F!1 f ~F!Asinu2sinuAB~F! ~8!

for a fixed value ofr in regionB. All curves start at a certain
offset velocity v0, which seems to depend slightly onF.
f (F) denotes a~still unknown! scaling function, which, un-
like in three dimensions, does not seem to be a simple power
law. We thus plot@ v̄2v0(F)#2 in Fig. 3, wherev0(F) is
obtained by fitting a square root tov̄(sinu). v0(F) typically
is of the order of 4 cm/s. The error bars give the variance of
the averaged velocities, averaged~as the plotted value ofv̄
itself! over a number of simulation runs with different start-
ing velocities. Figure 3~a! shows velocities in the case

e50 for various size ratios and Fig. 3~b! illustrates the in-
fluence of disorder on the velocity of a ball of size ratio
F52.25.

Figure 3~b! demonstrates how the velocity of the ball is
affected by the introduction of disorder to the line. It shows
that v̄ on the disordered line withemax50.2 can be approxi-
mated by the velocity on a line with equally spaced balls and
a spacinge50.1, corresponding to the mean value of the
disordered case. It also shows thatuBC(F) depends on both
F and the arrangement of the balls on the line, whereas the
maximumv̄ only seems to depend onF.

In Fig. 4 we plot the corresponding phase diagram for
three cases: two cases for a line with balls equally spaced,
with e50 ande50.2, and the third for a disordered line with
emax50.2. The lines denote the phase boundaries given by
the anglesuAB(F) and uBC(F) defined previously. Obvi-
ously, the introduction of disorder has the same effect on the
phase boundaryAB as the introduction of an equal spacing
of balls with e5emax. This is understandable; the stopping
of a ball should be ruled by the deepest ‘‘traps’’ into which it
might fall. The boundaryBC rather seems to be determined
by the mean spacing of balls since in the disordered case it
falls somewhere between the two extreme cases of an or-
dered array withe50 ande5emax.

B. Detailed dynamics of the motion

In order to investigate the mechanism by which the ball
maintains a constant velocity in regionB, we have to look
into the details of the motion. Certainly, distributions of the
impact angleg, of times of flight between impacts, or of the
impact velocityvW i would be of interest. One might ask as
well if there are correlations between impacts at certain
angles and the corresponding impact velocities or between
the time of flight after an impact and the corresponding im-
pact angle. Actually, these correlations provide even more
detailed information; for this reason we will examine them
first. We will first discuss the ordered case of a line with no
spacing between the balls, i.e., withe50.

In Fig. 5 we plot the velocity of the ball right before an
impact as a function of the corresponding impact angleg.
Each dot corresponds to a collision. We chose to plot the
normal velocityvn and the tangentialtranslationalvelocity

FIG. 3. Dependence of (v̄2v0)
2 on the inclination of the line

for ~a! the same parameters as Fig. 2 and~b! various spacings of the
balls on the line (F52.25): balls equally spaced withe50 ~stars!,
e50.1 ~triangles!, and e50.2 ~circles! and balls disordered with
e max50.2 ~squares!.

FIG. 4. Phase diagram foren50.7 and various spacings of the
balls on the line: balls equally spaced withe50 ~solid line! and
e50.2 ~dashed line! and balls disordered withe max50.2 ~dot-
dashed line!.
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v t5vW •sW rather thanvx andvy , as they provide more infor-
mation on the mechanisms involved. Since dissipation takes
place only through the normal velocity~dissipation due to
Fs is negligible, as we will see later!, the evolution of this
quantity may explain the mechanism of energy loss main-
taining the steady state. Sincev t is the velocity component of
the motion of the center of mass of the ball along the bumps
of the surface, it reflects how this bumpiness is felt. It is
obvious that there is a strong correlation between the impact
angles and the corresponding impact velocities. The times of
flight between impacts and corresponding previous impact
angles are equally strongly correlated~see Fig. 6!. From both
Figs. 5 and 6 it is obvious that the ball moves down the line
in a series of bounces. There is even a certain range of im-
pact angles that are never hit. In addition, we can deduce
from Fig. 6 that the typical times of flight between impacts
correspond to a distance of less than 3 mm, which is smaller
than the radius of the balls constituting the line. So the
bounces the ball undergoes cannot be very high or far and
the bouncing ball collides with every ball on the line several
times.

