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Stability and halo formation of a breathing axisymmetric uniform-density beam

Robert L. Gluckstern, Wen-Hao ChefigSergey S. Kurenno{and Huanchan Ye
Physics Department, University of Maryland, College Park, Maryland 20742
(Received 9 August 1996

An analysis of the stability and halo formation is presented for a breathing axisymmetric beam of uniform
density[Kapchinsky-Vladimirsky(KV) bean] in a uniform focusing channel. Theoretical results are obtained
for the form of modes involving nonuniform charge density. In particular, the mismatch-tune depression space
is explored, both analytically and by numerical particle-in-cell simulations, to determine the stability limits and
growth rates of the most unstable modes. The implications for halo formation are then explored. Halo param-
eters obtained by simulations are compared with predictions of an analytical model for halo formation from the
breathing KV beam developed earlier. The practical applications of the results for high-current linear accel-
erators are discussef$1063-651X96)05912-Q

PACS numbdis): 52.65.Rr, 29.27.Bd, 41.85p

[. INTRODUCTION ions initially escape from the core in order to participate in
the formation of the halo?

Interest has arisen recently in using ion linear accelerators Obviously, any unstable longitudinal or transverse collec-
in high-current applications, such as the production of tri-tive modes involving the core are capable of moving par-
tium, the transformation of radioactive waste to species witticles outside the core. Studies of the transverse stability of a
shorter lifetimes, and for fission and fusion drivers. SinceMatched KV beanj7,8] have shown that instabilities exist
these applications require average currents in the 100-mfQr tune depressiongatio of ion oscillation frequency with
range(100 times larger than that used previolsheam loss ~SPace charge to that without space chafe0.4 or less. In
must be kept to the order of 1 ppm to avoid serious lineaf'® Present paper, we expand on a previous publicg8pn

accelerator activation. In particular, it is necessary to under2d analyze the instabilities of a breathing KV beam for

stand emittance growth and halo formation in great detail jn/arous collective modes involving nonuniform charge den-

order to produce an acceptable design sity. We find, not surprisingly, that modes involving a sig-

Accordingly, recent attention has been focused on underr_uflcant breathing amplitude will be unstable at tune depres-

) . . sions as high as 0.7 or 0.8. We then perform multiparticle
standing the mechanig®) by which halos are produced. simulations with a mismatched KV beam for evidence of

This includes a review of observations and related simulag,ege nstable modes and the role they play in halo forma-
tions by Jamesoiil], a variety of simulations and experi- 4

ments by Reiser and co-workdr2], and recent simulations
by O’Connellet al. designed to follow single-particle orbits
in a core beani3]. Several models have been constructed to Il. BREATHING MODE
explore resonances between particle oscillation frequencies gq. 4 kv beam, the motion of an ion within the two-
and the periodicity of the focusing system or core oscillationyimensional uniform density beam traveling with axial ve-
modeg[4,5]. Many of the simulations show the onset of cha-|oity 4, is governed by the linear equation
otic motion at high space-charge levels.

In a recent publicatiofi6], we proposed a simple model in d2x
which a Kapchinsky-VladimirskyKV) beam, excited into a — 4+ K2x=
uniform density “breathing” mode by some sort of mis- z
match, interacts resonantly with individual oscillating ions. If
the ions find themselves outside the core for part of theitvherek is the tune due to the external linear restoring force
oscillation, the resulting nonlinearity of the ion oscillations andl is the perveance defined by
can lead to a phase lock with the breathing oscillation, pro-
ducing a halo whose parameters can be predicted and whose elyZoC
appearance matches that in Wangler's simulati@js The = oMo
unanswered question is, What is the mechanism by which Vo

