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A two-stage free-electron laser with a specially designed delay of electrons in the drift region between the
two wigglers allows us to obtain essentially positive gain as a function of detuning, i.e., “lasing without
inversion”(LWI). The key physical assumption is that itpsssibleto tell which electrons emit and which
absorb laser energy. We here show that straightforward attempts to realize LWI operation in a free-electron
laser are frequentlybut not inevitably frustrated by the difficulty of telling the difference between emitting
and absorbing electrons. We propose a scheme utilizing both transverse and longitudinal components of the
electron velocity to achieve cancellation of absorption. Numerical simulations verifying the validity of the
scheme are presentd§1063-651X96)03712-9

PACS numbes): 41.60.Cr, 52.75.Ms, 42.50.Gy, 42.50.Vk

I. INTRODUCTION to produce an asymmetric spectrum of gain, such that elec-
trons whose injected energy is less than the resonant energy
By utilizing the concept of quantum coherence and interan be essentially ignored by the laser whereas electrons
ference it has been shown that it is possible to achieve lasingith injected energy greater than the resonant energy led to a
without inversion(LWI) [1] in ordinary laserd2]. These net stimulated emissiofsee Fig. 1
ideas have potential for application in the realm of short- We note that there is a common feature of LWI in ordi-

wavelength laser operation. On the other hand, the questiomary lasers and FELs, namely, absorption cancellation due to
naturally arises: “can we have LWI operation within the interference. This interference is of a quantum nature in or-

context of the free-electron laséfEL)?" dinary lasers, and has a counterpart in extremely short-

In previous work{3] it has been shown that it is possible wavelength FELs, where a quantum description is appropri-
to achieve a sort of FEL operation within a LWI context in ate (see [3]). Furthermore, in the classical regime, the
the short-wavelengttsingle quantumregime. The key idea €lectrons still have the phase relative to the ponderomotive
was to implement a situation in which an electron beam in{otential, and can interact with a laser in such a way that
teracted with the laser field in two sequential regigwig-  radiation in one wiggler interferes destructively with radia-
glers. In such a situation it was found that it was possible to
arrange for the cancellation of absorption of radiation while 0.04
at the same time retaining emission.

The notion of inversion in FEL is very different from that
associated with ordinary lasers. However, the use of gener- 002 |
alized Bloch equations for FELit] allows one to draw a
connection between the description of a FEL and an ordinary @ o.01 |
laser, as well as to define the notion of inversion. Thus in a 5

0.08

usual FEL net gain predominantly occurs if the majority of 0

the electrons have the momentum above the resonant one, ey,

and loss occurs otherwise. In our FEL scheme, net gain is 001 F 1117 LT ]

possible even if only a minority of the electrons are above 002 | L o I 11

the resonant momentum. wiggler 1 wiagler 2
LWI in ordinary lasers is a result of quantum interference -0.03 s : . s -

with no classical explanation. But is it possible that LWI 16 0 5 10 15 20 25 30

operation in the FEL can be extended to the classioany
guanta of energy per electroregime[5]? In a recent paper DETUNING
[6], it was argue‘?' th,at SL_JCh a possibility exists and a tem"’,‘tive FIG. 1. The setuglower right-hand corngrand the numerical
scheme for aCh'ev'r_‘g it was propose.d. In that analysis fesult for the gain as a function of detuning for laser without inver-
double-wiggler configuration was again assumed, and theion proposed ifi1]; A2T=0.03. Here and elsewhere we plot the
electrons were sorted in the drift region according to theilgimensionless gain-(y)/(P8T3 and detuning® in units of
injected energies, see Fig. 1. It was argued that it is possiblg T, whereT is the time of flight through one wiggleN is given
by Eq.(8) and is directly related to the strength of the ponderomo-
tive potential, and® governs the period of electron oscillations, see
*Electronic address: nikonov@phys.tamu.edu Eq. (19).
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Both fields arey polarized, andp is the phase of the laser
field at the instant of the electron entry into the wiggler.

