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Collision-induced friction in the motion of a single particle on a bumpy inclined line
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By means of molecular-dynamics simulations, we investigate the elementary process of avalanches and size
segregation by surface flow in two dimensions: a single ball confined to moving along an inclined line
consisting of balls. The global characteristics of the motion depend strongly on the size of the moving ball
relative to the size of the balls on the line, as well as the distribution of the balls on the line. We find that in
the steady state the friction force acting on the ball is independent of material properties such as the Coulomb
friction coefficient and the coefficient of restitution. Contrary to previous notions about the details of the
motion, we find that it is very regular and consists of many small bounces on each ball on the line. As a result
of this regularity, introducing a random spacing between the balls on the line has mainly the same influence as
a regular spacing of adequate length. The insensitivity of the steady-state velocity to material properties and to
the detailed arrangement of the balls on the line allows for an analytical estimation of the mean velocity that
fits the simulation results very well. We find that results from the two-dimensional case can probably not be
transferred to the three-dimensional case of a ball moving on a rough inclined plane as easily as has been
suggested previouslyS1063-651X%96)00912-9

PACS numbeps): 46.90+s, 07.05.Tp, 46.30.Pa, 83.70.Fn

[. INTRODUCTION In order to investigate the dynamical situation, we follow
the course taken up by Riguidet al. [11-13 in their ex-
The flow of granular materials has been studied extenperimental studies. We consider the elementary process of an
sively both experimentally and theoretically due to its ubig-avalanche: a single ball of radi&smoving down an inclined
uity in nature and its industrial importance. Neverthelessplane onto which other balls of radiusare glued. This fixes
many properties of granular flow are still poorly understood.the roughness of the surface. Such a system has been inves-
Here we deal with a special case of granular flow, namelytigated experimentally and numerically in three dimensions
that along an inclined rough surface. Examples are flow iffi.€., for a ball moving on a plang11,12,14 and in two
inclined chute$1] and all kinds of avalanche processes, suctdimensiongfor a ball moving on a line of bal)§13,15. The
as rockslide$2], which involve segregatiotknown as “in- ~ simulations in three dimensions were restricted to the deter-
verse grading” to geologistsan important phenomenon of- Mmination of the static angle of stability for a ball resting on
ten encountered in granular materigd. In rotating drums, the plane, whereas all experiments and the simulations on the
avalanche processes are the motor of size segreddtiof. line also dealt with the dynamical situation of a ball that
Segregation in surface flow is strongly related to the questiogtarts on the plane with some initial velocity, which is the
of stability of granular flow on rough surfaces, i.e., to thesituation we are interested in.
determination of the limiting conditions for the existence ofa In all cases, three types of motion could be observed,
steady state where the flow is neither stopped nor acceleflepending on the size ratid =R/r and on the inclination
ated. The rougher the surface encountered by the movingngle# of the plane. These results could be summed up in a
particles, the slower they flow, and they may even come to &phase diagram”(typical for both the plane and lingfor
stop. Thus the larger the flowing particles are compared tavhich we will later give an example from our simulations.
the roughness or bumpiness of the surface on which theyhe three types of motion observable in experiments and
flow, the farther they should travel and accumulétethe  Ssimulations are characterized in the following way. In regime
case of flow on a sand heagt the bottom of the slope. A, the ball gets trapped on the plane independently of the
The threshold for the onset of granular shear flows and th#itial velocity with which it is launched onto it. In regime
limiting conditions for which a stable flowi.e., a steady B, it reaches a constant average velocityn the direction
state still exists are insufficiently understood and hard toalong the plane. In regim€, it accelerates throughout the
determine in realistic situatiori8]. In particular, the hyster- whole length(2 m in the experimenjsof the plane, accom-
etic properties of granular materials, manifesting themselveganied by visible jumps. In the constant velocity regime, the
for example, in the difference between the static and dynamimean velocityy was found to be proportional & “siné in
cal angle of repose of sandpilE%], complicate the situation. three dimensions, with an exponeat~1.3 [11,12,14,
Though the static threshold for the onset of motion on awhereas in two dimensions? depended linearly on sih
rough plang(i.e., the tilt of the surface large enough to set a[15,16. In two dimensions, no simple power law could be
resting mass of granular material in motidms been quite found for thed dependence of the mean velocity. The rela-
thoroughly investigated in experiments and computer simution v?~sind was already derived using very general as-
lations[10,11], the dynamical case, i.e., the stability of the sumptions by Bagnold for flow of many particles on an in-
flow, is still poorly understood. clined plane [17], but no assumption about the
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dimensionality of the system was made there. F =F.n+F.s 3)
An obvious difference between the two-dimensiof2i) veen s

and 3D case is the fact that in three dimensions, the particlgnere

moving down the plane will be deflected in the direction

perpendicular to the plane inclination either by rolling down Fo=—ké—yok ()
the crooked valleys formed by the balls on the plane or by " " s
obliquely impacting a sphere on the plane. We will return to
the importance of this possibility, which is absent from the

simulations we present here, after having discussed the dﬁere denotes the Coulomb friction coefficient. The rela-
tails of the motion of the ball moving down the line. Re- . K : . o
gye normal velocityv, and the relative shear velocityg