22 (2.9

(2.2

HereZ,=120xr () is the impedance of free spadd, is the
*Present address: Center for Beam Physics, Lawrence Berkeldpn massg is the speed of light, ant} is the beam current.
Laboratory, Berkeley, CA 94720. The beam radius will vary periodically with the axial co-
TPresent address: AOT Division, Los Alamos National Labora-ordinatez for an azimuthally symmetric breathing beam. We
tory, Los Alamos, NM 87545. assume thak? is independent of in the present work. An
*Present address: Advanced Telecommunications Technologiejentical equation applies for for an axisymmetric beam.
Inc., Silver Spring, MD 20903. The envelope equation corresponding to Exjl) is
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T where
a’+k%a=—+ -3, (2.3
a a o 1 1 1/2
. . = —+o,—0c+———
where the prime stands fat/dz and 7e is the transverse p(o)=|a InUl g o, o] '’
emittance of the beam. If we start witla(0)=a,,
a’(0)=0, an integral of Eq(2.3) gives k
olzza"{. (2.14

a
a'?=2| Ina—+k2(a§—az)+ €
1

1 1
v —z) . (2.4 , ) )
a; a Finally, we note that a matched bedrero breathing ampli-

. . tude has th tched litud
which enables us to obtain the other valueaof(=a,) at ude has the matched amplitude

which a’=0, as well asS, the period of the breathing mo- o o2
tion, given by 0'0=§+ \/ 1+ T (2.19

a; da

S=2f a(a)’ (2.5  and that the tune depression for a matched beam is given by
a
2__ 2\1/2 2
wherea’(a) is defined in Eq(2.4). = (k"—l/ag™ 1 _ 1.4 2.16
We now seta’= Be, where g is in effect the Courant- k o9 4 2 '
Snyder amplitude parameter that satisfies
BB Y 2_'8_|+1+ B_/z 26 Ill. PHASE-SPACE DISTRIBUTION
2 p= € 4 - ' We now wish to consider small perturbations from a uni-

form charge density breathing mode in the phase-space dis-
If we now Change the independent and dependent Variab'Qﬁbution_ For this purpose, we use the Variab|es¢),

from z,x,y to v(¢), and ¢ and write
dz x(2) y(2) f(u,v,U,0,8)=fo(U,,0,0)+f1(Up,U,0,8), (3.1
¢:f_, u(¢): , v(¢): , (27) (ulvlufvl¢ O( yU,U,0 1 U, ,U,¢, .
B VBe VBe SRR
where the “unperturbed” distributiofincluding the breath-
we find ing modsg is
i+u=0, v+v=0, (2.9

fo(U,0,U,0)=(7o/7%) S(U+v2+U%+0v%—1). (3.2

where each dot denotes a derivative with respeeb.tdhus
the breathing mode can be described by specifyings a
function of ¢, with period ¢o. The transformation clearly

Here 7o=14/v¢ is the line charge density of the beam. In
terms of the new variables, the Vlasov equation can be writ-

depends on the size of the “mismatch,” that is, on the rela-€N @S
tive amplitude of the breathing oscillation. For completeness,
we write the differential equation fgB(¢): ’9_f_ —Uﬂ— . ’9_f_ - ﬁ_ - ﬁ
= v u—-v—. (3.3
. - o du v gu v
B Bl 3B
28 1+ e kB *a B2 29 The unperturbed distribution is clearly a solution of E2}3)
if one uses Eq(2.8), the unperturbed equation of motion.
If we scaleB so that We now write the charge densifin x,y space as
B(p)=o(p)lk (2.10 1 .
po‘f‘pl:_f duf dU[f0+f1] (34)
and define Be
a=I/ke, (2.1  This leads to
Eg. (2.9 can be written in terms of the single parameteas o 1, u?+v3<1 3
. .2 pO_Trvo,Be 0, u?+v?>1 @9
2 lvao— 2+§ Z 21
20 AT I T2 (212 and
In terms ofa and o, the period of the breathing motidin 1 : ) .
the variablesz and ¢) can be written as plzﬁf duf dv fi(u,v,u,v,9). (3.6
kS v2_ do & f(rz do (2.13  We assume that the electric field dueptpis derivable from
= ; 0= | 32 :
o1 0 P(0) o 07P(0) a scalar potentia(u,v,¢) such that



6790 GLUCKSTERN, CHENG, KURENNOY, AND YE 54
Eil):— G , E§,1>=— G , (3.7 u’'=uc—us, v’'=vc—us,
VBeau J . . . .
pe \/E v u’'=uc+us, v’'=vc+us, (3.16
and with
1 [JdE. OE,\ py PG G c=cogp—y), s=sin(¢— ). (3.17)
VB =0 T T BelaZ T