How can these results be understood? From Fig. 5 two
important points can be extracted. First, we see that at certain
impact anglesg, the moving ball is likely to hit the ball on
the line with a well-defined corresponding normal velocity
vn , which leads to an equally well-defined time of flight~see
Fig. 6!. Second, the normal velocities are largest for negative

impact angles~i.e., hitting on the uphill side of a line ball!
and get smaller~and eventually very close to zero! with in-
creasing impact angles. The second observation helps to ex-
plain the correlations and reveals the reasons for the regular-
ity of the motion.

Consider a ball that has just arrived at the maximum pos-
sible positive impact anglegmax on a certain ball on the line,
say ball numberk. The value ofgmax is given by the geom-
etry and defined as

gmax5arcsin
11e

11F
. ~9!

From Fig. 5 we see that atgmax the moving ball has lost
nearly all normal velocity with respect to ballk, i.e., it is
rolling or sliding down the lower part of the ‘‘downhill side’’
of the corresponding ball on the line. Even though the total
shear velocityvs at the point of contact is quite small~the
ball rolls, thus rotational velocity is opposed to the transla-
tional tangential velocity and nearly compensates it!, the
translational tangential velocityv t5vW •sW, which we plot in
Fig. 5, is quite large~close tov̄ for largerF). Immediately
after having reachedgmax on ballk, the moving ball impacts
the next ball,k11, at 2gmax, where a large part of this
previously tangential velocity is now normal velocity, as the
direction of the vectornW connecting the centers of the im-
pacting balls with respect tovW has changed. The ball thus
gets thrown up again and manages to reach the downhill side
of ball k11 after a few jumps. The comparably high normal
velocity of the ball at2gmax is lost in two ways in crossing
a fixed ball: most is lost by dissipation due to impacts, but
partly it is converted into tangential velocity by the increas-
ing obliqueness of successive impacts at positiveg. In the
process of bouncing over the top of ballk11 on the line, the
moving ball loses nearly all of its normal velocity, so that it
again reachesgmax with nearly only tangential velocity.
These steps repeat themselves over and over again while the
ball moves down the plane, thus retaining a constant mean
velocity. Note that strong geometrical constraints prevent the
ball from rolling down the line without ever bouncing.
Whenever the moving ball rolls down the downhill side of a
ball k, it is thrown onto the uphill side of ballk11 with
considerable normal velocity with respect to ballk11 as a
result of the change in the geometry. To remain in contact
with ball k11, the moving ball would have to lose a very
substantial amount of this normal velocity in a single impact,
or it would jump up. Persistent rolling thus is only possible
in the case of vanishing normal restitution. Rolling on part of
each ball is possible, however, as we will see in a moment.

In order to describe things more quantitatively, we take a
look at the distribution of impact angles. Figure 7~a! gives an
example for an angle of inclination in the middle of region
B of the phase diagram forF52.5. The distribution exhibits
clear peaks forg,0. As g increases, the peaks broaden
somewhat and approach each other until they are nearly in-
distinguishable in the histogram, although there still is struc-
ture in the correlation plots. For plane inclinations closer to
uAB than to uBC , the distribution, like in Fig. 7~a!, even
breaks off at a valueg,gmax, indicating the start of a long-
lasting contact. Here the ball has lost so much of its normal

FIG. 5. Correlation of impact velocities and impact anglesg ~in
radians! for F54, sinu50.05, ande50. The upper points corre-

spond to the relative translational tangential velocityv t5vW •sW, the
lower ones to the relative normal velocityvn .

FIG. 6. Correlation of the time of flight after an impact at angle
g ~in radians! and corresponding previous impact angles~the pa-
rameters are the same as in Fig. 4!.
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velocity in impacts it suffered on crossing over the top of a
ball on the line that it finally starts to roll over part of this
ball. This rolling motion can even start while the moving ball
is still on the uphill facing side of the fixed ball, though this
takes place only very close touAB . All these impactsendat
gmax, which leads to the very pronounced peak at2gmax.
Integrating the distribution over negative and positive angles,
respectively, yields the result that there are actually more
impacts for positive than for negativeg.