Fs:_min(|'ysvs|’|ﬂ|:n|)sgr(vs)- (5

cently, a 2D stochastic model has been proposed that repr e., the relative velocity of the surfaces at the point of con-
duces the angle dependence of the velocity in thre €., . y P
ach are defined as

dimensions, but gives a different exponenf18].
Here we discuss the mechanism by which the ball keeps a

constant velocity on the inclingishe and how, from the un- vp=(vz=vy)-N, (6)
derstanding of this mechanism, the transition to the stopping o
and accelerating regime can be explained. We will show that vs=(v2— V1) St wR;+ wyRs. (7)

the 2D case igjualitatively different from the 3D case, i.e.,
that the effect of disorder on the plane cannot be modeled by A number of different force laws is commonly used in
disorder on a line. Possible reasons for the success and tMD simulations of granular materials; a discussion of their
adequateness of the 2D stochastic model of Ref] in de-  properties can be found if21]. Our choice ofF, corre-
scribing the 3D case are discussed. sponds to a simple linear spring dashpot; the tangential force
The outline of the paper is as follows. After presentingF is the Coulomb friction law for sliding friction, which was
our simulation method in Sec. I, we will show in Sec. Ill regularized for smalb to avoid the discontinuity of the
that the simulations reproduce experimentally observed maaoulomb law atv =0. The tangential damping constapt
roscopic behavior, which we will discuss qualitatively. We should have a sufficiently high value such that the case
then proceed to a detailed analysis of the microscopic propF = — y. occurs only for very smalbs. Only then does
erties of the motion and give an explanation of the mechathe interpretation of ; as a mere regularization of Coulomb
nism stabilizing the motion of the ball in the two- friction hold. This force law has the advantage of holding
dimensional case. The influence of material properties on thequally well in free impacts of spherg®1,22 and in long-
motion is investigated. On the basis of our simulation resultsjasting contact§23] if the particles can be considered as
we present in Sec. IV a simplified model for the motion of rough hard sphereé.e., if tangential elasticity can be ne-
the ball that allows the analytical derivation of the meanglected. It also gives a velocity-dependent coefficient of tan-
velocity in the two-dimensional case. The results of thisgential restitution, a feature found to be important in a sto-
model agree with the simulation results. Possible reasons f@hastic model of the situatiori8,24.
the difference between the two-dimensional and the three- Throughout our simulations we used the parameters

dimensional system are discussed. k,=2x10° N/m, ys=100 kg/s, x=0.13,r=5 mm, and
M=27R3p for the mass of the rolling ball witp=7.8
Il. SIMULATION METHOD g/cnt. The values of these parameters were chosen to match

the steel balls used ifl3,16]; the choice ofk, leads to a

We model the 2D case by the molecular-dynani®) . jision time of the order of 10° s, which is a typical value
technigue[19], which was introduced to the simulation of for steel balls of this size. The value of is high enough

granular mgterials. by (.?undall gnd Stra[ﬂ@]’. The MD tech-  guch thatF is reasonably close to the exact Coulomb fric-
nique consists of time-integrating Newton's equations of Mmoo |aw in the sense explained above. The dampingis

t?on fo_r a system of gra_ins stgrting from a giyen in_itial €ON” fetermined by fixing the normal coefficient of restitution
figuration. Since our simulations are two dimensional, the i

ins h onlv three dearees of freedom. two translationaf” —v!/v!, defined by the ratio of final and initial normal
grains have only 9 ' Velocities. Unless stated otherwise, the results presented in

one Eotational. Two grains of radR;, positionsr;, veloci-  gec. || were obtained using,=0.7 and the above-
ties vj, and angular velocities); (i=1,2) are in contact mentioned parameters. The influence of the material param-
when their(virtual) overlapé= max(OR,;+R,—|r,—r;|) is  eterse, and u on the behavior of the system will be dis-
larger than zerg“soft” grains). Two unit vectorsn ands ~ cussed later. The only external force acting on the ball is

are used to decompose the forces and velocities into norm8favity; the gravitational acceleration in they) direction is
and shear components given by gsind (—gcosf). The integration method we em-

ploy is a constant-time-step fifth-order predictor-corrector
method[19].

—, (1) Figure 1 shows a schematic drawing of the ball on the

ro—ral line. The spacing between two balls fixed on the line is

2er, wheree is a number that in the disordered case is cho-

s=((n)y,—(N)y). (2)  sen uniformly distributed in the intervg0,e.,]. Theimpact
angle y is defined as the angle enclosed by the line joining
The forces between grains are then given by the centers of the impacting balls and the normal to the

Fo—rg

n=
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gsin @ ball for various® and equal spacing of balls on the line with

e=0 as obtained from simulations using the above-
mentioned parameters. For the case0, experimental data
goosd are available(though only for size ratios<2.0) [13,16].
Our stable mean velocities are of the same order of magni-
tude, but in the simulations the range of inclination angles
for which v is well defined, i.e., a steady state is reached, is
’ a bit narrower than in the experiments. This might be due to
the difference in the experimental setup. There, a ball moved
- 2er - o down a line of balls sitting in a V-shaped groove, and it is to
be expected that contact with the groove walls influenced the

motion as an additional source of dissipation due to friction
and collisions with the walls, but it is unclear how strong this
FIG. 1. Schematic drawing of the ball on the line. influence was. For a direct comparison of simulation and
experiment, it would be desirable that a “more” two-
plane. It is taken to be negative when the ball collides withdimensional experiment be done, such as, for example, a ball
the uphill facing side of a ball on the plane, positive on themoving down a row of cylinders, to rule out these boundary

downhill side. effects.
For angles lower than the one for which the smallest
IIl. SIMULATION RESULTS steady-state velocity is reached for a givnthe ball loses
all the initial velocity it had and very quickly stops, usually
A. Global characteristics of the motion after passing only very few balls on the lif@hich defines

In all simulations presented here, the ball was launched€9ionA of the phase diagramWe will denote this mini-
onto the line with a rather high velocity, in the x direction ~Mum angle, for which a steady state with O still exists, by
and quite lowv, . If the inclination angled and size ratio ~ fas(®). This defines the phase boundary between regions
®=R/r are in a suitable range, the moving ball veryA andB. o N _
quickly, usually after passing only a few balls on the line, Al velocity curves in Flg. 2 exhibit a sudden increase of
reaches a steady state with well-defined mean velocities if {0 & value where it remains roughly constant. This sudden
thex andy directions. Clearly, the average ougyis zeroin ~ INCrease has also been observed in experimgis For
our problem, so the only interestingean velocity is the angles smaller than the one where this _happens, the velocity
average ovev,, which we denote by. To obtain this mean of the ball s_hgvs only very small fluctuzi_thns and the steady-
velocity, we first average over a certain number of time step§tate velocity does not depend on the initial velocity of the
(usually 500. This value is large enough to average out thePall. At the inclination angle where the velocity suddenly
comparably large fluctuations occurring during collisions,Sh0ots up, the behavior changes qualitatively. The fluctua-
while it is still so small that the ball moves only a very short tions ofv, increase significantly and the behavior of the ball
distance(much less than the radius of the balls on the)line "oW depends on the initial velocity. Depending on the start-
during this time. This averaged value clearly still gives aing Velocity, the ball can acceleratesually if the starting
fluctuating velocity, but the fluctuations are very small andvelocity is larger than the stable mean velogiand start to

v, the mean value of these averaged velocities, is well del!Mp Visibly, or it can reach a constant velociiy released
fined. with an initial velocity smaller than the stabilein this re-