Be 0 We now proceed, as in the analysis for a matched KV

1 . beam[7], to guess at the form of the potenta({u,v, ¢) and
= Beey du (3.8 to determine the perturbed phase-space distribution

g(u,v,u,v, ) using Eq.(3.15. Usmg Egs(3.12 and(3.9),

The equations of motion, including the force due to thewe then obtain2G/au?+ 9G/dv? and require that it agree

nonuniform charge distribution, are

. e BdG . e BdJG
Utu=——s— — v+v=———

Muvg € du’ MvZ e v 39

Keeping only terms linear iffi; or p; (or G), Eq. (3.3 be-
comes

of, .of, .of, of,  ofy

+u—+v——u—.—v—.
d¢ dv Ju v
e ofg 0G  of L?G
_ Bl dto Ity (3.10
Mvo Ju au v v

Sincef, is a function ofu®+v2+u?+v?, as in Eq(3.2), we
can write

oy oo .
220y, 2=20f,.
ou Jv

(3.11

If we now write

f1(u,0,U,0,¢)=0(u,0,U,0,$)FH(UP+v2+U2+0?),
(3.12

all operations orf, on the left-hand side of Eq3.10 will
cancel, leaving

g 8g+ dg a9 a9

v——u——v—=R(U,v,uU,v,¢), 3.1
P pranl b i ( ®) (3.13
where the right-hand side is
R e Bl +' 3.1
(U,v,U,0,¢)= Mvoeu&u vl (3.19

Equations(3.8) and (3.13 are coupled integro-differential
equations. Since the operator on the left-hand side of E

(3.13 corresponds to the sinusoidal orbits in E}.8), Eq.
(3.13 has a formal solution, which can be written as

g(u,v,U,i),¢)=fidt/;R(u’,v’,U’,z}’,z/f), (3.19

where

with our guess foiG. Remarkably, our guess, which is al-
most identical to the form used for the matched KV beam,
works once again.

We now conjecture thab(u,v, ) is

G(u,v,¢)=P(¢)F(u,v), (3.18
with

F(u,v)=(u+iv)™F(—j,m+j;m+1;u’+v?)

i2(m+j+1-1)!
—A. H l+mg,, |
=02 T nig=nr (U)o
(3.19
where dj,=j!m!/(m+j—1)!, and show in the Appendix

that Egs.(3.8) and (3.13 can both be satisfied as long as
P(¢) satisfies the integral equation

Q
P(¢ =—af AR5y, (320
where
, —1)'(m+j+r—1)!
Q(¢—¢)=(—1>JZ( AL R O T

rr(m+r)t(j—r)!
=(—1))[djm] *cos ()

X oF1(—j,m+j;m+1;cod(p— 1)) (3.21)

and o(¢) and a are defined in Eqs2.10 and (2.11). To
recapitulate, we have confirmed that the conjecture for the
electrostatic potential in E¢3.18) leads to a perturbed phase
space density in Eq(3.12 that reproduces the perturbed
space-charge density corresponding to the potential in Eq.
(3.18), providedP(¢) satisfies the integral equation in Eq.
(3.20.

IV. DIFFERENTIAL EQUATION FOR P(¢)

The integral equation foP(¢) in Eq. (3.20 can be con-

Qerted to a linear differential equation with periodic coeffi-

cients. As an illustration, we consider the case2, m=0,
for which

1 3
Qlp—y)=5-2 cod(¢p— i)+ Ecoé‘(qﬁ— y) (4.1

and
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dQ _ _ where the matrixT depends onp becauses depends on
e —4 sin(¢—y)cos ¢p— ) +6 sinp—)cos(d—#) 4, and has the explicit form
sin2(p—4y) 3 sind(¢—y) 0 1 0 0
I R 4.2 0 0 1 0
T(¢)=
Equation(3.20 can then be written as 0 0 . 0 !
—64+4a0c—2a0 —4ac —-20-2ac O
sin2(¢p— ) B 3sind(¢p— i) (4.12

¢
P(¢>=af dyP()o(y) — 7
o If one divides the breathing period into small intervals

d¢,, the matrix corresponding to one period can be written
We now take successive derivatives of E43) with respect @S the(infinite) product
to ¢, obtaining contributions from both the upper limit of the
integral and the integrand. Specifically, 7:1_[ [1+T(¢)de]. (4.13
|

4.3

. ¢
P(¢)=a f dyP(¢p)o(y)[cosA¢—y)—3cosdd—)],  Diagonalization of7 then determines the stability of the
o (4.4) mode denoted by,m for the space charga and the mis-
' match contained ir( ¢). Specifically, the mode will be un-
) stable if the absolute value of any of the eigenvalue¥ f

P(¢)=—2aP(¢)o( ¢)+af::dl,/fp(l/l)0'(l//) greater than 1.

