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Rayleigh methods applied to electromagnetic scattering from gratings
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The application of the Rayleigh-Fourier and Rayleigh least-squares methods to reflection and transmission
of electromagnetic waves at periodic rough interfaces between general homogeneous media is considered. For
the calculation of the reflected and transmitted amplitudes, it is shown that the Rayleigh-Fourier method
converges when the Waterman-Fourier method does and is therefore not limited by the validity of the Rayleigh
hypothesis. It is also shown that the Rayleigh least-squares method applied to boundary-value problems is
numerically convergent if the solution exists uniquely. A numerical application of both methods to the case of
a sinusoidal interface between a perfectly conducting medium and a bi-isotropic medium corroborates these
results. We indicate very general conditions under which the Rayleigh-Fourier and Rayleigh least-squares
methods have the properties indicated above; they include anisotropic elastic solid media in particular.
[S1063-651%96)02811-5

PACS numbgs): 03.50.De, 42.25.Fx

I. INTRODUCTION equations solved tends to infinity. These remarkable proper-
ties hold regardless of the validity of the Rayleigh hypoth-
Among the various methods classically used to deal wittesis; however, it has been noted that, in practice, the Ray-
reflection and transmission of waves at rough interfacedeigh least-squares method is not the most efficient method
[1-3], the Rayleigh methods are particularly simple toOf computation of the scattered mode amplitudes. The
implement. They are based on the hypothesis, postulated By2yleigh-Fourier method, in which the scattered mode am-
Rayleigh[4], that the field scattered from a rough surface isPlitudes are found by projecting the boundary condition in
representable as a sum of outgoing and evanescent wavi¥ Fourier space, shows a faster convergence and gives re-
everywhere on and above the surface. The determination gfarkably good resuilt§14-16,19,2f Chesneaux and Wir-
the amplitudes of those waves is achieved numerically bhyn have found, however, that this method cannot in general
projecting the boundary conditions on a given set of basi e used to compute the near fi¢Rl]. In qddmon, Jacksgn,
functions; there are therefore as many Rayleigh methods aslnebrenner, and Ishimaii22] have carried out numerical

sets of basis functions used to project the boundary condl‘émd analytical calculations that tend to indicate that, in the

tionshon. leiah h hesi ded b h with a Dirichlet condition, the perturbation series of the
The Rayleigh hypothesis, regarded by some authors g8,y jeigh-Fourier method is identical to the perturbation se-

dubious, gave rise to a debate, some accounts of which a{g.q of the Waterman-Fourier methpi¥], which is not lim-
given by Fortuin{5] and Bolomey and Wirgifi6]. Necessary jteq py the validity of the Rayleigh hypothesis: the authors
and/or sufficient conditions of the validity of the Rayleigh ¢opjecture that this identity holds for more general boundary
hypothesis were established by Petit and Cadilfd;  conditions.
Neviere and Cadilhad8], Millar [9,10] and van den Berg  The behavior of the Rayleigh-Fourier method may seem
and Fokkemg 11,12 for extended interfaces. The case of surprising[15,16,21,22 since the convergence of the repre-
cylindrical obstacles has also been studiz8]. sentation of the scattered field does not hold in general. In
It has been found, however, that the Rayleigh-Fouriedemonstrations that parallel that of Burrows for finite ob-
method and the Rayleigh least-squares method could yielstacleq23], it has been shown in Refk24,25 for fluid and
accurate numerical results well beyond the domain of validisotropic solid media that if the Rayleigh-Fourier formalism
ity of the Rayleigh hypothesi$14—16. In the Rayleigh and the Waterman-Fourier formalism have unique solutions
least-squares method, which is applied to boundary-valua terms of thel matrix these solutions are connected by the
problems, the scattered mode amplitudes are calculated bgciprocity relationships and are therefore identis@ice the
minimizing the integrated-square error on the boundary conWaterman-Fourier solution, which is exact, verifies the reci-
dition, which is equivalent to projecting the boundary condi-procity relationships This equality may seem formal, but, as
tion expressed with the Rayleigh hypothesis on a certain sete will see, it holds in terms of numerical results if specific
of functions[17]. In the case of two-dimensional scalar dif- truncations of the equations are md@s]; this apparently
fraction from a periodic rough surface, Millgt8] has shown formal equality can also be used to show that the Waterman-
that this method leads to a sequence that uniformly conFourier and Rayleigh-Fourier perturbation ser[@2] are
verges to the exact diffracted field in any closed subset of thalentical for a large class of surfaces. Another demonstration
medium of propagation provided that the problem has af the identity of the two perturbation series for scalar dif-
unique solution; as a consequence, the numerical scatterégction and the Dirichlet problem has been proposed re-
mode amplitudes tend to their exact values as the number aently [26]. Since the Rayleigh-Fourier perturbation series

ase of diffraction of an acoustic plane wave from a surface

1063-651X/96/546)/680214)/$10.00 54 6802 © 1996 The American Physical Society



54 RAYLEIGH METHODS APPLIED TO. .. 6803

are the same as those derived from the exact Waterman- The interface conditions express the continuity of the tan-
Fourier formalism, they can be used as a computational aggential components d& andH on S,
proach; their use, along with various enhanced convergence

techniques, has turned out to be succegs|27-31. nXE"=nxE", (29
All the debate about the Rayleigh methods has so far
mainly dealt with interfaces between simple isotropic media. NXH"=nXH", (2b)

The study of periodic rough interfaces between more general . .

media has recently attracted some attention and has be#hereE~ andH™ designate the electric and magnetic fields
addressed with integral-equation meth@,33, Waterman atS above(+) and below(—) the interface. In addition, the
methods34—36, and differential methodg37]. In a recent reflected and transmitted electric and magnetic fields satisfy
article, Depine and Gigli38] pointed out the practical inter- the radiation condition at infinity.

est of Rayleigh methods in dealing with anisotropic gratings; The constitutive relationships connectiipand B to E

they showed numerically on specific problems that thes@ndH are

methods give good results well beyond the domain of valid-

ity of the Rayleigh hypothesis. The purpose of this paper is D=el).E+all)-H, (33
to demonstrate that the Rayleigh-Fourier and Rayleigh least- _ _
squares methods can indeed be adequate, regardless of the B=pBW.E+u.H, (3b)

validity of the Rayleigh hypothesis, to calculate reflection
and transmission coefficients at periodic rough interfacegvhere the superscriptsg ) correspond to the mediuin(j =1
separating general homogeneous media and, for the Rayleigh 2) and €, o), g and u)) are 3x3 matrices. The
least-squares method, to calculate the electric field at angonstitutive relationships may be frequency dependefit.
point. is assumed to have an inverg® ~ 1. For each mediur, we
The plan of the paper is as follows. In Sec. Il, we describedefine a complementary mediuf89], denotedjC, by the
the problem, our notations, and some properties of the eigerfollowing ~ constitutive  relationships: €19 ="ell),
waves and of the free-space dyadic Green’s functions of the'®)=—'80), g9 = -4 and w09=1,0 where the
Maxwell equations in general homogeneous media. In Seguperscript designates the transpose of a3matrix. The
ll, we give a justification of the use of the Rayleigh-Fourier complementary medium of mediup€ is the mediumj.
method. In Sec. IV, we demonstrate that the Rayleigh least- In a medium designated Gy the homogeneous equation
squares results obtained for boundary-value problems coror E can be written
verge to the exact results as the number of equations solved

tends to infinity. In Sec. V, we illustrate the properties of LD(E)=0, (4)
both methods with a numerical application. Section VI pre- . ) . i o
sents our conclusions. with the operatorC!”) being defined by its application to a
vector fieldV,
Il. PROBLEM DESCRIPTION LOV)=ioVXHD (V)= 0?[€).V+aD . HD(V)],
(53