We investigated the motion of the ball both on lines with 9ion). However, even when the ball does not accelerate, in
equally spaced balls and on lines with randomly spacedhis regionv can depend somewhat on the initial velocity.
balls. We found that the essential features of the motion ar¥/e thus denote the angle at which the sudden increase takes

alike in both cases. Figure 2 shows the velocity of the rollingPlace by#sc(®) since it defines the upper boundary of the
constant velocity regioB independently of the initial veloc-

0.3 ity of the ball.
If 0 increases even more, the ball accelerates and starts to
jump significantly(the length and height of the jumps reach

02} i a few ball diameteps We did not investigate this jumping
motion any further, for the following two reasons. In the
simulations the ball accelerated up to 50 m/s and more,

01} g which is a velocity the ball would never reach in experiments
due to air resistance. Thus the question of whether the ball in

the jumping regime can reach a steady state only due to
collisions with the plane will not be discussed here, even
though it is of theoretical interest. The second reason is that
for grazing impacts at high velocities, an artifact of constant-
time-step algorithms, the so-called brake failure eff@5]

FIG. 2. Dependence of the mean veloaitpn the inclination of ~May set in, which leads to anomalous dissipation of energy.
the line for various size ratiosb: ®=1.5 (circley, ®=2.0 Its onset can be shifted to higher velocities by increasing the
(squarey ®=2.5 (triangles, and® = 3.0 (stars. spring constank,, i.e., the stiffness of the balls. This, how-

v (m/s)

0.0 e .
0.00 0.05 0.10 0.15 0.20

sin6
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FIG. 4. Phase diagram fa,=0.7 and various spacings of the
0.04 - | balls on the line: balls equally spaced wigh=0 (solid line) and
o (b) €=0.2 (dashed ling and balls disordered witte ,,=0.2 (dot-
NE 003 | | 4 dashed ling
R iaal 1 e=0 for various size ratios and Fig(i illustrates the in-
2 oot | 1 fluence of disorder on the velocity of a ball of size ratio
' $=2.25.
0.00 . L L . Figure 3b) demonstrates how the velocity of the ball is
0.00 0.05 0.10 0.15 0.20 affected by the introduction of disorder to the line. It shows

sinf thatv on the disordered line witl,=0.2 can be approxi-

o mated by the velocity on a line with equally spaced balls and
FIG. 3. Dependence ofu(-v,)® on the inclination of the line 3 spacinge=0.1, corresponding to the mean value of the
for (a) the same parameters as Fig. 2 @ndvarious spacings of the  gisordered case. It also shows titgi-(®) depends on both
balls on the line ¢ =2.25): balls equally spaced wig=0 (stars, ¢ and the arrangement of the balls on the line, whereas the
€=0.1 (triangles, and e=0.2 (circles and balls disordered with maximumu only seems to depend oh.
€ max=0.2 (Squares In Fig. 4 we plot the corresponding phase diagram for
three cases: two cases for a line with balls equally spaced,
ever, decreases the time step, thus increasing the simulatigtith e=0 ande= 0.2, and the third for a disordered line with
time tremendously. The constant-time-step algorithm therx, . =0.2. The lines denote the phase boundaries given by
becomes a very ineffective way of simulating the motion,the anglesfag(®) and 6gc(P) defined previously. Obvi-
since the ball spends most of its time in free flight, where ausly, the introduction of disorder has the same effect on the
time step small enough to integrate collisions correctly aanhase boundarAB as the introduction of an equal spacing
to avoid spurious effects is essentially a waste of computaof balls with €= ema. This is understandable; the stopping
tion time. In this regime, event-drivefED) simulations  of a ball should be ruled by the deepest “traps” into which it
would be more appropriate, which is why we will not discussmight fall. The boundanBC rather seems to be determined
the motion in the “high-bounce” regime. One might argue by the mean spacing of balls since in the disordered case it
that since the ball moves down the line in a series offalls somewhere between the two extreme cases of an or-
bounces, an ED algorithm might in any case be a more effigered array withe=0 ande= €.
cient and appropriate way to simulate the motion. As we will
see later, this is not the case, as both short- and long-lasting
contacts occur, the latter of which are not treatable by an ED B. Detailed dynamics of the motion
algorithm in a straightforward wa}26].
The velocity curves obtained from experiments as well ag,
from simulations suggest the functional form

In order to investigate the mechanism by which the ball
aintains a constant velocity in regidy we have to look
into the details of the motion. Certainly, distributions of the

v_=v0(d>)+f(q))\/m ®) impact angley, oj times of flight between impacts, or of the

impact velocityv' would be of interest. One might ask as

well if there are correlations between impacts at certain
for a fixed value of in regionB. All curves start at a certain angles and the corresponding impact velocities or between
offset velocity vy, which seems to depend slightly ab.  the time of flight after an impact and the corresponding im-
f(®) denotes 4gstill unknown scaling function, which, un- pact angle. Actually, these correlations provide even more
like in three dimensions, does not seem to be a simple powetetailed information; for this reason we will examine them
law. We thus plofv—vo(®)]? in Fig. 3, wherevy(P) is  first. We will first discuss the ordered case of a line with no
obtained by fitting a square root tqsing). vo(P) typically  spacing between the balls, i.e., withk=0.

