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Theory and simulation of transverse supermode evolution in a free-electron laser oscillator
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We derive the conditions for establishment of a transverse supermode in a free-electr¢REa3arscil-

lator, and demonstrate the evolution of a supermode by means of a three-dimensional nonlinear code. Both the
analytical formulation and the numerical code are based on coupled-mode theory. The oscillator supermode is
a combination of transverse modes that keeps its field profile at any point along the oscillator intact after each
round trip, and therefore it is the steady-state result of the oscillation buildup process. In the FEL, as in any
laser, the oscillator supermode is identical with the amplifier supermode only if the feedback process is entirely
nondispersive. If this is not the case, the steady-state supermode field profile varies along the oscillator axis.
The simulations demonstrate that the transverse supermode evolution process is primarily a linear regime
process and can be proceeded or even completed before satUiafio63-651X96)13811-3

PACS numbd(s): 41.60.Cr

I. INTRODUCTION The 3D analysis of the radiation field excitation used in
this paper is based on modal expansion of the total field in
Free-electron laser§EL) can be employed as coherent terms of transverse eigenmodes of the resonator in which the
sources of electromagnetic radiation in an oscillator configutadiation propagates and a coupled-mode formulation is
ration [1]. Theoretical studies of radiation buildup in FEL used. The evolution of the radiation in the resonator and the
oscillators have been carried out by the Nizhni-Novgoroddain medium(electron currentis studied both in the linear
research grouf2—4], the University of California(Santa and nonlinear regimes, employing an analytical approach
Barbara [5,6], and the University of MarylandumD) @and a 3D simulation code.
[7-10. They investigated the nonlinear and saturation pro-
cesses, taking place in the FEL oscillator. These effects were  |I. ANALYSIS OF A MULTITRANSVERSE MODE
shown to play an important role in the longitudinal mode- OSCILLATOR
competition process, which leads to the establishment of ) ) . N o )
single-mode lasing. Previous works were carried out in the We first derlye analytl_cally a S_tablllty criterion for oscil- .
framework of a one-dimensiondlD) model, assuming a lations, assuming thgt linear gain expressions can be _st|II
TEM or a single transverse mode of electromagnetic radiaSMPloyed as the oscillator arrives to steady-state operation.
tion in the resonator. This approach is similar to the one employed in general laser
In optical open resonators and overmoded waveguid&heory for estimating the threshold gain required for self-
cavities, where multitransverse modes may be excited, §xcitation and oscillation startufL3]. It also predicts the
three-dimensional3D) model of FEL interaction is required fréquencies of oscillatioflongitudinal modepin stable op-
for adequate description of the oscillation buildup processération. This analysis is, however, of limited use for predict-
Such a model should take into consideration the transverd@9 the amplitude of oscillations and the power of the output
variations of the electron beam current and the electromagignal- ,
netic intermode scattering, which originates primarily from [N laser oscillators, usually many transverse modes can be
the finite transverse dimensions of the gain mediatactron  €xcited simultaneously and may be coupled to each other.
beam. The transverse distribution of the amplified radiation Consequently, one should employ a multimode analysis in-
field varies along the interaction region in an FEL amplifiercluding feedback conditions in order to formulate the crite-
in steady statdguiding. In previous publicationg11,17,  ron of oscillation. ,
we showed that there is a combination of transverse modes, ASSUming a uniform cross-section resonatasually a
which keeps such amplitude and phase relations, so that tH¥2veguide, the total electromagnetic field at every plane
field profile of the radiation fieldlexcept amplitude and Can be expressed as a sum of a set of transvertwgonal

phase does not change along the interaction regitan  €igenfunctions€q(x,y) with related amplitudesC,(2). At
amplifier supermodey; the entrance to the wiggler, the modes are assumed to have