We define an orthonormal badis, ,e,,e;). We consider a
periodic rough interfac8, separating two homogeneous me- DOV = (1)L -1 (VX V) — o)1 (gl.
dia, defined by the relation= f(R), whereR is the compo- HE(V)=(io) " (VXV) = p (B V).(Sb)
nent of the three-dimensional position vectan the (e;,e,)

plane andz is the coordinate of alonge;; & anda, are the  The eigenwaves are of the forw(k)exp(ik-r), wherek is a
two periods off and the reciprocal vecto®; andR; are  \ave vector. Substitution of such a field into E4) leads to
such thata -R;=2wg;;, where §; is the Kronecker delta the vector equatiol. V) (k,w)-V(k)=0, whereL" (k,w) is a
symbol(i,j=1 or 2. f is assumed to be continuous. Except3x3 matrix that depends on the mediumk, and ». We
perhaps on a discrete set of points, it is possible to define fesignate the adjoint af D (k,w) by M)(k,w); we note that

unit normaln to S pointing towards the above mediuiay,  for the values ok such that the determinant &f?)(k,w) is
medium 1 and two surface vector fieldg andt, in the plane  gqual to 0, the vectorav D(k,w)-e,, MD(k,w)-e, and

tangent toS such that(t;,t,,n) is an orthonormal basis at \ (), w)-e, are eigenvectors.

each point ofS and, in particulart; Xt,=n, t;xXn=t;, and We now give the plane-wave expansion of the free-space

nXxt;=t,. _ dyadic Green's functions. The free-space Green's vector
Boldface characters are used to designate vectors. Aflg|qs Gl

) - : ) ¢ k)(r;ro) corresponding to the problem described in
field quantities are time harmonic and classically expresseg I Ot' tf th diati diti

as complex quantities with time dependence(exmt) sup- ec. Il satisfy, apart from the radiation condition,

pressed. The electric and magnetic fidllg& andH,B (with Dr i B _

classical notationsin each medium satisfy the Maxwell £ [Gko(r,ro)]—eKoﬁ(r o) ®
equations ) ) _

where d(r —r) is the classical delta functioky,=1, 2, or 3,

and £ is the operator defined by E¢pal. G(‘O), which is
defined as a generalized function, is classically assumed to

have a sense as a vector figldhen r#r;) whose plane-
VXH=—-iwD. (1b) wave expansion can be written

VXE=iwB, (1a
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; 2 D*_ky= —LUC)*F
. [ . k)= (-K)=—k (K). (16)
GU(riro) == 2, faﬁ”*(K) " "
Ton=t Equations (16) and (12 and the equality
M

X[ VIO (~K) 1AL (K o)V (K) 1©)(—k,w)="M(k,w) imply that

X exg ik (K)- (r—rg)]d?K, 7) al’* (-K)=al?%(K) (17)
where the upper sign applies(if—z,)>0 and the lower sign and Eq.(14) leads to
applies if(z—zy)<0 (z andz, are the coordinates ofandr - i)z
alongey). Theﬁﬂ)i's are sgch that ° AP (=K, 0)= =A% (K, 0). (18)
DE: )= Equationq7) and(16)—(18) are essential to the arguments
KU* (K) =K +k)* (K) e, ® quations(7) and(16)~(18) | au

developed in this paper. It can be noted that they all stem
from Eq. (13).

We now define the unknowns of the problem. The general
expression of the free-space Green’s vector fields shows that,
in view of the linearity of the problem, reflection and
transmission atS are completely described by reflection
dition tlm[kﬁz):(K)]>0 if kglz)t(K) is not strictly real(im and transmission of two types of incident eigenwaves

designates the imaginary part of the argumesmind (5(51‘3)/_' coming (l;‘r_om medium )1 O_f _the form
+ 9k */90>0 if kD= (K) is real. deL () is the determinant  Vn, (Kind €XHikg ™ (Kinc) -r]. With such incident electric

detLO(kV*(K),w)=0, 9

wheren indicates the type of eigenwave considefee:1 or
2), K is the transverse componentlof)=(K) in the (e, ,e,)
plane,k {)*(K) is defined by Eq(9) and the radiation con-

of L0, The other elements in E¢7) are defined by fields, the reflected and transmitted electric fielf and
' - E® beyond the maximum excursions of the interface can be
Vﬁ”i(K)= M(”(kg”i(K),w)- e, (10 expressed as an expansion on two types of Bloch eigenwaves
' whose amplitudes define theT-matrix coefficients
A=K w)=<(9 de“—(])(k""))l (11) tE]ln)o(Kinc MmN » Kinc) andt%)o(Kinc MmN+ Kine),
n 1 (7k . L)
z k=kD=(K) 2
M(j)(k(j)+(K) ) E%)(r):nEl l\;\l t£1]f1)0(Kinc MN vKinc)V(r11>+(Kinc MN)
n @ ’Q(O - '
. A , X ikD+ (K. .
—all*(K)[a, VIO T (—K) IV #(K). (12 St e 1l e
2
Equation(7) is obtained by solving Eq6) in the Fourier E@(n=> > thor (Kine mn Kind V™ (Kine mn)
space and evaluating the resulting integralcﬁit)(r;ro) in n=1MN
the k, complex plane by the residue theorem. We have as- xexgdik® " (Kinemn) 1, (19b)

sumed that det(k,») has, for allK, two proper single

roots in k, with each root corresponding to a one- whereM andN are integers, the sum is over all integers, and
dimensional space of eigenvectors. Then, wkerk ) (K)

and therefore ddt’=0, the three vectors1(. g, which Kinc M= Kinet MR +NR;. (20)

are as already indicated eigenvectors in this case, are collin- For a givenK... the problem of reflection and transmis-
ear with V)*(K); the equalityM %) (—k,w)=MD(k,w), 9 inc, (N€ P

which stems from the definition of mediuj, allows us to sion at S i_s to determine thet%]'%o(_K"‘C_'\’”\‘ Kine) for all
write Eq.(12) with the scalam ()= (K) being independent of M,N,n,ng,j. In general, we are mainly interested in the val-

Ko. ues of M and N such that kY*(K.un) and
It can be verified that the definition of mediuf€ also k{2~ (K. mn) are real.
implies It can be noted that thig}) 's andt{")’s are connected by

specific relationships. Whe8 separates media 1 and 2, we
define the scattering Green’s vector fiemclko(r;ro) to be

where the superscriptdesignates the transpose of a matrix, the electric field at point due to a unit source along  at
so that pointry. WhenS separates mediaCland 2C, we designate
, , the analogous scattering Green’'s vector field by
det L9 (—k,w)=detLV(k, o). (14 Gk (riro). It can be classically shown with Green'’s theo-

rem that

LUO (=K, ) =LD(k, o), 13

As a consequence of E(l4) and the radiation condition, we

can write
G(sg,llokl(rl iT0) = Gsckyky(M03r1) (21)

k()= (—K)=—KID7(K), 15
e (7K e (K) (19 for all ko andk;, with the notationGscy = &, - Gsck,- Let

so that ro andr, be two vector points located beyond the maximum



54

excursions ofS. We proceed, as Jackson, Winebrenner, andor all | (=1 or 2, P,Q (with —M,,=P=<

Ishimaru did for scalar diffractioi22], by expressing the

incident electric field due to each unit point source with Eq.

RAYLEIGH METHODS APPLIED TO. ..