is of the order of 4 cm/s. The error bars give the variance of In Fig. 5 we plot the velocity of the ball right before an
the averaged velocities, averages the plotted value af  impact as a function of the corresponding impact angle
itself) over a number of simulation runs with different start- Each dot corresponds to a collision. We chose to plot the
ing velocities. Figure @ shows velocities in the case normal velocityv, and the tangentiaranslational velocity
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0.3 : i . . impact angledi.e., hitting on the uphill side of a line ball
AR and get smallefand eventually very close to zgrwith in-
@ 02 ' A creasing impact angles. The second observation helps to ex-
£ plain the correlations and reveals the reasons for the regular-
-~ 0ir ity of the motion.
= 00} Consider a ball that has just arrived at the maximum pos-
e f o, sible positive impact angle,.x On a certain ball on the line,
_:: 01t - say ball numbek. The value ofy,,,, is given by the geom-
0.2 o . . etry and defined as
—025 -0.15 -0.05 005 0.15
y l+e
Ymax= AICSI . 9)

FIG. 5. Correlation of impact velocities and impact angjen
radiansg for ®=4, sin=0.05, ande=0. The upper points corre-
spond to the relative translational tangential velogify: v - s, the
lower ones to the relative normal velocity, .

From Fig. 5 we see that ay,.x the moving ball has lost
nearly all normal velocity with respect to bdil i.e., it is
rolling or sliding down the lower part of the “downhill side”
of the corresponding ball on the line. Even though the total

V=0 -$ rather thar, andv,, as they provide more infor- shear velocityv ¢ at the point of contact is quite smdthe

mation on the mechanisms involved. Since dissipation takegaII rolls, thus. rotationgl velocity is opposed to the transla-
place only through the normal velocifgissipation due to tional t_angentlal vek_mty anc_j nea»rly» Compensates tln.e
F, is negligible, as we will see latgrthe evolution of this translational tangential velocity,=v -s, which we plot in
quantity may explain the mechanism of energy loss mainFig. 5, is quite largéclose touv for larger ®). Immediately
taining the steady state. Singgis the velocity component of  &fter having reachegiy,, on ballk, the moving ball impacts
the motion of the center of mass of the ball along the bumpéhe next ballk+1, at —yma,, Where a large part of this
of the surface, it reflects how this bumpiness is felt. It isPreviously tangential V§|00|ty is now normal velocity, as the
obvious that there is a strong correlation between the impadtirection of the vecton connecting the centers of the im-
angles and the corresponding impact velocities. The times Qacting balls with respect to has changed. The ball thus
flight between impacts and corresponding previous impacets thrown up again and manages to reach the downhill side
angles are equally strongly correlatege Fig. . From both  of ball k+ 1 after a few jumps. The comparably high normal
Figs. 5 gnd 6 it is obvious that _the ball moves_down the "'?B\/elocity of the ball at— y,,a is lost in two ways in crossing
in a series of bounces. There is even a certain range of iny fixed ball: most is lost by dissipation due to impacts, but
pact angles that are never hit. In addition, we can deducgartly it is converted into tangential velocity by the increas-
from Fig. 6 that the typical times of flight between impactsing obliqueness of successive impacts at positiven the
correspond to a distance of less than 3 mm, which is smallggrocess of bouncing over the top of bialt 1 on the line, the
than the radius of the balls constituting the line. So themoving ball loses nearly all of its normal velocity, so that it
bounces the ball undergoes cannot be very high or far anggain reachesy.« With nearly only tangential velocity.
t_he bouncing ball collides with every ball on the line severalThese steps repeat themselves over and over again while the
times. ) ball moves down the plane, thus retaining a constant mean
~ How can these results be understood? From Fig. 5 tWQe|ocity. Note that strong geometrical constraints prevent the
important points can be extracted. First, we see that at certaigy)| from rolling down the line without ever bouncing.
impact anglesy, the moving ball is likely to hit the ball on \yhenever the moving ball rolls down the downhill side of a
the line with a well-defined corresponding normal velocity py4| k, it is thrown onto the uphill side of bak+1 with
vy, which leads to an equally well-defined time of fligsee  gnsiderable normal velocity with respect to bl 1 as a
Fig. 6). Second, the normal velocities are largest for negativgegit of the change in the geometry. To remain in contact
with ball k+1, the moving ball would have to lose a very

0.3 T T substantial amount of this normal velocity in a single impact,
| or it would jump up. Persistent rolling thus is only possible
T e, in the case of vanishing normal restitution. Rolling on part of
0.1 £ each ball is possible, however, as we will see in a moment.
- # In order to describe things more quantitatively, we take a
o1 e look at the distribution of impact angles. Figur@ygives an
e example for an angle of inclination in the middle of region
S B of the phase diagram fab =2.5. The distribution exhibits
03 . . clear peaks fory<<0. As vy increases, the peaks broaden
0.00 0.01 0.02 somewhat and approach each other until they are nearly in-
dt (s) distinguishable in the histogram, although there still is struc-

ture in the correlation plots. For plane inclinations closer to

FIG. 6. Correlation of the time of flight after an impact at angle fag than to fgc, the distribution, like in Fig. @), even

v (in radian$ and corresponding previous impact anglde pa-

rameters are the same as in Fig. 4

breaks off at a value< y,,, indicating the start of a long-
lasting contact. Here the ball has lost so much of its normal
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FIG. 7. Distribution of impact angleén radiang for ®=2.5, ’ ' Y' ' '

e€=0, and(a) sind=0.057,(b) sind=0.075,(c) sing=0.091, andd)

sing=0.103. ] o ) )
FIG. 9. Correlation of successive impact angliesradians for

. . . ®=2.25 and sif=0.094. (a) Balls on the line regularly spaced
velocity in impacts it suffered on crossing over the top of 8(¢=0) and(b) balls on the line disordered witt,,=0.2.

ball on the line that it finally starts to roll over part of this

ball. This rolling motion can even start while the moving ball accelerate as long as its starting velocity is only a little
is still on the uphill facing side of the fixed ball, though this higher than its stable mean velocitthis is the region be-
takes place only very close #)g. All these impactendat yc_)nd the transition from linear to more irregular behavior in
Ymax» Which leads to the very pronounced peak-efya,.  9- 2- _