Whenu is increased, the peaks for negativeg, except the
one at2gmax move towards zero, finally disappearing into
the continuous distribution for positiveg ~see Fig. 8!. At a
large enough inclination, they get visibly broader, showing
that the velocity atgmax is now no longer as sharply defined
as before, probably due to the fact that not all the normal
velocity can be lost on only one ball. Still, the ball does not

accelerate as long as its starting velocity is only a little
higher than its stable mean velocity~this is the region be-
yond the transition from linear to more irregular behavior in
Fig. 2!.

Figures 7~b!–7~d! shows how the motion of the ball
changes qualitatively atuBC . Theu values are taken a little
below ~b!, as close as possible to~c!, and a little above
uBC ~d!. The heretofore clearly defined peak at2gmaxbroad-
ens considerably and even seems to develop a small side
peak asu reachesuBC . The qualitative change of the behav-
ior of the ball can also be observed in the velocities. In
particular, in the angle region where the velocity curve flat-
tens out again, an intermittent behavior of the ball can be
observed: it will accelerate a little, even start to jump a little,
but then suddenly slow down again. The mean velocity in
this case is determined by how fast the ball is accelerated and
slowed down, respectively. The same intermittent behavior
of the ball shortly before passing from motion with a mean
constant velocity to a jumping regime has been observed in
3D experiments@16# and in a stochastic model for the 2D
case@18#.

While the intermittent behavior marks the transition from
regionB to regionC in the phase diagram, stopping of the
ball takes place when the typical tangential velocity atgmax
does not convert into enough normal velocity at2gmax to
carry the ball over the top of the next ball in the line in a few
jumps, or at least up to a point where the remaining tangen-
tial velocity suffices to make it roll over the top of this ball.
In regimeB, the motion is characterized not only by typical
impact anglesg, but also by a very strong correlation of
successive impact angles. In Fig. 9 we plotgn11, the impact
angle for impactn11 as a function of the previous impact
anglegn . Even when introducing a random spacing of balls
on the line, the strong correlation remains. This observation

FIG. 7. Distribution of impact angles~in radians! for F52.5,
e50, and~a! sinu50.057,~b! sinu50.075,~c! sinu50.091, and~d!
sinu50.103.

FIG. 8. Location of the peaks in the distribution of impact
angles~in radians! for F52.25. The error bars denote the width of
the peak. The solid, dotted, dashed, long-dashed, and dot-dashed
lines denote, respectively, the first, second, third, fourth, and fifth
distinguishable peak, excluding the one at2gmax.

FIG. 9. Correlation of successive impact angles~in radians! for
F52.25 and sinu50.094. ~a! Balls on the line regularly spaced
(e50) and~b! balls on the line disordered withemax50.2.
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leads us to the discussion of the behavior of the moving ball
on a disordered line. The phase diagram already suggests
that introducing disorder has a similar influence on the mo-
tion of the ball as the introduction of a regular spacing. In
both cases, the region of stable motion in the phase diagram
shifts to largerF andu. Plotting the distribution of impact
angles for the cases displayed in Fig. 2~b! shows the effect of
disorder~see Fig. 10!.

We checked that this regularity in the case of a disordered
line is not a finite-size effect. The angle distributions do not
change when the size of the system is increased. From Fig.
10 it can be seen that the distributions for the impact angles
in the disordered case lie between the limiting casese50
and e50.2 of an ordered line. In addition, the peaks for
e50.1 correspond to the center of the peaks in the disor-
dered case. The reason for the large width of the peaks in the
casee50 lies in the fact that here the velocity is already
quite high @see Fig. 2~b!#. We interpret the results of the
disordered case in the following way. The motion of the ball
is influenced mainly by two factors: the minimum and maxi-
mum spacing of balls on the line. If the ball is to keep its
mean velocity, without being stopped and without being ac-
celerated, the velocity has to have a value that enables it to
get out of the ‘‘deepest valleys’’ existing between two balls
~given byemax), but still is low enough that in all cases~even
in those wheree50) most of the normal velocity is dissi-
pated on crossing over the corresponding ball, so that at
gmax of this ball only tangential velocity is left. The varia-
tions in this tangential velocity are so small that they only
broaden the peaks for the impact angles, but do not lead to a
qualitativechange of the motion of the ball.