(7) as a superposition of plane waves, each of which gives

rise to a diffracted field determined by tiematrix coeffi-
cients; then, ifr, andr, are both located abovs, Eq. (21)
leads to

—alV (K AW~ (K, o)t Ky, K)
=al* (K A (K, )t (— K, = Kyn)
(22

forall K, allm,n (=1 or 2, and all integer$/ andN, which
generalizes the relationship for scalar diffraction in a simple
isotropic medium[22]. If r, is located aboveS andr; is
located belowS, Eqg. (21) leads to

al’ (K)AW ™ (K, 0)t2(K gy, K)
=ad " (Kyn) AR~ (KMN-w)tnm(B)( K, —Kmn)
(23

for all K, all m,n and all integersM andN. The subscript
(B) refers to the case of illumination & by an eigenwave
coming from medium Zsee Sec. Il B. Equations(17) and
(18) have been used to establish E(2) and (23).
Ill. RAYLEIGH-FOURIER METHOD
A. Formalism description

In the Rayleigh-Fourier method, tilematrix coefficients

are determined by formally writing the interface conditions

with the expressions(19a9 and (19b of the reflected
and transmitted electric fields in each medium and projectin
them on the sets of surface vector fields
t1exp(—iKincpq- R) andt,exp(—iKipq- R), WhereP andQ

are integers. For reasons that will appear in Sec. Ill B, weB
choose to express the Rayleigh-Fourier formalism in the cas

where S separates mediumC, located above, and medium
2C. In the case of illumination of by an eigenwave of type
ng coming from medium C, we obtain

2 Mmax Nmax
X7 (Kine,1,n0,0,0P,Q) +2 > >
M**MmaxN—meax

><t“n 'R (Kinemn - Kind X2 * (Kine,1,n,M,N,P,Q)

M max Nmax

—EE >

=1 M=—Mmax N=—Nmax
I("I2I']C R(KIHCMNIKIHC)X< ( inc,l,n,M,N,P,Q),

(249

2 Mmax Nmax
YO~ (Kine.1,n0,0,0P,Q) + E E >
- max N7 Nmax

><t<n 2 (Kinewn s Kine) Y 1C>+(K.nc,l,n,M N,P,Q)

M max Nmax
—E > 2
=1 M=—Mpax N=—Npmax

XU Kinown - Kin) Y&~ (King,1,n,M,N,P,Q)
(24b

6805
M max and
~Nma=Q=N.0, Wwhere
X(jC)t(KincvlynyManplQ)
= [ VO (K e K s
So
Xe*iKincPQ'RdzR, (25a
Y o +( inCylananNIP!Q)
J (txn)-HVIO*(K; ncMN)e " Kinun)1s
Xef'KincPQ'RdzR, (25b)
whereHV {9 (K ,oun) is defined by
HUSTVIOE (K gy e~ Kinean) 1]
= HV IO (Kipaun)e K 7, (26)

In Egs. (2538 and (25b), S, is a given unit cell ofS and
rs<=R+f(R)e;. The Rayleigh-Fourier equatiori4a and

5524b) have been truncated for numerical applications so that

hey form a linear system of(2N,,,+1)(2M ot 1) equa-
tions with 42N+ 1)(2M ot 1) unknowns. The subscript
indicates that the solution is obtained with the Rayleigh-
Fourier method and the truncation chosen.

There are as many Rayleigh-Fourier methods as possible
definitions oft; andt,. In this paper, we suppose that one
definition is chosen once and for all to implement both the
Rayleigh-Fourier method and the Waterman-Fourier method.

B. Connection between the Rayleigh-Fourier
and Waterman-Fourier numerical results

In the Appendix, we have established the Waterman-
Fourier equations in the case whe3g separating media 1
and 2, is illuminated from either medium with a transverse
incident wave vector equal te KincM Ny whereMy andN

are two given integers; it must be noted that a certain type of
truncation, depending o andN, has been applied and is
implicit in the definition of the Waterman-Fourier numerical
results(designated by the subscriy).

First we consider Eqs(A18)—(A21) written in the
case  where the incident  plane  wave
VED™ (= Kinewgng) XK ™ (= Kinwon,) 1] (=1 and
5,=0 in the Appendix In view of the type of truncation
chosen, we can express eati® ~ andY*®)~ in Eq. (A21)
with Eqgs.(249 and(24h), respectively; by doing so, we find

is
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47 choice of these media, it is of course also valid for wave
T oalT K [APT (= Kipe, )]t propagation in media 1 and 2.
way (= Kinc) Therefore the use of the Rayleigh-Fourier method isanot
Xt (=Ko, — K ) priori less justified than the use of the Waterman-Fourier
nng, Wh - Trine: - TrincMoN method and, in particular, it is not limited by the validity of
M max Nmax the Rayleigh hypothesis. Like the Waterman-Fourier
=_ z > > method, it can be regarded as a computational tool for the
=1 M'=—Mmay N'=—Npax evaluation of the T-matrix coefficients in the kind of problem
o) considered. This method has already been numerically inves-
tormR(Kinew/n Kind B9 (n,M”,N’; Mg, No) tigated by Depine and Gig[i38] in the case of a corrugated
N interface(sinusoidal or cycloidalbetween a uniaxial crystal
N 2 2’“:“ sz"x and an isotropic dielectric. They found that the Rayleigh-

Fourier method gives good results for the T-matrix coeffi-
cients well beyond the domain of validity of the Rayleigh
£(2©) Kinenn' s Kind B9~ (0", M",N":M¢,No), hypothesis, which can be explained by the arguments devel-
o R(Kinew w7 Kine oped in this section. It must be noted, however, that the

(27 Rayleigh-Fourier method has been shown to be adequate
only for the computation of the T-matrix coefficients;
Chesneaux and Wirgif21] have found it to be inadequate
for evaluating the near field in general. We confirm these
results in the numerical application of Sec. V.

n'=1 lemeax Nl:ﬁNmaX

whereB19* and B9~ are defined in the Appendix. By
taking Eqs(A18) and(A19) into account in Eq(27), we get,
With Npae>|Nol and M ,>M

—aD " (= Kinem n )AL T (= Kinom N @) We have found that, more generally, it is possible to as-
Mo 0 A 070 sociate with each Rayleigh methécharacterized by a set of
Xt(l) (—Kine,— K, ) projection basis functionsa Waterman methodcharacter-
W inc» incMgNq H . . .
ized by a set of expansion basis functiprssich that the
(= Klnc)A(l (= Kine w)tn nR(chM o Kind) equalities (28) and (29) hold. We have focused on the
, o’ .

Rayleigh-Fourier and Waterman-Fourier methods because
(28)  they are simple and frequently used.

Then we consider Eq§A18)—(A21) in the case where the IV. RAYLEIGH LEAST-SQUARES METHOD
incident plane wave is _ _
We now return to the general problem described in Sec.