Integrating the distribution over negative and positive angles, Figures Tb)—7(d) shows how the motion of the ball

respectively, yields the result that there are actually mor%h?ngez qualitaltively g T'T)EI}G values g\re tlz_;1I<|en ablittle
impacts for positive than for negative elow (b), as close as possible i@), and a little above

When ¢ is increased, the peaks for negatiyeexcept the ~ ?8c (d). The heretofore clearly defined peak 8y, broad-
one at— y,., move towards zero, finally disappearing into ens considerably and even seems to develop a small side
Amax T P T ) peak as reached)g. The qualitative change of the behav-
the continuous d|§tr|b_ut|on for positive (see Fig. & At a ._jor of the ball can also be observed in the velocities. In
large enough inclination, they get visibly broader, showing,jcyjar, in the angle region where the velocity curve flat-
that the velocity atyma is now no longer as sharply defined yong out again, an intermittent behavior of the ball can be
as before, probably due to the fact that not all the normappserved: it will accelerate a little, even start to jump a little,
velocity can be lost on only one ball. Still, the ball does notpt then suddenly slow down again. The mean velocity in
this case is determined by how fast the ball is accelerated and
slowed down, respectively. The same intermittent behavior
] of the ball shortly before passing from motion with a mean
constant velocity to a jumping regime has been observed in
] 3D experiment§16] and in a stochastic model for the 2D
case[18].
While the intermittent behavior marks the transition from
1 regionB to regionC in the phase diagram, stopping of the
ball takes place when the typical tangential velocityygky
does not convert into enough normal velocity -aty,,,, t0

-0.3
0.03

0.05

0.07
sin®

0.09

carry the ball over the top of the next ball in the line in a few
jumps, or at least up to a point where the remaining tangen-
tial velocity suffices to make it roll over the top of this ball.
In regimeB, the motion is characterized not only by typical

FIG. 8. Location of the peaks in the distribution of impact iImpact anglesy, but also by a very strong correlation of
angles(in radiang for ® =2.25. The error bars denote the width of successive impact angles. In Fig. 9 we pjat,. ;, the impact
the peak. The solid, dotted, dashed, long-dashed, and dot-dashafigle for impacih+1 as a function of the previous impact
lines denote, respectively, the first, second, third, fourth, and fiftrangle y,,. Even when introducing a random spacing of balls
distinguishable peak, excluding the one-ay .

on the line, the strong correlation remains. This observation
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FIG. 10. Distribution of impact angleqin radiang for
b =2.25, sin9=0..088, and varjous spacings of the balls on the line: FIG. 11. (a) Dependence of on the dissipation fob=2.25
(@ regul_ar spacinge=0; (b) dlsordered_llnef max=0.2; (C) regu- and e=0: e,=0.4 (0), 0.5 (), 0.6 (0 ), and 0.8 (). (b) De-
lar spacing,e=0.2; and(d) regular spacinge=0.1. pendence ofv and wR on the friction coefficientu: w= 0.1

leads us to the discussion of the behavior of the moving baf©): 0-3 @), 0.5 (¢), 0.7 (&), and 1.0 §).

on a disordered line. The phase diagram already suggests ) ]
that introducing disorder has a similar influence on the moWwe now have to ask how much this mechanism and the glo-

tion of the ball as the introduction of a regular spacing. Inbal results such as are influenced by material properties.
both cases, the region of stable motion in the phase diagrarhhe material properties incorporated in our simulations are
shifts to larger® and 6. Plotting the distribution of impact the coefficient of normal restitutiog, and the friction coef-
angles for the cases displayed in Figh)2shows the effect of ficient w. We will show in this subsection that their influence
disorder(see Fig. 10 onv and the mean rotational velocity is very small.

We checked that this regularity in the case of a disordered Experiments in three dimensions already indicate that the
line is not a finite-size effect. The angle distributions do notcharacteristics of the motion are hardly influenced by mate-
change when the size of the system is increased. From Figia| propertie§14,27. Rolling steel, glass, and plastic balls
;O it can be seen that thg distributions fo'r thg impact anglegown the plane gives nearly the same velocity, though for
in the disordered case lie between the__llmltlng cased) plastic (which has the lowest, and largesi) the B region
and e=0.2 of an ordered line. In addition, the peaks for qf the phase diagram is found to be somewhat extended. Our
€=0.1 correspond to the center of the peaks in the disorg;m ations in two dimensions indeed show that the mean
r\?elocityﬁs nearly independent of bo#y, and . Figure 11
Y demonstrates this for the case of a ball of size ratio
®=2.25. Figure 1(a) shows the velocities for varying nor-

casee=0 lies in the fact that here the velocity is alread
quite high[see Fig. #b)]. We interpret the results of the
disordered case in the following way. The motion of the ball . S
is influenced mainly by two factors: the minimum and maxi- maj coefficient of resntutpren. It can clearly be seen that,
mum spacing of balls on the line. If the ball is to keep its € influences the phase diagram i.e., the extension of region
mean velocity, without being stopped and without being acB, but has only a very small influence on Thoughf,g is
celerated, the velocity has to have a value that enables it taardly affected bye, (except for very smalld), fgc moves
get out of the “deepest valleys” existing between two ballsto larger inclination angleg with decreasinge,. But e,
(given byemay, but still is low enough that in all casésven  influencesuv slightly in a direction that is contrary to what
in those wheree=0) most of the normal velocity is dissi- one would expect intuitively. Increasing the dissipation leads
pated on crossing over the corresponding ball, so that &b a slight increase in the velocity. We have found no expla-
vmax Of this ball only tangential velocity is left. The varia- nation for this so far. We have, however, understood the
tions in this tangential velocity are so small that they onlyrelative insensitivity ofv to e,,.
broaden the peaks for the impact angles, but do not lead to a The reason for the small influence &f is essentially the
qualitativechange of the motion of the ball. regularity of the motion. As shown in the Sec. Ill B, the ball
moves over each line ball in a succession of bounces, in the
course of which it loses all or most of its relative normal
Having uncovered the mechanism by which the ballvelocity with respect to this line balk,, mainly determines
moves down the line and keeps a constant average velocithpw many bounces are necessary to achieve this. As long as