C. Influence of material properties on the motion

Having uncovered the mechanism by which the ball
moves down the line and keeps a constant average velocity,

we now have to ask how much this mechanism and the glo-
bal results such asv̄ are influenced by material properties.
The material properties incorporated in our simulations are
the coefficient of normal restitutionen and the friction coef-
ficientm. We will show in this subsection that their influence
on v̄ and the mean rotational velocityv̄ is very small.

Experiments in three dimensions already indicate that the
characteristics of the motion are hardly influenced by mate-
rial properties@14,27#. Rolling steel, glass, and plastic balls
down the plane gives nearly the same velocity, though for
plastic~which has the lowesten and largestm) theB region
of the phase diagram is found to be somewhat extended. Our
simulations in two dimensions indeed show that the mean
velocity v̄ is nearly independent of bothen andm. Figure 11
demonstrates this for the case of a ball of size ratio
F52.25. Figure 11~a! shows the velocities for varying nor-
mal coefficient of restitutionen . It can clearly be seen that
en influences the phase diagram i.e., the extension of region
B, but has only a very small influence onv̄. ThoughuAB is
hardly affected byen ~except for very smallF), uBC moves
to larger inclination anglesu with decreasingen . But en
influencesv̄ slightly in a direction that is contrary to what
one would expect intuitively. Increasing the dissipation leads
to a slight increase in the velocity. We have found no expla-
nation for this so far. We have, however, understood the
relative insensitivity ofv̄ to en .

The reason for the small influence ofen is essentially the
regularity of the motion. As shown in the Sec. III B, the ball
moves over each line ball in a succession of bounces, in the
course of which it loses all or most of its relative normal
velocity with respect to this line ball.en mainly determines
how many bounces are necessary to achieve this. As long as

FIG. 10. Distribution of impact angles~in radians! for
F52.25, sinu50.088, and various spacings of the balls on the line:
~a! regular spacing,e50; ~b! disordered line,e max50.2; ~c! regu-
lar spacing,e50.2; and~d! regular spacing,e50.1.

FIG. 11. ~a! Dependence ofv̄ on the dissipation forF52.25
and e50: en50.4 (s), 0.5 (h), 0.6 (L), and 0.8 (n). ~b! De-
pendence ofv̄ and v̄R on the friction coefficientm: m5 0.1
(s), 0.3 (h), 0.5 (L), 0.7 (n), and 1.0 (!).
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the moving ball has only a negligible amount of normal ve-
locity left as it reachesgmax, it seems to be unimportant for
the tangential velocity at this point how many impacts were
needed to lose the normal velocity the ball had at2gmax.

For the phase boundaryBC, the value ofen is important.
Since we found that the motion of the ball starts to become
unstable when the motion is no longer regular, we expect the
destabilization to start when the normal velocity at2gmax
with respect to one ball cannot be lost by the timegmax is
reached. Buten , which determines the energy loss in a col-
lision and thus the height~and thereby the length! of the next
jump, together withv̄ determines how many jumps are made
on one line ball. It thus gives an upper limit to the maximum
amount of energy that can be dissipated on a single line ball.
The smalleren , the more energy is dissipated in each jump
and the more jumps are possible, as their length decreases.
Thus uBC shifts to largeru for a givenF with decreasing
en and approaches the static angle of stability, which in the
2D case is given bygmax.

We find that because the ball is allowed to rotate, the
value of the friction coefficientm is even less important for
the behavior of the ball thanen @see Fig. 11~b!#. m influences
neitherv̄ nor the mean rotational velocityv̄ significantly. It
also does not change the phase boundaries. The reason for
this is that for the range ofu considered here, the ball can be
expected to roll without slipping most of the time indepen-
dent ofm if our implementation of the tangential force law
correctly reproduces Coulomb’s law for sliding friction. Let
us assume for a moment that the ball, while moving down
the line, is always in contact with the balls on this line,
which is only possible ifen50. It would then roll without
slipping if at all g the conditionuFsu<muFnu were fulfilled.
For a rolling sphere under the action of gravity@28#,

uFsu5
2

7
ugW •sWu, ~10!

so that the criterion form for the ball to roll without slipping
reads

m.
2

7
utan~u1g!u. ~11!