By contrast, in an oscillator configuration, which we ana-initial amplitudesC(0) and the total field at=0 is given by
lyze here, the excited radiation, obtained at the output of the
FEL interaction region, is fed back to the _input._Conse_- E(x,y,z:O)=2 Cq(O)éq(x,y). 1)
qguently, the transverse dependence of the circulating radia- q
tion field is determined self-consistently by the amplification
and feedback processes and evolves gradually into a steadyassing through the interaction region of the laser, the “slow
state distribution(“an oscillator supermode). A three- varying” amplitude of each mode i€,(z), and the total
dimensional study of the FEL oscillator is required to follow electromagnetic field at the exit of the interaction region can
this development. be written as
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Undulator By substituting in Eq(6) the expressionél) and(5) for the

fields, and scalar multiplying both sides of the equation by

ehoam ilig the (.aigenfunc_t.ior‘ﬁq(x,y), one obtains the steady-state os-
cillation condition:

Outcoupler

Cq(O):eijQ'cZ PaqCqr(Lu)- @)
q

Feedback It was shown in the coupled-mode analysis of the FEL
amplifier carried out in[11,17 that the amplitude of the
can be written in terms of the gain matdiXL,,) of the FEL,

E(y.z=Lw =2 CollwEgxy)eleds, (2 C(Lu)=T(L,,)C(0). ®

where k,, is the axial propagation constant of transversesubSt'tUtIng Eq(8) in Eq. (7), we derive a set of equations

modeq. Part of the field is coupled out through the re:sonatmIor the amplitudes of the modes in steady-state operation:
out-coupler and the remainder is reflected and fed back to the '
input of the FEL amplifier, as shown schematically in Fig. 1. Cq(0)=e”‘zq'02 pqq,E Iy qr(Lw) Cqr(0). (9

In the general case, the reflection mirrors can produce q' q’
intermode scattering and there may be cross coupling bep o |ast set of equation®) can be written in a compact
tween the reflected modes. After a round trip in the resonatof, - +rix form:
the total field circulated back into the entrance of the inter-

action region is [e/%depT(L,)—1]C(0)=0, (10
~ N p Kyl where the matrixK, is a diagonal matrix with the wave
E(x.y.z=lo) % Cqlle)Eq(x,y)eee. ©) numbersk, on its diagonal. The condition for a nontrivial

solution forC(0) is vanishing of the determinant:
| is the total round trip length of the cavity, a@}(l.) are .
the mode amplitudes after a round trip in the resonator and |e%epl(Ly)—1|=0. (11)

are given b . . S o
g Y This is a generalized oscillation criterion for the case where a

number of transverse modes are excited in the resonator.
Cqlle)=2> paq:Cqr(Lw), (4)  Note that this criterion can be generalized also for lasers with
a’ two mirror resonators of reflectivity matricgg and p,, for

. .. . i i JKZlc
where p,, are complex reflection coefficients, expressingWhich Ed. (11) can be written a®’>zcp,[3(Ly)eoLa(Lw)

the intermode scatteringn terms of slow varying ampli- —I=|:O. It is an extension .to the criterion dgrived for single
tudes of transverse mode', to modeq, due to the resonator transverse mode laser oscillatgvghere the gain, wave num-

mirrors or any other passive elements in the entire feedbadRe!> and reflection coefficient are scajafa3], which re-
loop. If the scattering matrix from the output of the oscillator dUires the round-trip gain and oscillation frequency to satisfy

back to its inputr is defined[in terms of the fast varying Pal q(Lw)€"z¢¢=1. Using analytical expressions fb(L,,),
ampIitudequ(z)é“‘qu] by derived in[12], the 3D criterion for oscillatiorf11) is useful

for estimating more accurately the FEL oscillator threshold
conditions and oscillation frequencies.

Cqllg)elkede= 2 144 Cor(Ly) ke, Evidently, the expansion modéthe free-space or wave-

a guide modek which are the eigenmodes of the “cold” reso-
then comparison with Eq4) reveals the relation nator without a gain medium and feedback, are in general not
the eigenmodes of the FEL oscillator. These modes are

kzdc) coupled to each other by the gain medigenbean of the

FEL amplifier and may also be interscattered by the reflec-

The expression for the total circulated field is found fromtion mirror.