X The Hamiltonian does not depend explicitly gnthere-
kw k fore
/ —— [/r L g
] Py oH
z Y =

If the initial value of the momentum is zerp,(0)=0 [9], it
remains zero at all timggy(t) =0. Then the wiggling motion

. /r>' in this direction is described by the component of the ve-
. - locity

FIG. 2. Schematic of the wiggler and laser fielttsp), and the ﬂ: ﬁ: —eA =p.. (4)
momentum change in the processes of emission and absorption dt Jpy ym Y
(bottom.

For the other coordinates

tion from another wiggler. Thus LWI is achieved via purely
classical interference in the FEL. d_Z: ﬁzﬁzvz, %: ﬁzﬁzvx_ (5)

The key physical assumption for LWI in FEL is that it is dt dp, ym dt  dpx ym

possibleto tell which electrons emit and which absorb laser ] o

energy. We here show that straightforward attempts to realh the equations for the derivatives of the momenta there are

ize LWI operation of the type mentioned in the precedingterms of interaction with the fleIQS having various depen—

paragraph are frequentifout not inevitably frustrated by dences on the time and the coordinates. Of those, follqwmg a

the difficulty of telling the difference between emitting and Standard procedurgl0], we drop(an analog of a rotating-

absorbing electrons. Specific examples are provided in whicave approximationthe terms that are rapidly oscillating in

LWI-like operation within the context of a FEL can in prin- the frame of reference of an electron moving with the in-

ciple be realized. jected velocityv;<c but close toc. The remaining“‘near-
Furthermore, we show that the correspondence betwed§sonant’) terms oscillate slowly in this frame of reference.

the angle of the laser field propagation and the injected lonln this way we obtain the equations of motion for the energy

gitudinal velocity can be the key for introducing a velocity- and momentdsee the Appendix

selective phase delay that cancels absorption by interference q

between th_e_ inte_raction in two consec_utive wigglers. This —y=/\/sin(—Avt+qzz+qu+¢), (6)

phase-sensitive interference scheme is an example of a dt

purely classical LWI action which does not rely on the quan-

tum nature of matter, as it does in atomic schemes. The con- mc? dy_ 1 dp, 3 1 dpy

clusion of the present work is that it is in principle possible Av dt q, dt g, dt’ @

to reduce the lasing threshold for electron beams with sig-

nificant longitudinal velocity spread. In the following we de- where

velop these ideas in detalil.

e?2ApA Av
N=——m— ®
Il. EQUATIONS OF MOTION AND GAIN m=c-y
The classical dynamics of electrons in a free-electron la- The argument of the sin function in E¢p) is the phase
ser[7] is described by the Hamiltonid3] relative to combined action of the wiggler and laser fields
(“ponderomotive potential?,
— =c\(p—eA) 2+ m2c?
H=ymc*=cy(p—eA)*+m'c’, @ Y=—Avt+0q,z+ X+ . 9

wherem is the mass of an electroe, is the charge of an Equation(7) expresses the relation between the momentum
electron,c is the velocity of light,y is referred to as the (gx=k_siné, q,=k_cos#+ky,) and energy fdv=v_—vy)
Lorentz factor,p is the canonical momentum, adis the transfer in each act of a photon emission or absorptse®
vector potential of the combined electromagnetic field of theFig. 2) [11].

wiggler, situated along the axis (designated by a subscript ~ Gain in the case of electrons injected with a certain initial
W), and the laser fielddesignated by a subscrip), which  energy(“cold beam regime’) is proportional to the flux of
propagates at an angfeto the axis of the wiggler, as in Fig. electrons and the change of energy of all the electrons aver-
2,is aged (which is designated by )) over the uncontrollable
phase at the injectio®« —(Ay). The dynamical equations
simplify in the case when electron energydoes not differ
very much from the injected energy or a certain resonant

+ A cog — v t+k zcosH+k xsind+ ¢)]. (2 energyvy, and the longitudinal coordinate and velocity differ

A= 29[AWCOS( - V\Nt - sz)
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by a small amount from a uniform motion with the injected In the next order in the lasing field, the coordinates are
velocity; z=v;t+ 6z and v,=v;+ dv,. The equations of from (14),

motion become

c? [t
y 2=y f A%, (20
Tp = NSIn(Qt+ 0,67+ gx+ ¢). (10 vyrJo
Here x<1>(t)— Ay f AyO(t")dt'. (21)
Q=qu,;i—Av=q,v,—v,) (11

