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Recently the nonlocal approximation for solving the Boltzmann equation to determine the electron distribu-
tion function(EDF) in modeling of low-pressure discharges has attracted great interest. The nonlocal approxi-
mation is strictly applicable only to electrons which are confined in the plasma volume by the space charge
electric field. The unconfined electrons which have a sufficiently high total energy to overcome the space
charge potential barrier in front of the walls, and which can therefore be lost from the plasma to the walls, are
not consistently addressed by the nonlocal approximation. We compare EDF’s from nonlocal calculations in
positive column plasmas with and without inclusion of the wall losses in different approximations to results of
an efficient, accurate Monte Carlo benchmark method. The expected rage@whn radiusx (gas density
for applicability of the nonlocal approach with wall losses is confirmed. The anisotropy of the EDF caused by
wall losses of unconfined electrons and by the axial electric field is studied using Monte Carlo simulations. The
impact of the anisotropy on the applicability of the nonlocal approximation is discussed. The importance of the
appropriate inclusion of the wall losses of unconfined electrons in the nonlocal approximation is demonstrated.
An approximation of the treatment of the wall losses in nonlocal calculations is studied, which yields good
agreement with the Monte Carlo results in the entire applicable range of the nonlocal approximation.
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PACS numbgs): 51.10+y, 52.65.Pp, 52.80.Hc

I. INTRODUCTION also called “local-field approximation)’is frequently used
(e.g.,[32-38). Usually a more efficient treatment of the
In recent years the modeling of nonequilibrigiow dis-  problem is achieved by these methods at the expense of a
charge plasmas has gained in importance for the develop¥estricted range of applicability and some uncertainty in
ment and understanding of plasma sources, e.g., for plasn@erall accuracy. Therefore, it is an important and necessary
processing and for lighting applicatiof]. One of the major  task to test the validity and range of applicability of approxi-
challenges in this area is the development of a simple bufation methodg. Suc_h tests have recently been performed in
realistic description of the spatial dependence of the electroft number  of Investlgat|9n$25,27,26,39 However, the
distribution function([EDF) in spatially inhomogeneous non- methods used for comparison in these studies, _although more
equilibrium plasmas. These EDF's typically deviate signifi- 96n€ral than the approximate approaches being tested, are
cantly from Maxwell-Boltzmann distributiod@—4]. A num- themselves frequently subjected to a number of assumptions

ber of methods to treat this problem have been develope(fimd restrictions. This is reflected, for instance, in the general

and have been successfully applied to a variety of problemsdlsalgreement about boundary conditions to be applied in a

. . irect integration of the Boltzmann iR —217.
e.g., the Monte Carlo methofb—-9], the particle in cell direct integration of the Boltzmann equatipe—27

It is desirable to develop benchmark methods for the
method[10-19, the convected scheme methid®—21], or  yoaiment of the spatially dependent electron kinetics. A

the direct numerical integration of the electron Boltzmannyanchmark method should rely only on a minimum number
equation[22-27. of restrictive assumptions and/or mathematical approxima-
However, the above methods are often rather slow, evefions, and it should provide no ambiguity in the specification
using advanced workstations, if spatially multidimensionalgt boundary conditions. Monte Carlo methods are in many
systems are considered. The growing necessity to develo@spects the best suited to serve as benchmark methods. Er-
spatially two- or three-dimensional discharge models hasors in the Monte Carlo simulations are well understood,
caused a resurgence of interest in semianalytical approximaecause they are essentially just statistieasuming a par-
tion methods in recent yeaf25,28—-3Q. One of these meth- ticular set of cross sections and boundary conditiors
ods which is particularly suited for low-pressure, weakly col-Monte Carlo approach can be formulated from first princi-
lisional plasmas is the “nonlocal approximation,” which pals without imposing velocity space boundary conditions on
was first proposed by Bernstein and Holstein in 1934].  the EDF. Furthermore, in cases where the particle motion
For higher pressures the “local approximatiofsometimes can be described analytically, the errors caused by numerical
inaccuracies can be greatly reduced. Although Monte Carlo
codes are often not fast enough to be run self-consistently
“Permanent address: University of Minnesota—Twin Cities,with Poisson’s equation, they can still be used to test other
Department of Mechanical Engineering, 111 Church Street S.Eapproximations by importing the electric potential distribu-
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In this paper we present a highly realistic five- Tonks and Langmuir modeled a relatively low-pressure posi-
dimensional (two spatial and three velocity dimensigns tive column in which ion motion is limited by inertia and ion
Monte Carlo code. We apply this code to a dc positive col-transport is well described by the free-fall model. Both
umn plasma, which has recently attracted renewed attentiomorks incorporated the assumption of a Maxwellian electron
as a model system for the study of the space dependence distribution. In more recent decades the study of “diffusive
the electron kinetics in nonequilibrium plasmgst,21,25—  cooling” of electrons in positive columns has been pursued
27]. [45,46,24,2] Diffusive cooling refers to precisely the kind