V" (= Kincmon,) €XH kﬁf)“(— KinemoNg) T Il. Here S is the boundary of a semi-infinite homogeneous
medium located aboves and the electric field satisfies
(6,=0 andé,=1 in the Appendix, the subscriptB) is added nxE=0atS; Sis such that this boundary-value problem has
to indicate this type of illumination oB. By expressing each a unique solution foE. We show that, with the expression
XA~ and YOI in Eq. (A21) with Egs. (243 and (24b)  (A10) of the free-space pseudoperiodic Green’s vector fields,
and taking Eqs(A18) and(A19) into account as above, we the rationale of Millar applied to scalar diffraction in a
get With N> Nol @and M ,5>|M g, simple isotropic mediuni18] can be extended to diffraction
in a general medium so that the Rayleigh least-squares

<2>+ . X : X
(- KincM g, )An, (= K'nCMoNo'w) method is also numerically convergent in the latter case. We
1) use the notations of Sec. Il with the now unnecessary super-
><tn”o W<B)(_K‘"°’_KincMoNo) script (j) omitted. The superscriptQ) now indicates the
complementary medium defined in Sec. II.
— )+ D+, _ (2C) . .
=a, " (—Kind Ay ( Kinc"")tnon,R(KincMoNo’Kinc)- We first show that the set of vector functions
(29) WE1CH(_KincPQ)(rS):nXVgCH(_KincPQ)
It appears in Eq928) and(29) that the numerical results :
hp gsi28) and(29 xexiki” " (—Kinpq) - I']

of the Rayleigh-Fourier and Waterman-Fourier methods are

connected by the equaliti€®2) and (23) (when Eq.(23) is  wherers=R+f(R)e;, K;,. andR are vectors in thde, e,
applied to media € and 2C and Egs.(17) and (18) are  plane,n=1 or 2, andP andQ are integers, forms a complete
used. These relationships are strictly verified by the exactbasis ofL?(—K;,.), which we define as the space of pseudo-
values of the T-matrix coefficients. Therefore, if it is admit- periodic (with pseudoperiodicity characterized byKj,.)
ted that the Waterman-Fourier numerical results converge teector fields defined org, tangent toS at all points, and
the exact values of the T-matrix coefficients Ms,, and  square integrable on a given unit c8j of S. In order to do
Nmax tend to infinity (this is implicitly the case when the so, we classically show that a vector figddof L2(—Kqo),
method is used the Rayleigh-Fourier numerical results also which is orthogonal to everW(C)+( Kincpo), iS Necessar-
converge to the exact values. Furthermore, since the domaily the null element ol.?(—K,.). Let g be such an element;
of validity of the Rayleigh hypothesis is not involved in the for all integersP andQ and forn=1 or 2 we can write
quality of the Waterman-Fourier results, it does not intervene

either in the quality of the Rayleigh-Fourier results. This * O+ ke

conclusion has been found above when the Rayleigh-FouriJ [nx g7 (rg)]- Vo™ (= Kinceo)

method is applied to the physical problem of wave propaga- )+

tion in media IC and ZC; since there is no constrainton the ~ XeXfiky” " (= Kipepg) - rs]dS=0, (30
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whereg* denotes the conjugate gf Equation(33) indicates thatH[d(rs=\n)] tends to0 as\
Let r, be a vector point in the region defined by tends to 0. Then
z<minf(R). By multiplying Eq. (30) for eachn,P,Q,kg
(o=1, 2 or 3 by [ _Inxgrgpas-o. 34
2, (Kinep) A (Kinep@)[ 8- Vi (Kincpo) ®
)+ Equations(A7) and(A9) and the existence of the limit indi-
xXexpl —ikn™ " (~Kinepq) - Tol cated before Eq(34) show that ifg* is continuous, this
result holds without the square integration. Equatid4) is
an extension to the case wheage is square integrable; it is
analogous to the extension made in Réfl] in a simpler
J [nxg*(rg)]- G PP (rg;rp)dS=0, (31 case. This equation can be demonstrated by noting that
So 0 maxjnxH©(@,)| can, as makb,|, be made as small as
(©)(PP) : o , _wanted on either side @&; then Eq.(34) can be shown with
where GkO is the pseudoperiodic Green's vector field ine Minkowski inequality involvingnxg*, nxg* , and the
defined by Eq.(A10). Uniform convergence o1g, of the  jumps of nxH(®) and nxH(®,) acrossS. The rationale
series in EQ(A10) has been assumed for afflocated below  |eading to Eq.(34) is quite similar to that of Millaf18].
the lowest point ofS in order to interchange the integration  Since, by definition ofy, n-g*(rg)=0 for all rg, Eq. (34)
and the discrete sum. implies
We now set, for alry not located orS and allkg,

and summing om, P, andQ, we find, for allkg,

*(rg)]?dS=0, (35)
Q(O¢(r0):fso[nxg*(r5)]G(kg)(PB(rSer)dS (32) J'Sollg S ||

_ which indicates thag(rg)=0 almost everywhere o% and
Equatlon(31) ShOWS thaﬂ)(l’o)ZO fOI’ a” ro beIOW the IOW- ends the proof Of Comp|eteness Of MC)+(_ KincPQ) in
est point ofS. We now show thatb(r)=0 for all ro below | 2(_k. ).

S. i _ It can be noted that since there is no constraintkgp

It has been assumed in the Appendix thatgnq on the medium. the completeness  of MCH

C)(PP)/, . ; ; ; ; '
G(ko)( | Xrsiro) is e_l holomorphu? functlon_of the Cartesian (—Kinepg) i L?(—K;,) implies the completeness of the
coordinates of . _Slncen>_<g*(r3) is square integrable a8, W (Kiyepg) in L2(Ky0). We are now in a position to deduce
it can be approximated in the mean-square sense as closale numerical convergence of the Rayleigh least-squares
as wanted by a continuous function so that differentiationmethod from the completeness of ! (Kinepo) by again
under the integral sign in Eq32) is possible[40]; conse-  proceeding as Millaf18]. The incident electric field is as-

q_uently,d)(ro) is also a holomorphic function of the Carte- symed to be Einc(fo) =V, (Kindexdik, (Kind-rol. Let
sian coordinates af, and is therefore analytjet0]. Sinced® GOFPr_ 1) be the radia?ive seudo griodic Green's vec-
is analytic and®(ry) =0 for all r, below the lowest point of ko S:70 P P

S, ®(r)=0 for all ry belowS. tor field in the complementary medium, with the source
EquationsA7) and(A9) indicate the jump properties &  along &, such thatnx G *"(rg;rg)=0 for all rs on S.

of potentials defined like(ro) wheng* is continuous; inthe  The classical application of Green’s theorem yields
present case@)X®d is continuous acrosS. Since®(r s—\n)

tends to0 as\ tends to Qwith A>0), nX® is the null vector ]

atS above the interface. In the more general case wheis &, Eref(ro) =i wf [NXEedrs)]

square integrableyxg* can be approximated in the mean- %

square sense as closely as wanted by a continuous surface -H(@[g{(?(PH(rs;ro)]dS, (36)

vector field, saynxg; (rs), which generates a pseudoperi-

odic vector potentiaf. (the subscript should not be con- whereE, is the reflected fieldr, is any vector point not
fused with the superscri, which designates the comple- |gcated onS, and the operatoHPC) applies to the depen-
mentary medium With the aid of the Schwarz inequality, it dence inrg. Likewise, since the eigenwaves verify the gen-

can be shown that mg@—®|| can be made as small as eral equations of propagation and the radiation condition, we
wanted on either side @&. Since in additior=0 below the  can write for allP, Q, andn

interface andnX®,, is continuous acrosS, nxX®=0 at S

above the interf_ac_éas in the case Wherg is continuous _ eKo'V:(KinCPQ)quik:(KincPQ)'rO]

Therefore® satisfies the general equations of propagation

(in the original mediunpy the radiation condition, and

nx®=0 at S. Since the boundary-value problem considered :in W (Kinepo) (re) - H OGS PP (rg;r0)1dS. (37)
here is assumed to have a unique solutib(r,;))=0 at all r So 0

aboves so that ) N )
Since the W (Kinepg) With =M <P<Mmax and

®(ry)=0 (33 —Npma=Q=<Nmax are independent vector functions, there
exists a single set of coefficien®, po(Mmax, Nmay that
at allrqy not located ors. minimizes the positive quantity etM ., Nima defined by
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2 V. NUMERICAL APPLICATION

err(M jax,N = —nXE;(r

(M Nimas) LOH ncl's) A. Statement of the problem

We consider the case of a sinusoidal interf&deetween

= 2 ApoMmax Nmay an isotropic chiral medium, abov®, and a perfectly con-
n=1PQ ducting medium, belows. The interfaceS is defined by

z=hf(x) with f(x)=cog2mx/D), wherex is an horizontal

coordinate(say, alonge;); the constitutive relationships in

the chiral medium arg34]

XW; (Kinepo) (r's)[12dS, (38

where it is henceforth implicit that-M ., =<P<M . and

Smax <Q=Npand it can be noted thatx E ;= —nXE;,. D=e(E+ BV XE), (433
at
In the Rayleigh least-squares method, the reflected field B=u(H+ BV XH), (43b)

E,ci(ro) is taken to be equal tA(rg;M naxs Nimay)s With
wheree, u, and B are real scalars.