C. Influence of material properties on the motion
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the moving ball has only a negligible amount of normal ve-locity while the rotational velocity remains unchanged. The
locity left as it reache%/,,.x, it SeeMS to be unimportant for moving ball has thus gained excess shear velocity, which is
the tangential velocity at this point how many impacts wereconverted nearly completely into rotation in the next impact,
needed to lose the normal velocity the ball had-ag, .. if it is small enough. This is usually the case in the steady
For the phase boundaB/C, the value ofe, is important.  state, where distances covered between bounces are small.
Since we found that the motion of the ball starts to become
unstable when the motion is no longer regular, we expect the;, THEORETICAL MODEL FOR THE MEAN VELOCITY
destabilization to start when the normal velocity -atyyay _ ) o ) _
with respect to one ball cannot be lost by the timg,, is In this section, we derive by a simple analytical treat-
reached. Bug,, which determines the energy loss in a col- ment. Our simulation results play an important role here, as
lision and thus the heigtiand thereby the lengttof the next the.y show Whlch simplifications can be introduced without
jump, together withy determines how many jumps are made 10Sing essential features of the motion. o
on one line ball. It thus gives an upper limit to the maximum ~ From our results on the influence of the coefficient of
amount of energy that can be dissipated on a single line ball€stitutione, on the motion of the ball, we can deduce a very
The smallere,, the more energy is dissipated in each jumpaccurate result foo in the case of equally spaced balls on
and the more jumps are possible, as their length decreasd8€ line. Since we find that hardly depends oe, we in-
Thus 6 shifts to largerd for a given®d with decreasing Vvestigate the limiting case,=0. As we also found that, due
e, and approaches the static angle of stability, which in thd© friction, the ball is able to sustain,=0 on averagdi.e.,
2D case is given by ax. the ball would roll without slipping in the case,=0 for
We find that because the ball is allowed to rotate, thé@rgeu), we make the following assumptions. _
value of the friction coefficieni is even less important for ~ We assume that the moving ball is always in contact with
the behavior of the ball thagy, [see Fig. 10b)]. u influences the fixed ba_lls, i.e., rolls down the line without slipping.
neitherv nor the mean rotational velocity significantly. It~ Thus, at all times
also does not change the phase boundaries. The reason for

this is that for the range of considered here, the ball can be lvl=vi=v"s, (12
expected to roll without slipping most of the time indepen-
dent of u if our implementation of the tangential force law vp=0, (13
correctly reproduces Coulomb’s law for sliding friction. Let
us assume for a moment that the ball, while moving down oR=v;. (14)
the line, is always in contact with the balls on this line, - _ _
which is only possible ife,=0. It would then roll without Frorr_1 these conditions j[he equation of motion of the ball
slipping if at all y the condition|F¢<u|F,| were fulfilled. ~On a single ball on the line from-yma, to ymax can be
For a rolling sphere under the action of gra\igg], derived. The kinetic energy of the ball is
2 .. 1,1 2
|Fs|:7|9'3|, (10 Ewn=5 Mo+ 5 Jo, (15

so that the criterion fop for the ball to roll without slipping WhereJ denotes the moment of inertia of the moving par-
reads ticle, which in the case of a sphere of radiRstakes the
valueJ=ZmR. Using condition(14), we get

2
pu>tan( 6+ ). (11

o,
Ekin:]__omvt (16)

Though close toy,,. this condition is usually not fulfilled
(the smallerd, the larger the region of for which slip can  for a sphere. The potential energy depends on the location of
occup, it holds on the largest part of a ball on the line eventhe moving ball on the line ball:
for small . We would thus assume the ball on the average
to roll without slipping in the case a§,=0 even for small Epor=mg(R+r)cog y+ 6). (17
values of the friction coefficient. )

In our simulations, however, we used larger values forSincev;=(R+Tr)y, the energy balance readsenoting the
e,, such ase,=0.7 in Fig. 11b), so there the ball rather energies at the start of the motion BY,, andEy,)
bounced than rolled down the line. But the distances the ball
covers between bounces in the steady state are very small.
We find in our simulations that the ball, which we launch
onto the plane without rotational velocity, soon picks up ro- (18
tation during impacts, such that when the steady state is
reached, the rotational velocity has adjusted itself to a valu®ifferentiating with respect to time yields the equation of
that on average leads to zero relative velocity of the surface&otion for y(t)
of the moving ball and the fixed ballgexcept close to
Ymax: JUSt as would be expected from Ed.1)]. In the free
flight between collisions, the ball picks up translational ve-

EQ —1m(R+r)2'2:m (R+r)cog y+ 6)—E°
kin~ 10 Y g Y pot:

. 5.9 _ -
7—7m5m(7+9)- (19
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The completely inelastic collision at y,,,, that occurs when
the moving ball passes from one line ball to the next defines
the boundary conditions for the problem. We denote the ve-
locity of the ball atymax by vi(Ymad =v; . Since we assume
rolling without slipping, on this ball on the line we have

vi= R, (20)

with w;= w(ymad - IN the next instant, the moving ball hits
. . . _ 0.0 Il 1

the_ next ball on the_lme :_fe YVmax, With thg tange_ntlal ve 0.0 01 0.2 03 04

locity v¢(— vmay . Which with respect to this ball ifdue to sind

the change in geometry

V(= Ymax) = 0iCOY 2 Ymay) - (21) FIG. 12. Theoretical prediction af (solid lineg for e=0 under
. . the assumptior,=0 and simulation data foe,=0.1 and size ra-
In the collision that is now about to take place, the normakjos ¢ =1.75 (circles, 2.25 (squares and 3.0 (triangles. The

component dashed and dot-dashed lines, respectively, also show the corre-
. sponding simulation data fa,=0.5 and 0.7.