Egs.(3) and(4): If a similarity transformation that diagonalizes the round-
trip matrix e/ep’(L,,) exists, the oscillator will reach a
stable regime of operation. In the following we show that
finding such a similarity transformation is equivalent to solv-

(5) ing for a new set of independent modes that become the
steady-state eigenmodé&sipermodesof the oscillator.

When the oscillator arrives to its steady-state regime of

operation, the initial field at=0 must be equal to the circu- || THE “SUPERMODES” OF THE FEL OSCILLATOR
lated field after a round-trig=1_, i.e.,

Paq =T g€

E(Xay1zzlc):§ éq(X'Y)eijqlc-

E qu’Cq'(Lw)
q/

To derive the field profile of the oscillator supermodes,
E(x,y,z=0)=E(x,y,z=1). (6) we employ a linear transformation which transforms the
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coupled system of modes to an uncoupled §b&,15. In mirrors indiscriminately(without interscattering and with
every cross section, each of the transve(fsee-space or equal reflection coefficient. Equation(13) can then be writ-
waveguide modes can be written as a linear combination often as

a new set of uncoupled eigenmodes with amplitudé¢g).

The relation between the two representatiorns=a is given U(0)=pel{[T"'(L,)T]U(0). 17)

through the linear transformation: . . . )
The transformation matrix¥ used in Eq.(13) to find the

C(0)=TU(0). (12)  supermodes of the oscillator is identified to be the similarity
h T matrix that diagonalizes the gain matiliXL,,) of the ampli-
This transformation is used together with EgO) to derive ~ fier section of the FEL. The eigenvalue§(L,,) of the
the steady-state condition for the supermodes: coupled-mode gain matrix in that case are found from the
algebraic equation:
U(0)=T '[e5epL(Ly)ITU(0). (13
; T (L)~ A(LW)L|=0. (18
The above equation{13) is satisfied when the similarity
transformation T~ Y[ e/ ¢pT'(L,,)]T produces a diagonal
unit matrix. In that case the linear transformatidrnrepre-

sents the superposition of cavity modgsf amplitudes d vsis of il lovi lici
C4(0)] at z=0 that keeps its transverse features every round’erse mode analysis of oscillators. Employing an explicit

trlp in the resonator. Note that this superposition may var );axpression for the gain matriA;(L,,) which was derived
along the resonator. analytically in[12] for the supermode in the linear regime,

Unlike the amplifier case, which is characterized by an the solution of the stability criteriofil8) determines the las-

axial translational symmetry where the supermodes main"9 9ain threshold and the operating frequencies.
taining their transverse field profile and polarization along

the interaction region, the only symmetry which exists at V. THREE-DIMENSIONAL SIMULATION
steady-state operation of the oscillator is a round-trip period- OF FEL OSCILLATOR

icity of the circulating field, which is analogous to periodic
translational symmetry with periodicity. . Thus, the super-
modes of the oscillator do not, in general, keep their trans
verse profile unchanged along the resonator.

Given the eigenvalues;(L,,), the stability criterion for each
of the uncoupled oscillator supermodes can be written as
pAi(L,)e*?c=1, similar to that derived in a singlérans-

In order to demonstrate the evolution of the electromag-
netic radiation field in a multitransverse mode free-electron
laser oscillator into a supermode, we employ a three-
dimensional computer prograrem3D simulating the FEL
amplifier operation in the linear and nonlinear regimes and
IV. THE OSCILLATOR SUPERMODES— an appropriate algorithm for feedback process.