Though close togmax this condition is usually not fulfilled
~the smallerF, the larger the region ofg for which slip can
occur!, it holds on the largest part of a ball on the line even
for smallm. We would thus assume the ball on the average
to roll without slipping in the case ofen50 even for small
values of the friction coefficientm.

In our simulations, however, we used larger values for
en , such asen50.7 in Fig. 11~b!, so there the ball rather
bounced than rolled down the line. But the distances the ball
covers between bounces in the steady state are very small.
We find in our simulations that the ball, which we launch
onto the plane without rotational velocity, soon picks up ro-
tation during impacts, such that when the steady state is
reached, the rotational velocity has adjusted itself to a value
that on average leads to zero relative velocity of the surfaces
of the moving ball and the fixed balls@except close to
gmax, just as would be expected from Eq.~11!#. In the free
flight between collisions, the ball picks up translational ve-

locity while the rotational velocity remains unchanged. The
moving ball has thus gained excess shear velocity, which is
converted nearly completely into rotation in the next impact,
if it is small enough. This is usually the case in the steady
state, where distances covered between bounces are small.

IV. THEORETICAL MODEL FOR THE MEAN VELOCITY

In this section, we derivev̄ by a simple analytical treat-
ment. Our simulation results play an important role here, as
they show which simplifications can be introduced without
losing essential features of the motion.

From our results on the influence of the coefficient of
restitutionen on the motion of the ball, we can deduce a very
accurate result forv̄ in the case of equally spaced balls on
the line. Since we find thatv̄ hardly depends onen we in-
vestigate the limiting caseen50. As we also found that, due
to friction, the ball is able to sustainvs50 on average~i.e.,
the ball would roll without slipping in the caseen50 for
largem), we make the following assumptions.

We assume that the moving ball is always in contact with
the fixed balls, i.e., rolls down the line without slipping.
Thus, at all times

uvW u5v t5vW •sW, ~12!

vn50, ~13!

vR5v t . ~14!

From these conditions the equation of motion of the ball
on a single ball on the line from2gmax to gmax can be
derived. The kinetic energy of the ball is

Ekin5
1

2
mv t

21
1

2
Jv2, ~15!

whereJ denotes the moment of inertia of the moving par-
ticle, which in the case of a sphere of radiusR takes the
valueJ5 2

5mR2. Using condition~14!, we get

Ekin5
7

10
mv t

2 ~16!

for a sphere. The potential energy depends on the location of
the moving ball on the line ball:

Epot5mg~R1r !cos~g1u!. ~17!

Sincev t5(R1r )ġ, the energy balance reads~denoting the
energies at the start of the motion byEkin

0 andEpot
0 )

Ekin
0 2

7

10
m~R1r !2ġ25mg~R1r !cos~g1u!2Epot

0 .

~18!

Differentiating with respect to time yields the equation of
motion forg(t)

g̈5
5

7

g

R1r
sin~g1u!. ~19!
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The completely inelastic collision at2gmax that occurs when
the moving ball passes from one line ball to the next defines
the boundary conditions for the problem. We denote the ve-
locity of the ball atgmax by v t(gmax)5v i . Since we assume
rolling without slipping, on this ball on the line we have

v i5v iR, ~20!

with v i5v(gmax). In the next instant, the moving ball hits
the next ball on the line at2gmax, with the tangential ve-
locity v t(2gmax), which with respect to this ball is~due to
the change in geometry!

v t~2gmax!5v icos~2gmax!. ~21!

In the collision that is now about to take place, the normal
component

vn~2gmax!5v isin~2gmax! ~22!

is reduced to zero, but this is not the whole effect of the
collision. Sincev t droppedbefore the impact due to the
change in geometry, butv was left unaffected, at2gmax,
there is excess rotational velocity and thus excess shear ve-
locity vs . If the frictional force is high enough~which we
assume in this treatment!, then the shear velocity at the point
of contact should again be reduced to zero during the impact
such that tangential and rotational velocitiesafter the impact
at2gmax, which we will denote byv f andv f , respectively,
fulfill the condition

v f5v fR. ~23!