For generaj andm, ¢Q/d¢ can be written as the sum of
X[—2sin2 b— ) +12 sind bp— )], (4.5) j+m/2 orj+(m+1)/2 terms in the form

_ _ dQ .
P($)=—2a[P($)a($)+P(d) ()] Ty = 2, vsin2i+m=2n¢. .14
¢
+af dyP(¢)a(h)[—4 cos2 ¢p— ) By taking 2j+m or 2j+m+1 derivatives ofP(¢), it is
‘°C always possible to construct a linear combination that elimi-
+48 sind ¢— )], (4.6) nates all the integrals, as we did in £4.8). The order of the

resulting differential equation is j22m for m even or

v 4y — _ O - . - 2j+m+1 for m odd, as is also the dimension of the vector
: = + +
PY(¢)=—2a[P(¢)o(¢)+2P(P)o(¢)+P(d)a(e)] V and the square matrig

¢
+4daP(p)a(¢)+ “J,md‘pp(‘/’)a( ¥ V. NUMERICAL STUDIES
X [8sinA p— 1)) — 192 sind p— i)]. (4.7 To determine the stability of a particular mode of density
oscillation, we first solve Eq2.12) for the envelope oscil-
It now is possible to construct a linear combination of Egs.lation numerically and substitute the valuesagfo, and &
(4.3), (4.5, and(4.7) in which the integrals cancel. Specifi- for a breathing period into the product of E@.13. The
cally eigenvalues of the transfer matrikfor a breathing period
. i i o can then be obtained for various values of the parameters
P'Y+20P+64P=—2a[Po+2Po+Po]+4aPo (4.8 a and o;. The numerical calculations show that, for small
tune depression, the results for the eigenvalue converge rap-
or idly as the number of subintervals reaches 1000. Since lower
_ . o space charge gives a larger breathing pefafdEgs.(2.13
P'v+(20+2a0)P+4acP+ (64— 4ac+2a0)P=0. and(2.14], the number of steps to complete the matrix prod-
(4.9  uct needs to be increased by makitigh small in order to
achieve the required accuracy as the tune depression in-
Since o(¢) in Eq. (2.12 is a periodic function of¢ with  creases. Another way to improve accuracy is to use the

period ¢, Eq. (4.9) is a Mathieu-like equation foP(¢). Runge-Kutta method. By assuming that the initial condition
We now define of the ith component of the vectov is 1, and zero else-
where, theith column of the one-turn maf can thus be

P=L, L=K, K

H (4.10  obtained from the solutions of at the final point of one
period. The eigenvalue spectrum is then obtained after the
and letV be the four-component vectoP(L,K,H). Equa-  construction of the whole map.
tions (4.9 and (4.10 can then be written as the single If we use a fourth-order Runge-Kutta algorithm for large
4X4 matrix equation tune depression, the number of steps needed to achieve the
_ required accuracy is much smaller than with the matrix prod-
V=TV, (4.11 uct. However, since a larger initial mismatch causes a larger
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1.0 1.00
stable
0.0|(,m)= ¥0.0 0.95 stable
— 0.00] ¢ P m)e=
A 0.05 F 0.90 (i,m)=(3,0)
0.8|| o o.10] J A
+ 020| } 085 |a 0.0
18 ¥ PIC |} .. p v o o1o
0.7 ] e ST + 020
| & 0.80 X PIC
0.6 v0.23  #0.11" 0.75 L.
£ unstable O '\\ L
05 Y . 0.70 unstable 0.20  %0.092
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
n n
FIG. 1. Stability limits and growth rates for the=2,m=0 FIG. 2. Same as in Fig. 1, but for the=3,m=0 mode.