2 . The interfaceS is illuminated by the electric field;,;
A(rO;Mmax:Nmax):nZl I;g AnPQ(MmaxaNmax)Vn (KincPQ) [34]

X exriky (Kingpo) o). 39 Eind(1)= E A - q o exiik; (Kind 11, (44)
where theA,pq are those scalars that minimize the right- ) " )
hand side of Eq(38). where, withk=w(eu)™'< and for any integeN,
With Egs. (36) and (37) and the Schwarz inequality, we K
can write for allry not located onS and for all M., and N=T"1g (45)
Nmax ﬁ
|eKo'Eref(ro)_eKO'A(rO;MmaXaNmangw erM maxs Nmax) »)/2:%, (46)
B
1/2
(P +
f IHOLG PP(rsiro)]IdS| . (40) K" (Kinon) = Kinon€L* &) n€s. (47)
— (2 12
Because of the completeness of Wﬁ(Kinch) in L2(K;0), §in=07— ch) (48)
erMM a.Nmay can be made as small as wanted by increas- N
iNg M .x and N, thus Eg.(40) shows that, for allk, Kinen=Kinct 27 =, (49)
(kO:]-y 21 or 31 D
lim Ere(To) — 6. A(T9; M maxs Nmax) | = 0 1 i
M max» Nmax"“JeKo rer( ° eKO ° A maX)| eI’N:\72 |:ez_ 7_ (i gl,Nel_ KiﬂCNe?:)}, (50)
(41) '

in all closed subsets of the medium abo8e Therefore s +i_ . K
A(ro:M max:Nmay Uniformly converges to the exact solution eZ'N_‘/Q & Yo (= &2n8 = Kinenes) |,
in all closed subsets of the medium of propagation.

By writing that uniform convergence holds in particular wherej=1 or 2, and the square root in E¢8) is taken to be

above the highest point @&, it readily follows[18] that, for  positive if ;] >Kﬁ1cN and positive imaginary ify; <Kﬁ]cN

(51

given integers®? andQ, andn=1 or 2, The reflected electric fleIE,ef is numerically sought ajs34]
lim A M maxs Nmax) = thn (K; Kine) - Nmax .
Mo Ny 4 nPQ( max max) nno( incPQ |nc) Eigjfmax)(r) _ E E 71 C] \e Nequ k;r(KincN) ) r].

N=—Nmay |
(42 = (52)

Equations(41) and(42) have been established for a particu- o _
lar case of boundary condition. As noted by Mil[@8] for B. Application of the Rayleigh least-squares method
scalar diffraction, these equations can be extended to the case |n the Rayleigh least-squares method, the scattered mode
of linear boundary conditions combining<E and nXH,  amplitudes are calculated by minimizing the integrated-
which ensure the existence and uniqueness of a solution tyuare error on the boundary conditiork E=0, which
the problem. amounts to writing, for allM such that—N, =M <N, .,

As indicated at the end of Sec. Ill, the Rayleigh least-and forj=1 or 2,
squares numerical results can also be connected by the
equalities(22) and (23) to a Waterman method numerical
results. However, the above conclusions yield still firmer {(n"x & yexdik] (Kinem) - rsl}* - [N X Einc(rs)
ground for the application of the Rayleigh least-squares 0

method and more informatiofin particular about the evalu- o = (Nma
ation of the near field +n'XE ™(rg)]dx=0, (53
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wherer =xe;+hf(x)e;, n'=—hf’(x)e+e;, and E;,. and
EEemeaX) are expressed bi4) and (52).

TheC; \'s are obtained by solving the linear syst¢53),
which can be written, for alM such that—N,,=M <N

and forl=1 or 2,

2 Nmax 2
> Uris(M,N,1LJ)C =2 AsZpis(M,1,J),
J=1 N=—Npax J=1
(54)

where the dependence of thg \'s on Ny, is implicit and,
for 1,J=1 or 2,

mURLS(M N,1,J)

§|*,M§J,N
VY

= 1+(-1)'"7

L1, h 2
21“"D
KincNKincM) I(| J
YYa N

% 1+(_1)I+J )_(_1)I+J

i h
X2’)’| " (277 B) (gl*,MKincN"_gj,NKincM)

2

1+(_1)|+J

1,J
U

h
-t oe

% KincNKincM (| (1,9
Y3

N+2,M+|§\LJ)2,M)7 (55

€10
-—7Z M,1,J
v, rLs( )

* 1 h 2
&rméao (277 D)

={1— _1I+J*—’+_
[ ( ) 1Y 2

X 1+(_l)|+J K;\}I,J)_(_l)lJrJ

KincKincM>
Y173

h
m 5) (gr,MKinc_ §J,0KincM)

2
K. J>)__ ﬂ
M+1 D

KincK incM

Y173

X 2
2v1v; (

g
X (K2 —K

X|1+(—1)'"

(Ko + Ko,  (56)

with the notations
W= (=D [h(Em—&n]. (6D

K(Lj,k):(_i)ILI\]‘Ll[h(ng*—fk,o)]v (58)

wherej, k=1 or 2 and], is the cylindrical Bessel function of

order L. Equations(22g and (239 of Ref. [34] have been
used to establish Eq$55) and (56) here. Once the ampli-
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tudes of the incident electric field are given, the problem is
completely described bi;,.D, kD, h/D, andg/D.

For all the real positive; y andé,, we set, withj=1 or
21
y1 &0 |ICinl?
RiN= 2 a2 (59
UNTyaan [A?
Y2 fj 0 |C2N|2
Ry yn=— —— ————. (60)
ANy Eon IAP

The exact values of the reflected efficiendg y andRy;
verify the law of conservation of energj=1 with

5j=§ (Ryjnt Rajn), (61)

where only the real positive values ¢fy and &, are re-
tained.

The performance of the Rayleigh least-squares method for
the calculation of the reflected efficiencies defined above is
illustrated in Table I, where some of them and their complete
sum are indicated. For these resultg=1 and A,=0, the
angle of incidence is 0, /D =0.025, andkD=10. Up to
h/D=0.10 (the Rayleigh hypothesis is valid up ta/D
=0.072, a good convergence of the reflected efficiencies is
found. As noted by Wirgin for isotropic achiral medié2],
despite the fact that the Rayleigh least-squares method is
theoretically always convergent, the matrix of the linear sys-
tem(54) tends to become numerically singular for laigg,,

(all the larger ash/D is smallej so that its inversion is
unreliable. Beyonch/D=0.10, this situation occurs before
Nmax Can get large enough for the method to give satisfactory
results; thus, while incidence is normal for the results of
Table I, we find thatR,; _;#R,; 5, Ry »#Ry;, and
Ry1-1#Ry;, instead of equality forN.,~=20 and h/D
=0.15 or 0.25(as indicated by the presence of an astegrisk

We have found about the same limit of numerical appli-
cability in h/D with other values of angle of incidence and a
different polarization of the incident electric field; this limit
decreases somewhat whéiD increases(simply because
there are more reflected efficiencies to be determinkd
may be greater for isotropic achiral medis/] because then
only one type of polarization may be involved and the linear
system to be solved may be smaller. As in the case of iso-
tropic achiral media, the Rayleigh least-squares method is
characterized by a slow and monotonic convergence of the
reflected efficiencies with a systematic deficit of energy in
the energy balance check Hs,,, increase$20].