DEGENERATE CASE The FEL amplification code is based on a modal expan-

In order to see better the relations between the oscnlato?'on of the total electromagnetic field in terms of transverse

and amplifer superodes it help to subsipte E8.(13 10 L B S S e e
in terms of the scattering matrix g g

tion equationg 16].
U0 =T Y relXAwT(L. )ITU(O). 14 A set of excitation equations describes the evolytlon of
J(0)=T"1re™ (L) ITU(0) (149 amplitudeC,(z) of each transverse mode along the interac-

In the special case whar=rl is a scalar, namely the feed- tON region:
back is nondispersive and all the modes are reflected indis-

N
. ; ) : 1 . | 1 ~ .
criminately(same phase and amplitude coefficjeantd with- — C(7)= — e ik 0 v T (x Ly el esti(@
out interscattering, Eq14) can then be written as dz Ca? 2Py N .21 Uy (X y1) '
_ (19
U(0)=rT [T (L,,)1TU(0). (15

where Py= 1Reff[ELqX’?-tjq] zdx dy is the power nor-
The transformation matriy is exactly the transformation mallzatlon of the propagating mode amglis the electron
required in order to derive the supermodes of the freebeam current.X;,y;) are the transverse coordinates of par-
electron laser amplifigrl1,12. It is identified to be the simi- ticle i, andy; is its velocity vector. The dynamics of each of
larity matrix that diagonalizes the coupled mode gain matrixthe N particles in the simulation is described by the force
el-wI(L,) of the amplifier section of the FEL. The result- equation
ing diagonal matrix consists of the gain coefficients g L
A;(L,)=U;(L,)/U;(0) of the uncoupled normal modes of €
the FEL. Tlhey\/Narelthe eigenvalues of the coupled-mode gain dz (rvi)==1 Vi [E+vixB], (20
matrix and are found from the algebraic equation:
A where the relativistic factoy is found from
|elkw(Ly,) = A(Ly)1|=0. (16)
A . ; ——=—-——>—V;-E. (21
n example for such a special case is when the transverse dz mc vy,

modes excited in the oscillator are degenerate in their longi-
tudinal wave numbek,, and are reflected by the resonator The time it takes a particle to arrive at a positoins
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TABLE I.
FEL.

z 1 Parameters of the tandem electrostatic accelerator

ti(Z):toi‘}'f —Z,)dz,,

0 Uzi( (22)

. . ) . Accelerator:
wheret; is the time when théth particle entered a=0.

) - . . Electron beam energy E=2 MeV
The entrance timey; of the N particles is determined to 5., current [ =1 A
. . . . . 0~

be distributed uniformly over the time peridt= 27/ wg of
the signal, i.e. tg;=(27/wg)(i—1)/N for i=1,2,...,N.  Wiggler:
The assumption is that the problem can be described coMagnetostatic planar wiggler
rectly by a steady-state statistical distribution of the electrorMagnetic induction B,=3KG
initial time tg;, that is, periodic with period’. Namely, it is  Period length \y=4.4 cm
enough to sample electrons in one optical pefice2 7/ w,, Number of periods N,,=20
and the field solutions in any other period will be the same. .
This assumption is good only for stimulated and prebunchin%a"eg”'de- _
radiation, not spontaneous emission and amplified spontan&ectangular waveguide 8.5 cnf

ous emission problems, where the sampling time of electrons
must be a slippage timeg,=L ,/v,0—L,/vg (vy is the ) ) .
axial velocity of the electrons ang, is the group velocity of @S @ continuous line. This mode, found from coupled-mode
the electromagnetic radiation in the cayityt the present theory, was identified in this particular case as the linearly
version of the simulation code, thé particles are injected Polarized LB; mode of the rectangular waveguida9],
into the interaction region homogeneously, via equal timeVhich is purely polarized in the wiggling dimension. Inspec-
intervals. The code can be modified to simulate radiatiorfion of the gain curve reveals that the highest gain is obtained
buildup process in a prebunched FEL oscillator by insertingt @ frequencyf=116 GHz, where the linearly polarized
the particles into the interaction region with a nonuniformmode LR, exhibits maximum gain. The UMD theof$—10]
distribution over the time period. We found that reliable predicts that at steady state, the oscillator will arrive to single
results are obtained whe>20 particles are taken in the frequency operation, and the longitudinal mode, which will
simulation along the longitudinal dimension. “survive” the mode competition process, is expected to os-
The oscillation buildup process is followed round trip af- Cillate near this maximum gain frequency. Hence we chose
ter round trip until steady state is achieved, assuming apthis frequency to run the example in the present multitrans-
proximate knowledge of the oscillation frequency at steady/€rS€ modes, single-longitudinal mode simulation.
statea priori. Such an assumption is reasonable in cases e now reportalso a complete nonlinear numerical simu-
where the oscillator is expected to arrive to a single freJation of the process of radiation buildup in the FEL oscilla-
quency stable operation at steady state. In cases where tH- Starting from a low level of initial power, the radiation
number of longitudinal modes under the gain curve is smalPbtained at the output of the FEL amplifier at each stage is
(short resonator or use of frequency filtering struciutee  fed back to its input, as described by K@), assuming that
model will describe the real oscillation buildup process. Inthére is no cross coupling between the modes due to the