mode in the mismatchy() tune depressionz) space. Contours for
growth rates of 0.05, 0.10, and 0.20 are shown, as well as growt

Q ual to 2. It is believed that the other slits appearing in the
rates obtained from particle-in-celPIC) simulations. q PP 9

stable domains are also due to the occurrence of resonances

and sharper amplitude of envelope oscillation, the numerica{c r particular parameters of tune depression and mismatch.
P P P ' s for the higher mode€3,0) and(4,0), the ¢= 7 resonance

integration scheme needs more steps to yield sufficiently ac- . . A .
curate results. Therefore, for high space charge, we use tlfleggﬂ:z %lgts'rggecg ttrt]);iSltzk;!i“sni/s“rznolttsslezr]lai;IZi;ﬁ?r/ gi]e geoerp
matrix product that is much faster than the Runge-Kutt One can also see that as the number of the rad%él mode
method and gives accurate results. For low space charge, the. = o

situation is just the opposite. The two methods neverthele is_higher, not only does the stability limit o move

give convergent results with differences less than 10 ppm. b agkwgtrﬁ,f "3‘1' to §mallterhspace cha:tg);e, but also the stable
Starting with the integral equation fé&¥(¢) in Eq. (3.20 Tﬁf‘ Wi i Otrh te r?llsma;c parin;lete Ke\(;(:)mes nﬁ]rrower.

and making the transformation in a fashion similar to that Is implies that, at least up §o=4 for a €am, the area

shown in Sec. IV, we obtain differential equations for of stability decreases gsincreases. We have obtained also

p and P similar to the one in Eq(4.9 for Some results on thg stability_of even h_igher moﬁe§ an_d

Psogzg In theA?:Ea\(i)e Olf a: matched beamléo jéon)stanl j=6 mostly from direct multiparticle simulations described

Pgo((ﬁ)- takes on the sinusoidal form expﬁn@oln this case Pelow. Based on these results, one can conclude that their
jm :

. : - stability boundaries are close to that for the mqgde4.
the eigenvalued zo, Ago, andho satisfy the equations However, since both the numerical analysis and the mode

(N2— 16)(\2y—4) =2aoo( N3+ 2), (5.1  amplitude extraction from simulations are rather involved for
these high-order modes, we have not yet carried out the de-
N2 —36)(A2— 16)(N2.—4) =2 N —AN2 1 48). tailed study.
(Ao~ 36)(h30~ 16) (N30~ 4) = 2a00(Ago~ 430 25_2) Our numerical procedure in obtaining the eigenvalues of
T also provides the growth rate per breathing period in the
(A2, 64) (N 25— 36) (N 25— 16)(A2y—4) unstable region as a function of and ». In Figs. 1-3 we

also show the contours corresponding to growth rates of
=2a0o(\§o— 26030+ 3042+ 1296. (5.3 5%, 10%, and 20%. The values far=1 agree with those
obtained earlie8,9], which predicted instability for tune
Note that the breathing modaio— 4)=2a0, is always depressions below 0.4. The present predictions are dramati-
stable and the matched beam’s stability limits of the modes
(j,m)=(2,0),(3,0), and (4,0 are where 7jy,;;=0.2425,

0.3859, and 0.3985, respectively. In fagct=0 is the most 1.00 tabl

restrictive mode for alin andj =4 is the most serious mode sta *:o/;m

that gives the largest threshold value mfi.e., the smallest 0.95 ' '

space-charge limit, for allj(0) modes[8]. Therefore, the (1,m)=(4,0)

(4,0) mode is the least stable mode for the space-charge limit 0.90| — %00 %0.035

of a KV beam. In Figs. 1-3 we show the stability diagram p A o0 \

for these three cases im-7» space, whereu=a;/a,. The 0.85| | + o020 %\

value of 7;mi: on theu=1 axis for each case is confirmed in x_PIC ;

the figures. 0.80 i x0.073
The cusps appearing in these stability dlagra_ms are caused unstable © %, T

by the resonances of the mode frequency. In Fig. 1, the deep 75 5 3

fissure up to the matched parameter 1 is where the phase 0.0 0.2 0.4 0.6 0.8 1.0

advance of th€2,0) mode oscillation during one period of n

the breathing mode is. Note that this resonance is where
the ratio of the breathing frequency to the mode frequency is FIG. 3. Same as in Fig. 1, but for the=4,m=0 mode.
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cally different: instabilities are possible for almost all tune

depressions if the mismatch is sufficient. : —

W"\/\\:
VI. MULTIPARTICLE SIMULATIONS ;