Since we expect the results of the Rayleigh least-squares
method to converge to the exact valuekoin the near field,
it is interesting to observe how the results obtained in this
region behave numerically, in particular whether the bound-
ary condition is verified and whether the electric field in the
grooves converges. We set r,=0.5De;,—he;,
r,=0.8De;—0.5he;, and

IN(r1) X Eine(r1) +n(ry) X Enm2(r )|

(Nrma)
SMNmad(r ) = X Eine(r1)]l

In(rq)
(62)
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TABLE |. Reflected efficiencies calculated with the Rayleigh least-squares method for a sinusoidal grating definédclog(27x/D).
The problem parameters afie=0, B/D =0.025, anckD=10 and the incident wave is defined By=1 andA,=0. The sum of the reflected
efficiencies corresponding to radiating eigenwaves is given in the column labelled SE. The presence of an asterisk indicates results that do
not satisfy the expected symmetry properties.

h/D Nmax Ra10 Ro11 Ri10 Ri11 SE
0.05 5 0.528 652 0.214 891 0.155 580071 0.109 421x10°t 0.999 990
10 0.528 648 0.214 886 0.155 620071 0.109 465¢107t 1.000 000
20 0.528 648 0.214 886 0.155 620071 0.109 465¢10°t 1.000 000
0.10 5 0.147 7581071 0.372 937 0.158 648 0.131 651071 0.987 574
10 0.145 8941071 0.367 079 0.168 043 0.151 0440 ! 0.999 682
20 0.145 87& 1071 0.366 953 0.168 243 0.151 4%a0° 1 1.000 000
0.15 5 0.134 749 0.159 238 0.294 204 0.124980° 1 0.820 821
10 0.143 982 0.116 774 0.443 203 0.159 xa0 ! 0.954 889
20 0.145 098 0.108 138 0.479 079 0.168 33810 * 0.998 558
0.25 5 0.242 0081071 0.763 1041071 0.347 921 0.548 5371071 0.666 257
10 0.448 66x 1071 0.150 575 0.398 691 0.863 683071 0.951 101
20 0.609 541071 0.177 420 0.349 345 0.993 82810 * 1.007 188

The values ofs®Nma?(r ), ||E(Nmay)(r2)||, and the components t,=€,. As a result, theC; \'s are obtained by solving the

ref k
(Nmay i _ L linear system54), where theUg, s andZg, g are replaced by
of E,"(r,), obtained whem,,,=5, 10, or 20,6, =0, kD the U ge andZpe defined by

=10,h/D=0.10,8/D=0.025,A;=1, andA,=0, are given in

Table Il [the component oEﬁgfma")(rz) alonge;, of the order &N 1 (2wh\? m
of 1079, is not indicated Sincer, is on'S, sNmad(r}) is . UrdM\N,1I)=~]1+ 3 T) INm
expected to converge to 0; we can note that this is so up to 5
Nmax=20 after which value the linear syste{®4) becomes n 1 @) A0 10
numerically singular, as explained above. This result is not 4\ D N+2M = IN=2M7
obvious from the construction of the Rayleigh least-squares 63)
method, which requires verification of the boundary condi-
tion only in the mean-square sense. In addition, it also ap-
pears thatEigmaX)(rz) converges up tdN,,,,=20. We have (—1)'Uge(M,N,2,)=il ), + 1 Kinex (@)
found that numerical convergence of(Nmad(r;) and 2681 D
Eﬁe’:‘fma”(rz) is observed for other choices of points 8rand X(|“)+1,M—|N11,M)a (64)
in the grooves, and that it is obtained under the same condi-
tions as numerical convergence of reflected efficienGies ¢ 1 {27h\2 1 /27h)\2
up toh/D=0.10, beyond the domain of validity of the Ray- 210 ZreM 1 )=|1+ = _) - _)
leigh hypothesis 7 2\ D 41 D

X (K- 2K 2), (65)

C. Application of the Rayleigh-Fourier method
In the Rayleigh-Fourier method, the scattered mode am- ., o 1K [2mh) |

plitudes are calculated by projecting the boundary condition’ ~ ) ZreM 2,) =Ky - 2605\ D (K1~ Kyl ),
nXE=0 on the Fourier basis comprising the functions (66)

tiexp(—iKiemX) andt,exp(=iKi,«uX), whereM is an inte-
ger such that-N, ., <M <N, andt;=e;+hf’'(x)e; and with I=1 or 2 and the notations

TABLE II. Reflected electric field at,=0.5De;—0.5he; and verification of the boundary condition at
r;=0.5De,—he; obtained with the Rayleigh least-squares method for a sinusoidal grating defined by
z=h cos(2mx/D). The problem parameters a#ie=0, 8/D=0.025,kD=10, andh/D=0.10 and the incident

wave is defined byA;=1 andA,=0. The component oEﬁemea) alonge,, of order 10°°, is not given.

Nimax 5 10 20
e, EQmad(r)) 0.765 354-0.163 339 0.782 557-0.180 184 0.782 9270.180 365
&,- ECmad(r ) -0.219248-0.778 731  —0.209574-0.763298  —0.209 346-0.763 002
IESm=)(r )| 1.125 583 1.127 564 1.127 610

SNmad(r ) 0.75x107? 0.95x1072 0.20x1073
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TABLE lll. Reflected efficiencies calculated with the Rayleigh-Fourier method for a sinusoidal grating defirszelhbgos(27x/D).
The problem parameters afie=0, B/D =0.025, anckD=10 and the incident wave is defined By=1 andA,=0. The sum of the reflected

efficiencies corresponding to radiating eigenwaves is given in the column labeled SE.

h/D Nmax Ro10 Ro11 Ri10 Ri11 SE
0.05 5 0.528 648 0.214 886 0.155 64801 0.109 464<10™* 1.000 000
10 0.528 648 0.214 886 0.155 6200 * 0.109 465¢10™* 1.000 000
15 0.528 648 0.214 886 0.155 6200 * 0.109 465101 1.000 000
0.10 5 0.14595%10°! 0.366 975 0.168 201 0.151 488071 1.000 032
10 0.145 8761071 0.366 953 0.168 243 0.151 4%80°* 1.000 000
15 0.145 87&10°* 0.366 953 0.168 243 0.151 4%80°* 1.000 000
0.15 5 0.143 976 0.108 696 0.478 696 0.1712487% 1.000 358
10 0.145 261 0.107 774 0.480 290 0.168 840! 1.000 002
15 0.145 263 0.107 771 0.480 296 0.168 81D ! 1.000 000
0.25 5 0.57121%10°* 0.169 627 0.271 784 0.962 9510 * 0.928 041
10 0.728 79%10°* 0.177 864 0.304 805 0.105 771 0.999 909
15 0.734 22&10°1 0.177 897 0.305 001 0.105 780 1.000 003
|§<|)L:(_i)|K*L‘J|K7L‘(_ hé ), (67)  times the maximum slope of validity of the Rayleigh hypoth-
' ' esis. We have found, however, that the Rayleigh-Fourier
K(L')Z(—i)lLlJ\u(hfu,o)- (68)  method is either invalidif the Rayleigh hypothesis does not

hold) or inadequate to evaluate the near field.