During the impact at2gmax the rotational and translational
velocities thus adjust themselves, with only negligible en-
ergy loss~friction here mainly helps to distribute the excess
rotational velocity to the translational degree of freedom,
but, as the ball can rotate freely, dissipates only very little
energy during the adjustment!. Before the adjustment of ro-
tational and translational velocities, the kinetic energy of the
system was

Ekin5
1

2
mv i

2cos2~2gmax!1
1

2
Jv i

2 . ~24!

With Eqs. ~16! and ~23! we thus obtain from the energy
balance the condition forv f

1

2
v i
2cos2~2gmax!1

1

2
Jv i

25
7

10
mv f

2 . ~25!

Substitutingv i according to Eq.~20!, we get

v f5v iA1

7
@5cos2~2gmax!12# ~26!

for the tangential velocity after the collision at2gmax. Since

v t5(R1r )ġ, this provides the boundary condition for Eq.
~19!.

We obtain v̄ numerically by starting at2gmax with an
arbitrary and very high starting velocityġ0, letting the sys-
tem evolve according to Eq.~19!. Whenever2gmax is
reached, Eq.~26! is applied and we start again atgmax. We

continue this process until either the ball rolls back~which
we consider as trapping! or it reaches a steady state. The
mean velocity in this steady state is plotted in Fig. 12, in
comparison to simulation data for various coefficients of res-
titution. Clearly, the simulation for smallen is closest to the
theoretical curve~which assumesen50), but also for higher
en the approximation is still good.

For the casee.0 Eqs.~19! and ~26! yield equally good
results as in the casee50 presented in Fig. 12. In the case of
a disordered line, an estimation ofv̄ with the value ofgmax
chosen according to the mean value ofe fits the simulation
results equally well.

Another result that can be obtained from this theoretical
treatment is the phase boundaryuAB . To this end, we make
use of Eq.~18!. By setting

Ekin
0 5

7

10
m~R1r !2ġ2~2gmax! ~27!

and

Epot
0 5mg~R1r !cos~u2gmax!, ~28!

with the values at the beginning of the motion over one ball
in the line and by using the fact that in the steady state

ġ~2gmax!5etġ~gmax!, ~29!

with

et5A1

7
@5cos2~2gmax!12#, ~30!

we obtain from Eq.~18! the starting velocityġ(2gmax) in
the steady state

ġ2~2gmax!5
20

7

g

R1r

et
2

12et
2singmaxsinu. ~31!

We now assume that the phase boundaryuAB is reached
when the moving ball arrives at the angleg52u with zero
velocity, since from there it can roll down simply by the
action of gravity, even zero starting velocity. For smaller

FIG. 12. Theoretical prediction ofv̄ ~solid lines! for e50 under
the assumptionen50 and simulation data foren50.1 and size ra-
tios F51.75 ~circles!, 2.25 ~squares!, and 3.0 ~triangles!. The
dashed and dot-dashed lines, respectively, also show the corre-
sponding simulation data foren50.5 and 0.7.
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inclination angles, the ball would roll back before reaching
this point and thus stop; for larger inclination angles it would
pass this point with some velocity and move on. From Eq.
~18! we obtain

ġ2~2gmax!5
10

7

g

R1r
@12cos~uAB2gmax!# ~32!

by settingg52uAB and ġ(2uAB)50. If the ball is in re-
gion B, the steady-state condition~31! has to be fulfilled as
well, so that from Eqs.~31! and~32! we get an equation for
uAB

2et
2

12et
2singmaxsinuAB512cos~uAB2gmax!, ~33!

which finally yields

sinuAB5
singmax

S 11et
2

12et
2D 2sin2gmax1cos2gmax

3S 11et
2

12et
2 2

2et
12et

2cosgmaxD . ~34!