2.5t f
We have also performed multiparticle simulations for an M
azimuthally symmetric breathing KV beam. For=0 it is
easy to show that the charge density of the moden) is
proportional to

Pio(W)~ — V2Gjo(W) = 4i2Gjo(W)/(1-w?). (6.1

The orthogonality relation for the hypergeometric function
,F1 then yields

1 50 100 \ 150 200
FIG. 4. Maximal beam radius versus the number of breathing

oscillations forp=0.7 andu=0.8. Stars are for the average over

which can be used to project out each valuej dfom the
pro) K ‘the period, dots show the minimal and maximal values.

numerical results for the charge distribution. Using this pro
cedure, we start with the order of 1articles distributed in
phase space according to E§.1) for a particular mismatch the halo intensityh as the number of particles outside the
n and depressed tung. All unstable modes will start to boundaryr,=1.75 divided by the total number of particles
grow from the noise. By projecting out the amplitude of thein the beam. While such a definition looks rather arbitrary, it
jth mode charge density we can determine whether it is unis convenient to compare beam halos in the wide range on
stable and, if so, what its growth rate is. It is of coursethe tune depressions. The evolution of the halo intensity is
necessary to examine the growth at low amplitude since thehown in Fig. 6 for the same parameters as in Figs. 4 and 5.
phase-space density of the core will be altered when the un- Exploring the KV beam behavior for various values of the
stable modes become too large. tune depression and mismatch reveals the picture shown in
This procedure was followed for several different valuesFig. 7. The marks on thez(u) plane have the following
of u and » usingj=2,3,4. The results are shown on Figs. meaningH corresponds to beam instability with halo forma-
1-3 as specific points for which the growth rates are meation and usually with a noticeable growth of the beam rms
sured. As can be seen, the growth rates obtained in the mutmittance,U means that the beam is unstable, but a halo is
tiparticle simulations agree closely with those predicted fromnot observed, at least at the level detectable in simulations
the matrix eigenvalues. done, andsS indicates beam stability. One can see that even
The particle-in-cell simulations are also used to study haldhe matched KV beam is unstable for tune depression
formation in the presence of instabilities, as a function ofy<0.4, in agreement with the existing thedi#] and earlier
tune depressiom and mismatchu. We load a mismatched simulations[8]. The most intriguing feature of the diagram
initial KV distribution choosingr;= ur;, r{ =T,/u, where  shown is the lack of any essential dependence;dar mis-
T,.T; correspond to the matched distribution, and use leapmatched beams. On the contrary, the qualitative changes de-

frog integration to track the particles. A typical range of the
simulation parameters is as follows: time stap=T/100,
whereT is the period of breathing oscillations; total number
of particlesNp,= 16K-409&, whereK=1024; and radial
mesh sizeAr=a/128-a/16. In simulations we use dimen-
sionless variables normalized in such a way that
a/ .@min=1 and matched radius=1/\/7.

The beam evolution depends on the valuegy@nd w. If
we look at the maximal radiug,,, Of the whole ensemble of
particles, a rather typical picture of the beam behavior is
shown in Fig. 4 for the particular case afj=0.7 and
u=0.8: after a number of breathing oscillations a fast
growth ofr 5, OCcurs, after which the maximal radius shows
more or less stable oscillations around a new level, which is
usually more than twice the initial one. The beam distribu-
tion in the transverse phase space’ after that moment 0
clearly shows the presence of the beam halo; see Fig. 5. This ' r
figure is a stroboscopic phase-space plot for a small sample
of particles with low angular momenta. The number of par-  FIG. 5. Stroboscopic plot in the transverse phase space for 125
ticles that escape from the beam core to larger radii and thugarticles with low angular momenta. The dark elliptic arc corre-
form the halo is counted at each integration step. We defineponds to the initial distributionsft=0.7, ©=0.8).
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x10~° af
7t .
al 25
6_
2-
5_
r/a
4 1.5- ] p=0.6
h
X = u=0.7
18 1 +----= n=0.8
2_
0.5r
1_
0 . . . . . . .
o - . . 03 04 05 06 07 08 09
50 100 Ny 150 200 n