Expansion of(10) around the solutiof19) with the above

is the detuning of an electron from the resonance with th&oordinates gives
ponderomotive potential, and dyD

N 12 = Peos Qt+ N fAy (tHdt'. (22

is its velocity corresponding to the resonant eneygy The  when integrated over time and averaged over the injection
equations for the VE|0C|ty Componer(EEG the derivation in phasesi the Change of energy, and Consequenﬂy gain’ is non-

the Appendix are zero in this order of perturbation.
2 In order to focus on the effects of interference of radiation
dv, g dy (13  Processes, we will consider interaction in two identical wig-
dt Ay’ dt’ glers of lengthL,y with a drift region between them, in ac-
cord with the setup in our previous wofl]. The time it
dv, q.c? dy takes an electron to traverse a wigglerTis-Ly,/v,. The
dt = Avy, dt- (14) effect of the drift region is an addition of phase delay in

the second wiggler relative to the first one, which, from ex-
The equations demonstrate that there is a one-to-one corramining (9), is seen to be
spondence between the infinitesimal change of each compo-
nent of the velocity and the change of energy. These equa-
tions, though describing a two-dimensional motion, result in
the pendulum equation with the phage

SGC . .
Ay= sL—7+x,,sm6—x|sm0 , (23

wheres, ands, are the paths of an electron and of the light
wave in the drift region, respectively,is the angle of propa-

= Nsmzp, (19 gation of the laser in the second wiggley,andx,, are the
transverse coordinates at the exit from the first wiggler and at
P (0)= o, (16) the entrance to the second wiggler, ands the absolute
value of the electron velocity which is not changed in a
l'p(o):Q, (17) purely magnetic field of the drift region. The optical klystron
[12] is a specific case of this phase delay witk x,; =0 and
N?c? oo S.=S,, but it is not considered here.
P= W(’)’rqx—"_qz)- (18 . Then the change of energy in the second wiggler is given
y
It is seen from Eq(15) that the motion in the wigglers is dy
1l

effectively one dimensional, i.e., similar to that wigh=0.

However, this is not true for the drift region, where the two-

dimensional dynamics of the electrons is different from the 0

one-dimensional case. dyj
dt

=NsiNQt+p+Ay), (24)

=Pcod Qt+ ¢+ AY)N~ fAy“’dt' (25)

Ill. PERTURBATIVE DESCRIPTION OF MOTION
Application of Egs.(22) and(25) yields the phase averaged
An analytical solution to the above equations can be obenergy change in the whole laser,
tained in a perturbation series in the laser amplit(idethe

small parameteN2T, see furthey, following the method of

[10]. The indices | and Il refer to the first and the second (A7 )> [ZQTS'”QT“LA'COSQT 4+2QTsin
wiggler, respectively. In the zeroth order of perturbation, the .
coordinatesSz andx vanish, which yields X(2AT+AY)=2QTsin(QT+Ay)
dﬂO) +2coAy+2c0g20T+Ay)
= +
=ASIn(QL+ ¢). (19 —4cogOT+AY)]. (26)

When averaged over injection phases, the net change of the For the case of a usual FEIAg=0) this gives the well-
energy(and consequently gairs zero in this order. known expression
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0.04

A —2T37Dli c2 | (27) . . .
(477 (21)7Pg gt Sine loar. 002 | /\
0

where sine=sina/a.
For the case of the laser without inversion proposed in our -0.02

previous work{6] the phase delay was chosen to be g:; 004 |

ay—| O TR TEOTAT e g = 00| [ISess——NCa=ak

lﬁ_ W_qz(vzi_Ur)TEﬂ'_QT, UZi<Ur- ( ) .0.08 - T 3 o |

wiggler 1 wiggler 2
In this case 0.1 |
-0.12 |
#p L sing 0.14 R
(A7) =0(Q)(2T)°Pg g(SiNCa)|¢=a1i2s (29 S e
and we see that absorption is completely canceled for the DETUNING

negative detuninggl3].