Figure 13 shows a comparison of this result to simulation
data. Obviously, our theoretical result approximates the
simulation results best for largerF. For F close to 1 the
deviations get quite large, since here the assumption that the
ball loses its normal velocity in a single impact is not ful-
filled anymore as well as for largerF even foren50.1. In
any case, Eq.~34! provides a lower limit for the value of
uAB .

After the completion of this work, we became aware of
work by Anceyet al. @29# paralleling our theoretical treat-
ment. They, however, neglect the effect of the rotational ve-
locity in the impact at2gmax, though rotation is explicitly
included in their equation of motion. They thus have to in-
troduce a fitting parameter to match their curves to experi-
mental data. This is not necessary if the influence of rotation
is included in the boundary conditions of the problem, as we
have shown. We emphasize that Eqs.~19! and ~26! hold for
the instantaneousvelocity only in the case of vanishing nor-

mal restitution and perfectly rough surfaces, conditions that
are not likely to be fulfilled by any commonly used material.
However, as we have shown, themeanvelocity of the ball is
not influenced by the coefficients of restitution and friction
and thus is correctly described.

One more result can be deduced directly from our
theoretical treatment. Sinceġ;@r (F11)#21/2 and v t5(F
11)r ġ, we expectv̄ to scale withAr , i.e., to depend on the
absolutesize of the balls. Note that it does not, however,
simply scale withAF11 as well, asF also enters the
boundary conditions and thus changesġ. But, keeping the
geometry of the system~i.e.,F ande) constant, we expect a
scaling ofv̄ with Ar in our simulations.

This scaling is observed in our simulations~see Fig. 14!.
In 2D experiments, it had been observed in an experimental
setup restricted toF51 @15#; here we find it as well if we
keepF fixed at an arbitrary value. This scaling seems to be
quite universal since it was also found in 3D experiments
@30# and in the 2D stochastic model@18#.

V. SUMMARY AND DISCUSSION

We have discussed the mechanism stabilizing the motion
of a ball on an inclined line consisting of equally sized balls.
Two important results emerged from our simulations. First,
we found that the motion of a ball in the steady state is very
regular and consists of a series of small bounces oneachball
on the line, contrary to what has been assumed so far
@13,18#. In the course of these bounces the moving ball loses
all relative normal velocity with respect to this ball. This
dissipation mechanism holds both for lines with equally
spaced balls and for lines with a random spacing of balls.
Furthermore, the location of these bounces is the same on
each ball, so that a random spacing of the balls on the line
only smears out these locations a bit, but does not alter the
motion significantly. Thus the velocity of the ball in the case
of a random spacing of balls on the line can be approximated
by the motion of the ball on an ordered line with appropriate
spacing. The main reason for this regularity of the motion is
that the moving ball has to climb over the top of every ball
forming the line by a few bounces in the steady state. Since
disorder only slightly changes the height to be climbed, it has
only a small influence on the motion.

Clearly, this mechanism for keeping a constant velocity
cannot hold in three dimenions, where there are a number of

FIG. 13. Phase boundaryuAB for en50.7 ~dotted line! and
en50.1 ~dashed line! and the theoretical result from Eq.~34! for
en50.

FIG. 14. Scaling ofv̄ with r keepingF constant.r50.5 mm
(L), 1.25 mm (n), and 5 mm (s).
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ways for the ball to choose to go down the plane. The 3D
case should be ruled by a competition between stability prop-
erties of the plane and the preferential direction given by the
plane inclination and inertia of the moving ball. One might
argue that introducing stronger disorder in the 2D case, for
example, by using polydisperse balls on the line, would
model a longitudinal section of the plane much closer. But
this will not eliminate the strong dimensional difference be-
tween the 2D and 3D cases. In three dimenions, the moving
ball, hitting a ball on the plane a little on the side~which
would be one of the smaller balls in the 2D section!, would
be deflected towards the side, which in two dimensions is
impossible. In the constant velocity regime in two dimen-
sions on a line with size polydispersity, the moving ball will
again lock into some kind of quasiperiodic behavior for the
same reasons as explained above. The problem of having to
overcome some maximum threshold~to get out of the deep-
est valley between two balls on the line! to keep moving is
even stronger, contrary to the 3D case. There a ball, having
suffered a large impact that greatly slows it down, might still
find some way around the bump that slowed it and accelerate
until the next impact via some statically unstable path. Thus
the motion in three dimensions is expected to be far more
irregular than can be modeled in two dimensions. Future
simulations in three dimensions will have to show where
these differences originate and what the stabilizing mecha-
nism consists of in this case. A stochastic model for the 2D
case@18,24# nevertheless showed a viscous friction force,
i.e., a linear dependence ofv̄ on sinu. This might be due to
the fact that the randomness introduced there in the choice of
the next impact captures the randomness of the ‘‘real’’ two-
dimensional plane. However, this question can only be an-
swered ultimately by 3D simulations.