FIG. 8. Ratio of halo radius to the matched beam radius vs tune

FIG. 6. Halo intensity vs the number of breathing oscillations. depression; for mismatchu =0.6,0.7,0.8. Curves show predictions
Stars are for the average over the period, dots show the minimal aref the analytical model.
maximal values §=0.7, »=0.8).

The halo intensityh defined above is shown in Fig. 9 as a
pend primarily onu. Thus, whenu changes from 0.6 to 0.8, function of tune depression and mismatch. It can be as large
the ratio of the final beam rms emittance to the initial oneas a few percent for mismatgh= 0.6 and decreases an order
decreases from 1.7-2 to 1.03—1.07. There is some depeff magnitude as the mismatch decreases from 40% to 20%
dence ony of the number of breathing periods after which for a given tune. As for an apparent decreasehoas »
the beam radius starts to grow noticeably and the halo formglecreases for a fixed mismatch, it is due to the definition
For example, with the 40% mismatgh= 0.6, it takes 10-20 used: we count particles in the halo witk>1.75, so that
periods for the beam to reach its maximal size #p£0.3, the boundary radius increases as/71/ If we use instead a
while for »=0.9 the same occurs in 50-90 periods. This isfixed boundary, the same for all tunes, the halo intensity
related to the fact that the growth rates of the unstable modesould be larger for larger space charge.
are larger for smaller values of the tune depressipas seen
in Figs. 1-3.

To make a comparison with predictions of the analytical
model of halo formation via the parametric resonance with We have analyzed the stability of a breathing KV beam
breathing oscillation$6], the ratio of the halo radius to the by constructing the eigenmodes for charge-density fluctua-
matched beam radius is plotted in Fig. 8. One can see thdions. For these we determined the stability limits for the
this ratio is almost independent of the tune depression for =0, j=2,3,4 modes in the mismatclu§ tune depression
given mismatch and slightly lower for smaller mismatches.(7) space as well as the growth rates per breathing period
For ©=0.8 there is better agreement with the analyticalwhen the mode is unstable. We then used a multiparticle
model, as it should be, since the latter is applicable for smalsimulation to confirm both the stability limit and the growth
mismatches. Since the beam matched radiud/\/7, the rates.
same scaling law holds for the halo radius. These calculations show clearly that a breathing beam is

much more likely to be unstable than a perfectly matched

VII. SUMMARY AND CONCLUSIONS
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FIG. 9. Halo intensity vs tune depressian long-dashed line,
FIG. 7. Beam behavior vs tune depressiprand mismatchu u=0.6; short-dashed lingy=0.7; and dotted linex=0.8. Points
(see the text for the legehd with error bars are from simulations, curves fit the data.
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beam. For example, with a matched beam,jthel mode is From Eq.(3.16), we havedu’/dy=u’ anddv'/dp=0v".
stable as long as the tune depression is not bejew0.4, e therefore can write Eq3.14) as

while with a mismatch parametgr=0.9 (~10% mismatch
the j=4 mode is unstable even gt=0.8. At the same time,
the growth rates are much smaller at higher valueg.offin
fact, multiparticle simulations indicate that the instabilities
are highly nonlinear and appear to saturate without excessive

growth.

The simulations reveal also that stability of a mismatchedand obtaing from Eq. (3.15 as
KV beam, as well as its halo intensity, depends primarily on
the mismatch, not on the tune depression. The numerical se (o s
results show, particularly, that the ratio of the halo radius to AR N N
that of the matched beam is independentsgfand this g(u’.v,utv’,é) Mvéefocdwp(l//)ﬁ(l//)ﬁw(u v
agrees reasonably well with predictions of the analytical (A3)
model[6] for halo formation.

Though our analysis is valid only for a KV beam, we
believe that similar instabilities will be present in other equi-
librium beam distributions when they perform collective os-
cillations such as breathing. We plan to examine multipar-
ticle simulations for other phase-space distributions such as
the waterbag.