The maximum gain for LWI is lower than for a usual
laser, but its advantage is manifested under conditions of
broad electron distributiony(v —v) over injected energies
(“hot beam regime’). Gain in this regime is obtained via the
expression for the gain of a monoenergetic electron beam

FIG. 3. Implementation of LWI using the exit velocities of elec-
ons from the first wigglefinse) as per phase delay given in Eg.
3). The numerical result for the gaity2T=0.03, the step func-

tion is smoothed to the slope of 1 in units QfT.

'Therefore instead di28), the phase delay will be given by

0—- z2\Uz™ rTr 2= Uy
A*H BT, (33

T—=0(v,—v )T, v,<v,.

Ghot(v_):J G(Q(v")g(v' —v)dv". (30

Then the integral of the gain curve is important, ) o o
Since the change of the velocity is small, it is reasonable to

think that the phase delay28) and(33) would be essentially
lg=— j (A9)d(20T). 3D the same. However, this is not the case and the gain turns out
to be significantly altered. The result of numerical solution
If it is nonzero, the gain for the broad distribution is propor- using Eqs(10)—(14) for the case of the dela§83) is shown
tional to the inverse width of the distribution. If the integral in Fig. 3. The integral of this function is found to be zero.
|4 is zero, the gain is much less: proportional to the square of The reason for the sharp spike close to the resonance is
the inverse widt{se€e[6]). For a usual FEL the integréB1)  the peculiar behavior of electrons in the vicinity of the ve-
over only positive detunings locity v, where the step of the phase delay occurs. To this
end, we note that electrons with initial velocity less ttihat
near to v, can end up with velocity greater than and be
indistinguishable from the electrons injected with velocity
greater than, , see Fig. 4; and vice versa for electrons with
and the integral has exactly the opposite value over the neggelocity initially greater thar, .
tive detunings, so that the overall integralzera For the Even for the case of a very weak laser fi@ihich there-
LWI case the integral over the negative detunings is zerofore implies a small velocity chanygéhe role of the electrons
and the integral over positive detunings still has the valuen the vicinity of v, is crucial. In the vicinity ofv, the above
(32), i.e., 1/4, disregarding the constant factors, so that thglescribed perturbation procedure has a singularity. The

overall integral is positive. _ change of energy averaged over the injection phases does not
We performed numerical simulation of the electron dy-

namics using Eqg10)—(14) without the small field approxi-
mation. The unitless gain for the LWI scheme is shown in
Fig. 1. It is in an excellent agreemefthe difference cannot /
be resolved in this plotwith the analytical resul(29) even

for moderate laser amplitudes.

1
Ig: (ZT)sz, (32

\")
z

IV. SINGULARITY IN ONE-DIMENSIONAL MOTION

A
/

T
&

However, there are subtleties associated with the straight-
forward application of these ideas to the FEL. The root of the /
difficulty is that the equipment producing the phase delay ¥
(e.g., the magnetic field in the drift regipwill have as an
initial condition the velocitiesy, of electrons as they exit
from the first wiggler. This is, of course, different from the  FIG. 4. Diagram showing electron energy and phase change
initial velocity v,; with which they enter the first wiggler. close to the step separating phase-delay domains.
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vanish in the zeroth order of perturbation. However, outsideeomparable with the homogeneous width. This step existed
this vicinity, such that none of the electrons will crass, as a function of the velocity at the exit from the first wiggler.
the gain is the same as given in the preceding section. Due to even very small changes in energy, the electrons were
To express this quantitatively we recall the expression foexperiencing a phase delay very much different from the
the change of energy in the first wiggler and the seconaptimum one. Hence we come to the conclusion that absorp-
wiggler, tion cancellation can only be realized if the steplike part is a
- function of the injected velocity. The smooth part can still be
Ay, =NTsin(¢)sind 1 T/2), (34)  the function of the exit velocity from the first wiggler with-
_ out affecting the gain significantly. Thus we aim at imple-
Ay =NTsin(¢+QT+Ag)sind QT/2), (35 menting the following delay function:

where ¢= ¢+ QT/2. Depending on their injected energies 0—0,(v,~v)T, v, >v,

and phases, the electron will acquire different energy A1p=[ _ T < (39
changes. Let the electrons with phases#)r(s move from TGV Ty Ve

a specific injected energy to exactly the energy where the

step occurs {, in our casg As before, the energy change in
the first wiggler averaged over the injection phases is zero i
this order of perturbation. In the second wiggler, the energ
change averaged over the intervals of electron phas
sing>6 and < §,