other cases, it will describe correctly only the supermoddMirrors of the resonator. The phase shift for the degenerate
profile that is attained at steady state. TE,; and TM,, is assumed to ber@w (the phase shift of the

TE,, is determined by its wave number and the length of the
feedback loop Neglecting at this time multilongitudinal
VI TRANSVERSE MODE EVOLUTION mode competition, we assume operation at a single fre-
IN THE FEL OSCILLATOR quency corresponding to the maximum linear gain of the
We first show the calculation of the supermode in a speTEz; and the TM; modes and uniform power reflectivity of
cific example based on the analytical theory in the lineaR=|p|’=90% for each of the transverse modes. Internal
regime. The example presented here is of the electrostatic
accelerator free-electron mag4&ftM) now being developed
in Israel[17,18. The basic parameters of the FEM are given
in Table I. The waveguide is a 8.5 cnf rectangular 16 /

1.8

Supermode

TS

waveguide in which the fundamental JEnode and the de-
generate Tk and TM,; modes are found to be within the
frequency range of operation. Other modes are too far from
phase matching and do not contribute to the interaction.
Figure 2 illustrates the small-signal gain curves of the
TEp:, TEy;, and TMy,; modes, excited in the FEL amplifier
operating in the linear regime. The curves are calculated run-
ning the numerical simulation in the small-signal regime.

1.4

1.2

e
0.8 i

Gain
e}

The results of single mode gain calculatioftisabling
coupling between the modes in the gain calculatica®
given as dashed lines. Since the,JBnd TM,; modes have
the same wave number, they operate in the same frequency
range, and can strongly couple to each other. The gain curve
of their resultant supermoda the amplifier sengds shown

0.6

0.4

60

0

100

120

140
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160

FIG. 2. Small-signal gain curves of the FEL amplifier.
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FIG. 3. Relative circulating power and phase evolution of trans-  FIG. 5. Relative circulating power and phase evolution of trans-
verse waveguide modes starting from equal power and the sameerse waveguide modes starting from power and phase relations
phase in a FEL oscillator. that exhibit the FEL oscillator supermode.

waveguide losses are neglected. P(L,) 2q|cq(|_w)|27>q

At the first round trip, the fundamental fEnode and the total = P(0) DS 1C,(0)[?P,
degenerate Tf and TM,; modes were assigned equal initial ara a
power and phase. The initial power was determined to b%s a function of round-trip number is shown in Fig. 4
sufficiently small to avoid nonlinear effects on the first tra- Duri | d trios. the radiation owér i.s Still
versals. Graphs of the power carried by each of the indi- unng severat roun bS, P

vidual modes relative to the total power circulating in theSmall and the FEL is operating in the [inear regime. The gain
oscillator P 9 of the coupled Tk and TM,; modes is self-adjusted until

the power is shared in a combination that corresponds to the

LP,, supermode(Note that in this process the gain of the
Pmode |Cq(Lw)|?Pq TE,, is initially less than 1 and then excessively high, until it
Potal Eq’|qu(LW)|2Pq, ’ coincided with the gain of the TM and the supermodeThe

nonsynchronous fundamental J;Enode does not contribute

is shown in Fig. 3. The phase relation between the degenerguch to the_interaction_, bgt it egperiencgs a substantially

ate TB, and TI\/E r.nodes is also drawn. The evolution of the Fugh gain during the oscﬂlapon buildup period. As the circu-

single-;:l)ass gainlof the individual mod.es lated power grows, the oscillator enters the nonlinear regime,
and the gain decreases. In this regime, the amplitude growth
of the modes restrains until saturation is reached. Saturation

_ |Cq(|—w)|2 is characterized by a constant FEL gain, equal to the trans-
a— ICq(O)|2 mission losses of the cavitfin the present simulation the
gain G=1/R=1.1). Observe that the phase difference
and the total gain changes until the Tg and TM,; modes lock in antiphase.