The implication of the above conclusions is clear. Every;ng from Eq.(3.16 find that
effort must be made to minimize beam mismatch, particu-
larly when transitions in the beam channel occur. In addition,
designs should use modest values of the tune depression. In u'+iv' =wce - fse X, (A5)
this way we may be able to minimize or avoid the presence

of beam instabilities, which are likely to lead to halo forma-
tion. From Egs.(3.2), (3.8), and(3.12 we then can write

R(U' v’ o _ 2e
(u',v',u"v ,l//)—Mvg c v Ew

We now write

uriv=we? u+iv=_ge*x, (A4)
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APPENDIX where( ), stands for the average ovgr From Eq.(A3)

In this appendix we show that the conjecture in Eqgs.

(3.18 and (3.19 correctly satisfies Eq93.8) and (3.13. _2e (¢ dJ .
Here P(¢) is a function periodic ing (with period ¢, the <g>X_|\/|U(2)6Jwdwp(‘p)ﬁ(‘/’)w“:(u )y (A7)
same as that of the breathing oscillajiomwhich is to be
determined. The corresponding charge density, according to
Eq.(3.8), is Using Eq.(3.19,
_ 4e P(9) (—D'(m+j+1-1)!
pl(u,vyd})—_T'B(@ dij (I=DHm+1=DHG =1 (F(u",v")),=d; > (_Ill)l(mlJrleT?)!
’ m I(m+D)!(j—=1)!
(u+iv) ™ Lu—iv)'? | y " 'X)|(+Jm :
_4aP(d) ¢ (C1'mijtD) X«WC?.,,_&éf |
e B(d) M i(m+)I(j—1-D)! X(wee = ¢se 1)), (A8)

X (u+iv) " ™u—iv), (A1) o
We now expand the two factors withi¢), in powers of
with m andj—1 being the number of azimuthal and radial {se"'X. The average ovex vanishes unless the power of
nodes in the perturbed charge density. {se"'X is the same in each factor. Thus
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. (=D (m+j+1—1)!(wc)? *m-2ps2pg2p
ot —d. imé
(F(U"07),=djme XZ Ep (I=p)t(m+1=p)I(j—!p!p! (A9)
|
Guided by Eq.(A6) we find This makes it possible to do the sum oVeusing
J
a2 Fd -1 5 (—1)(1+E)!
| ) ~7 (A+DH(B-DH!(C+1)!
— d gy, (I Z ! (~1BE-A)I(E-C)!
m | (=Dt : : (A14)

! s

(Mm+I=p)t(I=p)!4q =

W2q02r(_ 1)q+r
QT —g=D(r=T+p) (="
(AL0)

x>

p

where we have collected the exponentsvoéndc to obtain
w29¢c?" by using

gZp—ZZ(l_WZ)p—l

-3

q

(-1 "*P(p—1)!
@-I+pt{-g-1!

WZQ*2/+2p (All)

and

(—1)""*Pp!
(r=1+p)t{d—r)!

sP=(1-c?)P=> 2r—21+2p.

T

c (A12)

The sum ovep in Eq. (A10) can now be performedLO]
using

1
(A+p)!(B—p)!(C+p)!(D—p)!

B (A+B+C+D)!
~ (A+B)!I(C+D)!(A+D)!(B+C)!"

>

p

(A13)

T (A+B)I(B+C)I(E-A-B—-O)!"

Remarkably, this leads to the factorization of E410) into
the product of a factor depending @snand a factor depend-
ing onc. Specifically,

9
(9_§2<F>X|§2:1—w2
. < (—1D)WI(m+j+q)!
—d. maimé, _ 13]j
A D T TR RT]

(=D e ™m+j+r—1)!
(m+r)trt(j—r)!

x>

r

(A15)

where the first factor closely resembles the second factor in
Eq. (3.19, using uxiv=we"'? and |—q. Using Egs.
(3.19, (A6), and(A7) and canceling the factor depending on
w on each side of the equation, we finally obtain an integral
equation forP(¢),

)

T (A16)

m¢»=—afdwm¢ﬁww>

whereQ(¢— ¢) satisfies Eq(3.21).
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