Numerical results obtained for the reflected efficiencies |n the case of a single semi-infinite medium bounded by a
with the Rayleigh-Fourier method with the same conditionsperiodic rough surface, it has been shown that the Rayleigh
as in Table I(except forNp,,) are shown in Table Ill. Asin  |east-squares method gives expansions that uniformly con-
the case of an achiral isotropic mediy@0], the Rayleigh-  yerge to the exact reflected field in all closed subsets of the
Fourier method, compared to the Rayleigh Ieast-square,%edium; as a consequence, the Rayleigh least-squares
method, can be used for greater valuesit (up t0 0.25  ethod is also numerically convergent for the calculation of
the reflected amplitudes. These convergence properties stem
§rom completeness properties of the set of outgoing and eva-

found again that the angle of incidence and the polarizatiorp1escent eigenwaves. They have been corroborated by the ap-
of the incident electric field do not significantly affect the lication to the sar.ne case as for the Rayleigh-Fourier

domain or the rate of convergence; this domain decreasds ) S
somewhat whetkD increases. method; good results for the reflected efficiencies and for the

sNmaxr,), defined in Sec. V B, is found to converge to 0 "€ field have been found up @D =0.10, which is about

only when the Rayleigh hypothesis is valid, which is in 15 times_ the maximu.m slope of validity of the Rayleigh
agreement with the computations presented by ChesnealiyPothesis. Beyond this value &fD, the method becomes
and Wirgin[21] for an achiral isotropic medium. The con- inapplicable for numerical reasofs2]. .

vergence of the near field is slower than it is with the Ray- e qualitative features of the Rayleigh least-squares
leigh least-squares method; the slow convergence of thethod found by Wirgin with an achiral isotropic medium

Rayleigh-Fourier method for the computation of the nead20] and a sinusoidal surface, namely, a slow and monotonic
field has also been noted in RER]. convergence of the reflected efficiencies, are unchanged

when the medium is chiral. It is not the case for the
Rayleigh-Fourier method: it still converges faster, but in a
monotonic(and not oscillatoryfashion. It seems reasonable
We have considered the problem of electromagnetic reto conjecture that, in anisotropic media as in isotropic chiral
flection and transmission at a periodic rough interface sepaand achiral media, the Rayleigh-Fourier method is more
rating two semi-infinite general homogeneous media. Theuited(faster convergence and larger domain of validity
problem is assumed to have a unique solution. We haveompute the reflected efficiencies and the Rayleigh least-
shown that numerical convergence of the Waterman-Fouriesquares method is more suited to compute the near field.
method for the calculation of th&-matrix coefficients im- For the demonstration of these results, it has been as-
plies numerical convergence of the Rayleigh-Fouriersumed that the dispersion equati@® has only single roots
method. The latter must therefore not be regarded as limiteth k, with each root corresponding to a one-dimensional
by the validity of the Rayleigh hypothesis for the computa-space of eigenvectors. This is not true in the limiting case of
tion of the reflected and transmitted amplitudes; this is conan achiral isotropic medium; however, the expression of the
firmed by the numerical results of Depine and GigB]. free-space Green’s vector fields is still similar to Ef.and
This is also confirmed by the application to the case of dt is possible to reach the conclusions indicated above. In
sinusoidal surface separating a perfectly conducting mediuraddition, in Sec. IV, which deals with the Rayleigh least-
and a chiral medium; very good results are found for thesquares method, we have made the classical assumptions of
reflected efficiencies up /D =0.25, which is more than 3 term by term differentiability and uniform convergence of

tonic convergence of the reflected efficiencies. We hav

VI. CONCLUSION
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the series in Eq(A10); term by term differentiability has any vector point located belov®, and G(kic) stands for

enabled us to regard the Green'’s vector fields as analytic. GO (.- h : t int ors. Th tincti
We can try to further extend the conditions of validity of _ o (rs,r_o), Wherers s a vee o.r POINt Orb. The extinetion

the conclusions reached. If there exists a complementary m&eorem yields a second equation

dium C such that the dispersion relationship governing plane

waves propagation verifies, with the definitions of Sec. (2) i 2C)( =(2C)

I, L(C)?—kr?w?=tL(k,w) for all k and w, and if the Einciky(Mo) ""L[(”XE)'H( (G,

vector fields sought can be expressed by surface integrals 20)

with integrands of the form A(n,E)-B(%(n,G{") +(nXH)- G ~']dS=0, (A2)

—A(C)(n,G(k‘g))B(n,E), whereA and B are surface vector

fields expressing the interface conditions, then it is possibl(‘-,‘"here Ei(rfgyko is the th component of the incident electric

to reproduce the demonstrations of this paper. Such condfield coming from medium 2t is any vector point located

tions include anisotropic elastic media; they also include meaboves, and G{Z® stands forG{9)(rs;ro), wherers is a

dia that do not necessarily satisfy the physical constraints ofector point orS. In Egs.(A1) and(A2), the operatorsi (¢)

electromagnetic propagatidd9]. We conjecture that Ray- apply to the dependence in.

leigh methods can, as in the case of acoustic scattering in' The + superscripts o andH in the surface integrals

isotropic medig43], be applied to scattering from finite bod- have been omitted because of the interface conditi@as

ies under the same general conditions. and (2b). Equations(A1) and (A2) form a system of two
The conclusions of this paper broadly extend results progquations with the two unknown surface fieldE and

gressively established in the case of simple isotropic mediaxH. Once these unknowns are determined, they can be

[18,24,23. It can be noted that they focus on the numericalysed in the integral representation of the electric field in me-

results obtained with the Rayleigh metho@sd their rela-  dgjum 1, which can be written as

tion to the exact resultso that they have a practical interest.

These conclusions also indicate that approaches related to

the Rayleigh methods discussed, and apparently not yet con- Eg)(ro)z Ei(,}c),ko(ro)ﬂwj [(nX E)-H<1C)(Gf<(1)c))

sidered for general media, could be useful. One of them is a S

numerical method proposed by Matsuda ar_ld Okiuhg to +(n><H)-Gf<1C)]dS, (A3)

enhance the convergence of the Rayleigh least-squares 0

method, which is rather slow in practice. Another is the per-

turbation method22] possibly implemented with enhanced WhereE(kf)) is the k' component of the electric field in me-

convergence techniquéd7—31. Indeed, for surface profiles gium 1, r, is any vector point located abov& and G19

that are finite linear combinations of sinusoids, the demon-t ds forG1S) (1. h . ¢ int rSOA

stration of either Sec. Il or Ref25] (extended to general stands Tory, (rs:iro), wherers is a vector point orS.

med|a can be use(ﬂbecause then On|y finite sums intervene similar expreSSion can be established for the electric field in

at each orddrto show that the Rayleigh-Fourier perturbation medium 2, but only Eq(A3) is necessary for the purpose of

series is identical to the Waterman-Fourier perturbation sethis paper.

ries so that the former, which is easier to implement, can be We express the Waterman-Fourier formalism with the in-

regarded as derived from an exact formalism. cident fields

(1) _ (1- (D)
APPENDIX: WATERMAN-FOURIER FORMALISM Einciko(Fo) = d1l8¢ Vi, (Kine) IeXHik5 ™ (Kine) - Tol,
. . (A4)
The T-matrix formalism proposed by Waterman for elec-

tromagnetic scatterinfd5] involves two steps: solving the 2 o)+ (o) +

null-fiegld equations{46?4for the unknown sufface fieldg and Ei(“c)’ko(r‘)): 52[q(0-vg0) (K‘”C)]exq'ki‘o) (Kinc) o],

using the result to compute the reflected and transmitted (A5)
fields with the classical integral representation. The unknown

surface fields are represented by an expansion on a set whered; and 5, are complex scalars. We write the reflected
complete functions; when a Fourier expansion is used, thelectric field in medium 1 above the highest pointSés
method is sometimes called the Waterman-Fourier method ,

[14].