To implement such a delay function, a somewhat more
r§ophisticated scheme is envisioned. First let us examine
ore closely the changes in the velocities in the first wiggler.

Jom Egs.(13) and(14) we find

doy _ qx')’r2

1 G~ g~ Yesing, (40)
(Ayi)=ENTeog OT+Ay) —{1-sindQT/2), (30 vz O

the last equality made in the approximation of a small angle

where the plus corresponds to the first interval, and the miy 44 k,>k,y. Even though sif~0.01, the proportionality
nus corresponds to the second interval. One of these intervals o¢ficient may be large, sincg~100. '

corresponds to the electrons that did, and the other interval to 1,4 changes of the velocities are depicted in Fig).5

the electrons that did not cross the energy where the steQere the initial positions of electrons with the same initial

occurs. B _ elocity are shown as white circles. The final states of elec-
_Averaging over the phases at a specific energy, in genera}fvons are shown with the black circles. The electrons with the
gives a narrow peakdip) close to the step with the half- g5 e jnitial velocity now lie along a line with the slope
width determined by(40). Electrons initially at resonance move
_ . symmetrically in both directions along the line. Electrons
Puicn = NT|Sind QT/2)]. 37) initially above resonance move preferably to lower energies
Then the integral of the energy change over one of the twéather than to higher energies, while the electrons initially
halves of the peak is below resonance move preferably to higher energies. This
illustrates the gain mechanism discussed in Sec. Ill. Figure 5
) 1 allows us to see the same process in a different picture, i.e.,
'g,peak=1(2T)3Psmcz(QT/2)cos{QT+Aw)g, (38)  to see how the initial phase determines the change of the
longitudinal velocity. The amount of velocity change is de-
where now the minus corresponds to the electrons with théermined by the detuning and the injection phase, but the
injected energy above the step and the plus to those with th@ghanges of the velocity components are proportional. Inte-
energy below the step. These analytical results coincide witgrating (40), we see
the numerical modeling. For the phase dela$) the area of
the peak(actually the dip in a small vicinity of zero detun- U= Y2sind(v,—v5), (41)
ing is opposite to the expressidB2). Combined with the

zero integral over negative detunings and still the samgence the transverse velocity bears the memory of the initial
1/4” integral over the positive detunings as given 882),  yejocity. It becomes, in fact, possible to distinguish by the
the overall integral vanishes. transverse component the electrons that experienced net
emission from those that experienced net absorption.
V. TWO-DIMENSIONAL MOTION In the previous sections, even though the motion might
In the preceding section we have seen that the goal OiPave been two dimensioneih x andz directions, this fact
absorption cancellation is not achieved in the simple versiog}\’;‘:’] ?ﬁé lIJ(fr?g(]ji tLOdri;rgfgﬁée{]hc:.trlgntsh\?efsrgsc?onésgrlzmi \(')Vf tﬁ:e

of the scheme due to the peculiar behavior of electrons ne : : . . .
the phase-delay step. The phase delay consists of two par e_locny at the exit from the first wiggler to determine the