Un( = Ymaxd = 0iSIN(2Ymay) (22
is reduced to zero, but this is not the whole effect of thecontinue'this process.until gither the ball rolls baukich
collision. Sincev; droppedbefore the impact due to the we CO”S'deT as trapplmg)r It feaCh‘?S a stead_y state. Th_e
change in geometry, bub was left unaffected, at ., mean v_elocny in this _steady state is plotted |_n_F|g. 12, in
there is excess rotational velocity and thus excess shear vE2TParson to simulation data for various coefficients of res-
locity v,. If the frictional force is high enougkwhich we titution. Clearly, the_3|mulat|on for smadl, is closest to the
assume in this treatmenthen the shear velocity at the point theoretical curvéwhich assumes,=0), but also for higher

of contact should again be reduced to zero during the impacefn the approximation is still good.

such that tangential and rotational velocitadter the impact For the_cas&>0 Egs.(19 and(2§) yield equally good
at — sy, Which we will denote by ; andw; , respectively, results as in the case=0 presented in Fig. 12. In the case of
fulfill the condition a disordered line, an estimation ofwith the value ofy,y

chosen according to the mean valueedfits the simulation
vi=w¢R. (23)  results equally well.
Another result that can be obtained from this theoretical
During the impact at- yna the rotational and translational treatment is the phase boundatys. To this end, we make
velocities thus adjust themselves, with only negligible en-use of Eq.(18). By setting
ergy loss(friction here mainly helps to distribute the excess
rotational velocity to the translational degree of freedom, o 1 2" 2
but, as the ball can rotate freely, dissipates only very little Ekin_Em(RH) Y(= Yma (27
energy during the adjustmenBefore the adjustment of ro-
tational and translational velocities, the kinetic energy of theand
system was
Epo=Mg(R+1)cOK 6 Yy, (28)

1 2 1 2
Ein=2Mo; co§(2'yma)<)+§Jwi . (24

2 with the values at the beginning of the motion over one ball

in the line and by using the fact that in the steady state
With Egs. (16) and (23) we thus obtain from the energy

balance the condition far; (= Yinad = €Y Vimad (29)

1 1 7 with

EviZCOSZ(ZymaX)-I—EJwiz:EmeZ. (25)

1
Substitutingw; according to Eq(20), we get &= \/7[5CO§(27max)+2]: (30
vi=0; \/E[5CO§(27max)+2] (26) Wwe obtain from Eq/(18) the starting velocityy(— Ymay) in
7 the steady state

for the tangential velocity after the collision atyy.. Since - 20 g e? _
vy=(R+Tr)y, this provides the boundary condition for Eq. Y (= ¥Ymad =7 Ry retzsm')’maxsme- (3D
(19.

We obtainu numerically by starting at- yma With an - \we now assume that the phase boundégy is reached
arbitrary and very high starting velocity,, letting the sys- when the moving ball arrives at the angte= — 6 with zero
tem evolve according to Eq(l9). Whenever — y,.c IS  velocity, since from there it can roll down simply by the
reached, Eq(26) is applied and we start again @,,,. We  action of gravity, even zero starting velocity. For smaller
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FIG. 14. Scaling ofy with r keeping® constantr=0.5 mm
FIG. 13. Phase boundarg,s for ,=0.7 (dotted ling and  (©), 1.25 mm 1), and 5 mm O).
e,=0.1 (dashed ling and the theoretical result from E¢34) for
e,=0.
mal restitution and perfectly rough surfaces, conditions that
are not likely to be fulfilled by any commonly used material.
inclination angles, the ball would roll back before reachingHowever, as we have shown, threanvelocity of the ball is
this point and thus stop; for larger inclination angles it wouldnot influenced by the coefficients of restitution and friction
pass this point with some velocity and move on. From Egand thus is correctly described.
(18) we obtain One more result can be deduced directly from our
10 theoretical treatment. Since~[r(®+1)] Y2 and v,=(P
'72(_ 7ma><):7 %[1_005{ OpB— Ymax) ] (32 +1)ry, we expecb to scale With\/F, i.g., to depend on the
absolutesize of the balls. Note that it does not, however,
simply scale withy®+1 as well, as® also enters the
boundary conditions and thus changgsBut, keeping the
geometry of the systerfi.e., ® ande) constant, we expect a
scaling ofv with \r in our simulations.

by settingy=— 65 and y(— 6,g)=0. If the ball is in re-
gion B, the steady-state conditiq31) has to be fulfilled as
well, so that from Eqs(31) and(32) we get an equation for

AB This scaling is observed in our simulatiofsee Fig. 14
2et2 In 2D experiments, it had been observed in an experimental
1 5SINYmaSiNOag=1— COS Oag— Ymax) (33)  setup restricted t@ =1 [15]; here we find it as well if we
—& keep® fixed at an arbitrary value. This scaling seems to be
hich finally vield quite universal since it was also found in 3D experiments
which finally yields [30] and in the 2D stochastic modgl8].
N0 s = SiNYmax
SN0AB= T 16?2 V. SUMMARY AND DISCUSSION
——| SirPymat COS
1-€? Ymax Ymax We have discussed the mechanism stabilizing the motion

2 of a ball on an inclined line consisting of equally sized balls.
1+e _ 26 o (34) Two important results emerged from our simulations. First,
1-e 1—¢f SYmax - we found that the motion of a ball in the steady state is very

regular and consists of a series of small bouncesamtball

Figure 13 shows a comparison of this result to simulationon the line, contrary to what has been assumed so far
data. Obviously, our theoretical result approximates th€13,18. In the course of these bounces the moving ball loses
simulation results best for largeb. For ® close to 1 the all relative normal velocity with respect to this ball. This
deviations get quite large, since here the assumption that ttdissipation mechanism holds both for lines with equally
ball loses its normal velocity in a single impact is not ful- spaced balls and for lines with a random spacing of balls.
filled anymore as well as for largeb even fore,=0.1. In  Furthermore, the location of these bounces is the same on
any case, Eq(34) provides a lower limit for the value of each ball, so that a random spacing of the balls on the line
Ong - only smears out these locations a bit, but does not alter the