The second important result is that material properties
such as the normal coefficient of restitutionen and the Cou-
lomb friction coefficientm hardly influence the mean veloc-
ity v̄ in the steady state. From this result and the knowledge
of the mechanism stabilizing the motion of the ball in two
dimensions, we were able to predictv̄ theoretically under the
assumption of completely inelastic collisions. Only geo-
metrical considerations sufficed for this treatment and gave a
very good approximation to our simulation results. The re-
sults in this extreme case enabled us to derive a lower limit
for the phase boundaryuAB , which for largeF gives a good
approximation ofuAB regardless of the value of the coeffi-
cient of restitution. This result should be relevant to the prob-
lem of segregation in the flow on inclined planes or in rotat-
ing drums.

Though we have made significant progress in understand-
ing the stabilizing mechanism by which the ball keeps its
constant velocity in two dimensions, a few open questions
remain. Due to the strong nonlinearity of the problem~com-
putation of successive impact angles, velocities, etc., from
the equations of motion would require the solution of a
fourth-order polynomial!, a direct iteration of the equations
of motions as foren50 is very cumbersome, though in prin-
ciple possible, in the case of nonvanishingen . Since the

phase boundaryuBC , which separates steady motion of the
ball from the accelerating regime, depends onen , it cannot
be derived directly from our theoretical treatment. The most
obvious simplification one might introduce, namely, ignoring
the structure of the plane in the computation of the next
impact, is out of the question since we have found this struc-
ture to be essential for the stabilizing mechanism. The prob-
lem seems to be related to the classical problem of a ball
bouncing on a vibrating plate@31#, which lately has been
discussed for the case of a partially inelastic ball@32#. In the
case of finite restitution, it was found that neglecting the
motion of the vibrating plate can lead to erroneous results,
such as the observation of ‘‘chaos’’ in a region of phase
space where a more exact treatment shows the existence of
eventually periodic orbits. Unfortunately, even this simple
one-dimensional problem can only be solved by approxima-
tions in the extreme casesen!1 anden→1, so it is by no
means obvious how to relate these results to our problem,
since for these extreme cases, we already have solved the
problem.~The caseen→1 is trivial since there regionB of
the phase diagram vanishes.!

So for the 2D case, the remaining open questions are the
following. So far, we do not understand well how the ball
slows down to its stable velocity when it is launched on the
plane with a much higher initial velocity or why it acceler-
ates as soon as it bounces only approximately once per ball
on the line. In addition, the questions of whether in the
bouncing region a steady state is reached as well, as has been
suggested before@13#, and what the characteristics of this
steady state are are of interest. Does the ball really move in a
‘‘chaotic’’ way in the bouncing regime, as is suspected@13#,
or might an eventually periodic motion exist as in the case of
the ball on the vibrating plate, which due to the long tran-
sient so far could not be observed?

Although many of the interesting features of granular flow
come about by thecollectivebehavior and the interaction of
many particles, we have shown that even the elementary pro-
cesses involving only a single particle moving in a dissipa-
tive but fixed environment can offer insight and present new
questions. One of these questions, which is also of relevance
to granular flows in general, is that of dimensionality. It has
always been implicitly assumed that two-dimensional model
systems are an adequate tool to study granular flows in gen-
eral, i.e., that the qualitative behavior will not be different in
three dimensions. Our results show that even though this is
probably true for behaviorin the bulk, where grain motion is
very confined, care has to be taken in relating the behavior
on free surfaces in two dimensions to that in three dimen-
sions.
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