. _ : _ phase delaysee Fig. 6. As seen from Fig. 5, the electrons
Lheenzgl%cgf}(;/relﬁgltt})/ucri]irr)]?: ; ?r? ttr? quf(ifst &Eé;giﬂgttﬁggepwith initial velocity beIovy resonance end up in the upper half
like velocity-dependent part changing the phase delay fron‘?l"’me bordered by the line
0 to . We consider the step to be sharp, but the numerical 5 .
calculations show that the effect is still present if its width is Ux=¥;Sind(v,—vy). (42)
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0.035
Vy 0.03 |
0.025 |
g 0.02
) S 0015 ¢
i 0.01 |
VZ
0.005 |
1
0
3 -0.005 : : : : : :
2 -10 -5 0 5 10 15 20 25 30
(@)
DETUNING
8 . ‘ . ‘
|
6r 13 FIG. 6. The implementation of LWI using both longitudinal and
4+ . transverse components of the velocity as per(B) (upper right-
9l | hand cornex, numerical result for the gainy2T=0.03.
V_o n/'_\\ 2 o L
Y 4 M The electrons with initial velocity higher than the resonant
2 i one are now below this line. Then the step needs to be ar-
-Ar ] ranged along this line, as it is shown in Fig. 6.
-6 11 Practically this modification is achieved by setting the la-
-8 — L s ° ] ser cavity at some angle with the wiggler as in Fig. 2. The
T 0 1 2 3 4 5 7 : : : .
electrons will enter the drift region at different angles de-
(b) b4 pending on their transverse velocity. By their deflection in

the magnetic field, they will receive a phase delay corre-
sponding to the smooth part of the delay functid@j. In
addition, the electrons from only one side(d®) will be sent

to a region of magnetic field with sharp boundaries, where
they travel an additional path corresponding to the phase
7. This implements the step part of the phase délad).

The analytical expression for the gain is very complicated
in this case. For numerical simulation of this situation we
have to solve Eqs(10)—(14) taking into the account the
transverse motion, and to introduce the phase shift in the
drift region depending on both components of the velocity.
The result for the case of phase de{&89), Fig. 6, shows that
the original LWI result is recovered.
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APPENDIX
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mc2dy oH €% 9(AZ d oH e? g (A2
LA ' (A2) o & ) (A2)
dt gt ymat\ 2 dt X ym dx\ 2
dp, dH & oA
dt 9z ymaz\ 2 ) (A3 The square of the vector potenti@) is given by
A2
7y =2A%,cod(vyt + kyz) + 2A%coS (v t—k cosfz—k; Sindx— ¢) + 2AwA, [ — cO myt + kyz+ v t
—k_ zcos9— k| xsinf— ¢) + coq — vyt —kyz+ v t—k zcosd—k xsinf— ¢)]. (A5)

Only the last term can be slowly oscillating in the electron  Next we differentiate the above kinematic relations. Later
frame of reference, the other three are thrown away in theve take them at the point of unperturbed motion of the elec-
rotating-wave approximation. The phase of the remainingron at resonance, when,=0=p,, and the longitudinal

term is

lﬂ: - (VL_ V\N)t+ (kw+ kLCO$)2+ kLXSin0+ ¢

(AB)
Substitution of(A5) into (A4) yields the equations of motion

dp, €? .
AP & ALk, sindsi A8
qt = ymRAwAL _sindsiny, (A8)
dy e? .
at = ymec2AwAL (L msing, - (A9)

which are equivalent to Eq$6) and (7).

To obtain these equations in terms of the velocity, we

need the kinematic relatior(s),
p=7ymu, (A10)
Px=yMuy. (A11)

Upon substitution to the Hamiltoniai1) one obtains

1
02=v§+v§+cz(1+a§)7, (A12)
where the dimensionless vector potential is
eA
ay—m . (A]-S)

Further for simplicity we consider it much less than unity;
the generalization for large vector potentials is trivial.

variablesv,=v,, p,=p;, y=7v;. Then from(A12)

y3v,dv,=c?dy. (A14)
Differentiation of (A1) yields
mcdy=v,dp,, (A15)
and from these
dp,=y’mdv,. (A16)
Differentiation of (A11) gives
dp=ymdvy. (A17)

From the above two equations we conclude that the trans-
verse mass of a relativistic electronnsy and the longitudi-
nal mass isny°.

Upon substituting the explicit expression for the resonant
velocity

Av

o (A18)

V,=U,=

Eqg. (A15) coincides with the dynamic equatiofY); Eq.
(A14) results in Eq(13):

dv, q,c? dy
dt Avy? dt

and, together with Eq.7), Eq. (A17) yields Eq.(14):

duy gxc? dy

dt  Awvy, dt’
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