This demonstrates the transverse mode evolution towards

22

2.4

A\ 22 A 360
SN !

A 13821 \ 270
§y A\ 1
5[‘1\;;1/ / \kma' gain §1.4 \\ Pose 180
1 N oaansa 12 \&M ;

<TE21 - <TM21

90

e
=
=
e
[\
=
3
[=)
=

0.8

0 o 20 30 40 30 6 70 8 90 100 5T 20 30 40 0 6 70 S0 9% 100
Round trip number Round trip number

FIG. 4. Gain evolution of transverse waveguide modes starting FIG. 6. Gain evolution of transverse modes starting from power
from equal power and the same phase in a FEL oscillator. and phase relations that exhibit the FEL oscillator supermode.
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18 P — 2.4 round-trip traversals of oscillation buildup, as demonstrated

—~ in Fig. 5, and will enter together into the saturation regime.
17 /Gain\ / Since the power ratio between the degenerate modes is con-
16 RO ™ < served during the radiation buildup, the individual ,J&nd

TM,; modes have equal gain also in the linear regiisee
Fig. 6. The gain of the supermode is equal to the total gain
of the FEL.

The simulation confirms numerically the prediction of the
analytical model, namely, that when the feedback is nondis-
persive, theoscillator supermodet steady state is identical
iy to the amplifier supermodeand produces the same super-
mode solution(the LR,; mode that was predicted with the
analytical model.

In Fig. 7 the output efficiency of individual modes and the

12

Efficiency [% ]

TEO
TIECT

0 1o 20 30 4 30 6 70 8 90 100

Round trip number total gain are shown as a function of the number of round
_ N _ trips for the case where the supermode is set initially. The
FIG. 7. Total gain and efficiency of the FEL oscillator. gain variation during the first few round trips can be associ-

ated with the interference of the §Emode, which has ini-
tially the same power as the FEmode. When the Tg
mode diminishes, the total gain returns to the small-signal
é;ain of the supermodé&-ig. 6) and then falls down in the
cponlinear regime to the same saturation vaire1/R=1.1.

generation of the LB supermode, which is an antiphase
combination of the Tl and TM,; modes. This supermode is
the steady-state eigenmode of the FEL oscillator.

It is important to note that the process of the supermod
buildup starts well before the onset of saturation. Contrary t
t_he IongltL_JdlnaI mode competition process, which is an en- VIl. SUMMARY AND CONCLUSIONS
tirely nonlinear(saturation regimeeffect[2—10, the trans-
verse mode interaction process takes place also in the linear Transverse mode evolution in a FEL oscillator is dis-
regime. cussed. A generalized multimode oscillation condition is de-

One can also start the power circulation initially with the rived, and the eigenmodes of the oscillator in steady state are
combination that produces the supermode right from the befound. These modes are identified to be the transverse “su-
ginning. The linearly polarized L, supermode is obtained permodes” of the FEL amplifier if the feedback system is
in a rectangulaa X b waveguide, when the degenerate ,JE nondispersive and does not produce intermode scattering.
and TM,, modes are excited simultaneously with a power The evolution of the modes and the formation of a “su-
relation PTM/PTE:(kZ/kE)(kflki), where ky=mm/a and permode” is examined using a nonlinear multitransverse
k,=n=/b, and with a phase difference of 180F9]. In that modes code. The formation of the “supermode” may take
case the degenerate JjEand TM,; modes will keep their place in the linear or in the nonlinear regime, depending on
relative power and phase relations starting from the firsthe internal losses and the outcoupling transmission.
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