In the case wher& separates media 1 and 2, a classical ~ Efef()=2 > T (Kinoun :Kind Vi (Kincun)
demonstration using Green'’s theorem leads to n=1 MN

X explik(Y " (Kinewn) 11, (AB)

(1) T f Y E).H1O)(G(10)
Einck(To) 1o S[(n B-HGG ) where theT(})'s are complex scalars.
+(NXH)- G(klc)]d8=0 (A1) _ By noting thg pseudoperiodicity of the sur'face fieldg, us-
0 ing the expressioki7) of the free-space Green'’s vector fields
W " (applied to media € and 2C) and Eqs.(16)—(18) and pro-
for all ko (ko=1, 2, or 3, whereEj,/, is thekg component  ceeding as Waterma@7], we can rewrite Eqs(A1)—(A3)
of the incident electric field coming from medium dy is  as
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4725, -
[AD™ (Kines )]~ 8nn, Sp0d0

Efdy (ro)+i f nXE)-HO(GIOPP — T
|nc,k0( o) tiw 50[( ) ( ko ) wai]iH(Kinc) o

+(n><H)-G<k§)°><PF’]ds:o, (A7) 0
+ [ TR VO (Koo
So
Efidi(To) —iw f [(nXE)-HP(GZPP) X explikZ ™ (= Kingpg) - r1d°R
So
+(nxH)- G "P]ds=0, g+ | H0E) HYE (Kineg)
xex;{ikggcr(—KmeQ).r]d2R=o, (A12)
B (10) = Efi (1o +o |_[(nXE)-HIO(GO™) )
So 4

——ar—— AP (Kinepor @)1 TTE (Kinepo » Kind)
+(nXH)-G%C)(PB]dS, (A9) wang(KincPQ)[ n incPQ ] nng incPQ inc

= "N yaO - k.
where S, is the unit cell of S used in Sec. Il and the jso[(an )V (= Kinceq)]
pseudoperiodic Green’s vector fieIdEﬁLC)(PP) stand for

i10—(_ 2
GU)PPXrg;ro) and are such that Xexlikn ™ (= Kinpo) -r]d°R
A ;

, , +fSOUnXE')-valm‘(—chpQ)]
. | .
GUOPP(rrg)=+*— |RXR al* (K,
Ko (riro) A2 IRs 2”212("3 n (Kincp) xex;{ikﬁle)f(—chpQ)-f]dzR, (A13)
()= ()=
X[%'Vn (Kinep) JAR"™ (Kincpo,@) where the notationsl’ andE’ stand for
(O)F( _ k.
Vo (" Kinepo) H =[14(VE R XRH,  (A14)
X exfik{ " (= Kingpo) - (r=ro)],
E'=[1+(Vf)?]YJR,; X R,||E. (A15)

(A10)

Equations(A11)—(A13) hold for all K,,., all integersP and
where the upper sign applies i{—z)>0 and the lower sign  Q, and alln andn, (n,n,=1 or 2. When a numerical solu-
applies if (z,—2) <0. tion is sought, the unknown surface fieldsxE’ andnxH’

Equation(A10) could also be obtained by seeking, in the gre expanded on a set of complete functions and the equa-
space of generalized functions defined as in R&f, the  tions are truncated. For the purpose of this paper, we choose
Gfgoc)’s in the form of a double Fourier series and by definingto write the equations for a transverse incident wave vector
the a’*’s and A’*’s as in Sec. Il. We assume that equal to—Kisey n, (WhereM, and N, are given integeis
G has a sense as a vector figithenr#ro) and that ~ and a truncation such thall—M e <P<Mg+ M, and
its differentiation with respect to the Cartesian coordinates ofNo ~ Nmax<Q=No+ Npax, WhereM ., and Nyq, are posi-

r, can be carried out by term by term differentiation of theltive integers such thal max>|M0|, and Nmax>,|No|- For the
series in Eq(A10). As a consequencés(kic)(PP) is a holo-  Pseudoperiodic surface fields<E’ andnxH’, we set
0

morphic function of the Cartesian coordinatesrgfand is

heref I1i640] 2 K=Mg+Mpax L=Ng+Npax
therefore analyti¢40]. / _
. ' NXE'(rg)= 4 (r
With Egs.(A4)—(A10) and Eq.(16), we find that (rs) ;1 K:Mszax L:Noz—Nmax @ kuti(rs)
Xexd —iK; _ 'R, (A16)
477251 [A(l)_(K )]_15 s F{ inc(My—K)(Ng—L) ]
— inc) @
wal(’IJ(;) (Kinc) no ne nno PO QO 2 K:MOJrMmax |-:NOJerax

nXH’(rS)=|:1 K:ME_M L:NE_N BixLti(rs)
+j [(nXH’)'VE\lC)Jr(_KincPQ)] 0 max 0~ Nmax
So X exH —iKingmy-k)Ng-L)- R] (A17)
X exgiky' <" (= Kincpo) -1Jd°R o
wherer g is a point ofSy andt,; andt, are the vectors tangent
n YE').HY 1O+ _K. to Sy chosen as in Sec. ll(for the application of the
f%[(n ED-HVA™ (~Kineeo)] Rayleigh-Fourier method
a0+ 5 Then Eqgs.(A11l) and (A12) yield, for np=1 or 2 and for
xexg ik, " (—Kipepg) - r]d°R=0, (A1l)  all integersP andQ defined by the above truncation,
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B1*(n,My—P,No—Q;Mg,Ng) = —

4725,

B9~ (n,M—P,Ny—Q;Mq,Ng) = —

l —
wago) (_ I’(incM oNo)

4725,

where, withj =1 or 2,

2)+
wago) (_ KincM oNo)

[A%)_(_KincMoNovw)]_l5nn05p05Q0, (A18)
[Agf))+(_KinCMONOYw)]_lgnnogpoéQo, (Alg)

BUS=(n,Mq— P,NO_Q;MO,NO):KE;_ al,KLY(jC)i(Kinc,Z,n,Mo_ P,No—Q,Mo—K,Ng—L)

_g_ aZ,KLY(jC)i(KinC111n1MO_ PINO_QIMO_ KaNO_L)

+g_ Bl,KLX(jC)i(KinC121n1MO_ P,NO_Q,MO_ KINO_ L)

—KEL Bk XU (Kine,1,n,Mo—P,Ng— Q,Mo—K,Ng—L). (A20)

For the scattered mode amplitude corresponding to a transverse component of the wave vector efyal, tBqg. (A13)

yields
2

- wagl)Jr(_Kinc) "o

= KZL a1k YO (Kine,2,0,0,0Mo—K,Ng— L)

[AﬁlH( - Kin(:iw)]_lT(l) ,W( —Kine, — KincMoNo)

— KEL kL YO (Kin1,0,0,0Mo— K,Ng—L)

+ KZL B X197 (Kine2,n,0,0Mo— K,Ng— L) — KZL Box X197 (Kine1,n,0,0Mo— K,No—L). (A21)

XUO* andYUS)= are defined in Sec. IlI. In Eq$A20) and(A21), it is implicit that the sums on the integeisandL are such
that M y—M oSK<My+M 0 aNd Ng— N0 =L =<Ng+ N ,.x- The subscripWV in Eq. (A21) indicates that the results are
obtained with the Waterman-Fourier method and the truncation chosen. Equai®B)s-(A21) are useful to establish the
connection between the numerical results obtained with the Rayleigh-Fourier and Waterman-Fourier methods.
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