After the completion of this work, we became aware of motion significantly. Thus the velocity of the ball in the case
work by Anceyet al. [29] paralleling our theoretical treat- of a random spacing of balls on the line can be approximated
ment. They, however, neglect the effect of the rotational veby the motion of the ball on an ordered line with appropriate
locity in the impact at— y,,,x, though rotation is explicitly ~spacing. The main reason for this regularity of the motion is
included in their equation of motion. They thus have to in-that the moving ball has to climb over the top of every ball
troduce a fitting parameter to match their curves to experiforming the line by a few bounces in the steady state. Since
mental data. This is not necessary if the influence of rotatiomlisorder only slightly changes the height to be climbed, it has
is included in the boundary conditions of the problem, as weonly a small influence on the motion.
have shown. We emphasize that E(®) and (26) hold for Clearly, this mechanism for keeping a constant velocity
theinstantaneouselocity only in the case of vanishing nor- cannot hold in three dimenions, where there are a number of
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ways for the ball to choose to go down the plane. The 3Dphase boundaryg, which separates steady motion of the
y g o p g c - . .

case should be ruled by a competition between stability propball from the accelerating regime, dependsegn it cannot
erties of the plane and the preferential direction given by thde derived directly from our theoretical treatment. The most
plane inclination and inertia of the moving ball. One might obvious simplification one might introduce, namely, ignoring
argue that introducing stronger disorder in the 2D case, fothe structure of the plane in the computation of the next
example, by using polydisperse balls on the line, wouldmpact, is out of the question since we have found this struc-
model a longitudinal section of the plane much closer. Buture to be essential for the stabilizing mechanism. The prob-
this will not eliminate the strong dimensional difference be-1em seems to be related to the classical problem of a ball
tween the 2D and 3D cases. In three dimenions, the moving_ounc'”g on a vibrating platg31], which lately has been
ball, hitting a ball on the plane a litle on the sidehich  discussed for the case of a partially inelastic paHl. In the
would be one of the smaller balls in the 2D secijomould ~ €aS€ of finite restitution, it was found that neglecting the
be deflected towards the side, which in two dimensions idnotion of the vibrating plate can lead to erroneous results,
impossible. In the constant velocity regime in two dimen-Such as the observation of “chaos” in a region of phase
sions on a line with size polydispersity, the moving ball will SPac€ where a more exact treatment shows the existence of
again lock into some kind of quasiperiodic behavior for the€ventually periodic orbits. Unfortunately, even this simple
same reasons as explained above. The problem of having f§'€-dimensional problem can only be solved by approxima-
overcome some maximum threshdtd get out of the deep- 10NS in the extreme cases<1 ande,—1, so it is by no

est valley between two balls on the lin® keep moving is Means obvious how to relate these results to our problem,
even stronger, contrary to the 3D case. There a ball, having"C€ for these extreme cases, we already have solved the
suffered a large impact that greatly slows it down, might stillProblem.(The casee,—1 is trivial since there regios of

find some way around the bump that slowed it and acceleraf®€ phase diagram vanishes. _

until the next impact via some statically unstable path. Thus SO for the 2D case, the remaining open questions are the
the motion in three dimensions is expected to be far mordollowing. So far, we do not understand well how the ball
iregular than can be modeled in two dimensions. Futurslows down to its stable velocity when it is launched on the
simulations in three dimensions will have to show wherePlane with a much higher initial velocity or why it acceler-
these differences originate and what the stabilizing mecha@t€S as soon as it bounces only approximately once per ball
nism consists of in this case. A stochastic model for the 20PN the line. In addition, the questions of whether in the
case[18,24 nevertheless showed a viscous friction force,PoUNcing region a steady state is reached as well, as has been
i.e., a linear dependence ofon sird. This might be due to suggested beforgl 3], and what the characteristics of th|§
the fact that the randomness introduced there in the choice §f€ady state are are of interest. Does the ball really move in a
the next impact captures the randomness of the “real” two- chaotic” way in the bouncing regime, as is suspecteg],
dimensional plane. However, this question can only be an®" might an eventually periodic motion exist as in the case of

swered ultimately by 3D simulations. the ball on the vibrating plate, which due to the long tran-
The second important result is that material propertiesient So far could not be observed?
such as the normal coefficient of restitutiepand the Cou- Although many of the interesting features of granular flow

lomb friction coefficientu hardly influence the mean veloc- €OMe about by theollectivebehavior and the interaction of

ity v in the steady state. From this result and the knowledg&'@ny particles, we have shown that even the elementary pro-

of the mechanism stabilizing the motion of the ball in two C€SSes involving only a single particle moving in a dissipa-
dimensions, we were able to predictheoretically under the tive but fixed environment can offer insight and present new
assumption of completely inelastic collisions. Only geo_questlons. One of these questions, which is also of relevance

metrical considerations sufficed for this treatment and gave ¥ 9ranular flows in general, is that of dimensionality. It has

very good approximation to our simulation results. The re-always been implicitly assumed that two-dimensional model

sults in this extreme case enabled us to derive a lower limiBYStems are an adequate tool to study granular flows in gen-
for the phase boundam, which for larged gives a good eral, e, that_the qualitative behavior will not be dlfferent_ln_
approximation ofé,g regardless of the value of the coeffi- threbe gllmens?nsb (?]ur _rgsullqts ;hﬁ(W t?]at even thou?h th's IS
cient of restitution. This result should be relevant to the probpro ably true for behavian the bulk, where grain motion Is

lem of segregation in the flow on inclined planes or in rotat-€"Y confined, care has tq be ta}ken In relatlng the behaVIor
ing drums. on free surfaces in two dimensions to that in three dimen-

Though we have made significant progress in understand*°"s:
ing the stabilizing mechanism by which the ball keeps its
constant velocity in two dimensions, a few open questions
remain. Due to the strong nonlinearity of the problésom- We wish to thank D. Bideau, I. Ippolito, L. Samson, and
putation of successive impact angles, velocities, etc., frond. Schéer for very valuable discussions. This work was sup-
the equations of motion would require the solution of aported in part by the Groupement de Recherche CNRS
fourth-order polynomia| a direct iteration of the equations “Physique des Milieux Heerogenes Complexes” and by the
of motions as foe,=0 is very cumbersome, though in prin- HCM European Network “Cooperative Structures in Com-
ciple possible, in the case of nonvanishiag. Since the plex Media.”
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