We use our Monte Carlo code as a benchmark method foof effect we are studying in this work. Although much is
testing over a range of parameter space a code based on tllederstood about positive columns, scientific interest has re-
“nonlocal approximation.” The nonlocal code finds a solu- mained high because of the very widespread use of positive
tion of a spatially averaged kinetic equation, and reduces theolumn discharges as sources of incoherent and coherent
space-dependent description of the electron kinetics to alight.
effectively one-dimensional problem. The space dependence Only single-step ionization is included in the models used
of the EDF is derived from a “generalized Boltzmann rela- in this work. We are primarily interested in the effect of the
tion” in the nonlocal method. The general validity of this radial (space chargdfields on the electron distribution func-
approach for weakly collisional plasmas has been demortion. Any comparison of such model results to experimental
strated in a number of experimen{@l0—42,29 as well as results should be limited to lower radiygas density prod-
theoretical investigationf25,27,39. However, the “nonlo-  ucts,RX N, where single-step ionization is dominant.
cal approach” applies strictly only to the confined electrons, Elastic scattering in the models uses the “momentum
i.e., those electrons which have a total energy too low tdaransfer” approximation in which electrons are redistributed
overcome the space charge potential in order to escape to tieotropically after a scattering event. The elastic momentum
discharge walls. The “unconfined” electrons, which possesdransfer cross section [82].

a high enough energy to reach the walls, are not modeled in

a completely satisfactory fashion. This problem has been dis- [ 1.59x10 1° cn?Xuluy,  for u<ug,
cussed 30], but has not been thoroughly investigated in the el= 15 — =

literature. The importance of the unconfined electrons is ob- 1.59< 107 cmPX Vugx/u  for u>Uey,

vious from the fact that in a steady-state diffusion-dominateq, ,,ora |, is the electron kinetic energy, ang,=11.55eV is
il X .

discharge the rate .Of !OSS. of eleptrons to the wall exactI){he excitation threshold energy. An elastic recoil energy loss
matches the rate of ionization. An inaccurate treatment of th(g)n average of 2.7810°° of the incident kinetic energy is

e B e il U melleYsed in al simuiaions. We are madeing an “aronie”
: as. Only one inelastic scattering process is included in the

also determ_mes_ th_e value of the wall poten_tlal_relanve to th odel. The cross section for this inelastic scattering process
plasma, which is important for many applications. Further-.

more, the wall losses may enhance the anisotropy of the
EDF. We are not aware qf any thorqugh_ gxplorations of this Toy="1.56% 10716 cnX In(u/Ugy)/(U/Ugy) @)
effect, and whether it limits the applicability of the nonlocal

approximation, which relies on a moderate anisotropy of thg, gjectrons withu>u,,, and zero otherwise. Inelastically

EDF. The Monte Carlo method allows a rigorous study Ofg atered electrons lose 11.55 eV, and are also redistributed
this problem without the necessity of using approximat€gqiropically. The single-step ionization cross section is
boundary conditions in velocity space.

The paper is organized as follows: In Sec. Il we explain 0 =3.18< 10716 cnx In(u/u;)/(u/u;) 3)
the physical assumptions used in our discharge models. De- ' ' '

tails on the Monte Carlo method are presented in Sec. lllso, glectrons withu>u;, =15.9 eV, andzero otherwise. Both
The “nonlocal” discharge model is briefly described in Sec. g gjected and scattered electrons are redistributed isotropi-
IV. A study of the anisotropy of the EDF caused by both thecq)\y “and both electrons equally share the available energy

wall losses of the electrons and by the axial electric field, anqyinetic energy of the incident electron less threshold energy
an investigation of the applicable range of the nonlocal apyt \, —15 9 eV). The isotropic scattering approximation for
proximation using a particular treatment of the unconfineqne|astic and ionizing collisions is often used in positive col-
electrons is given in Sec. V. In Sec. VI the conclusions arg,n models. It is a physically reasonable approximation be-
summarized and some planned future work is outlined.  c5se the electrons involved in such processes in a positive
column are mainly just above threshold.

It is often assumed in positive column models that all
electrons reaching the column wall recombine with an ion.
This assumption will be used in our models.

The classic positive column discharge is emphasized in A range of radiuxgas density productfRXN, is ex-
this study. Positive columns have been studied intensivelplored in this study. The range extends fronx 10 to
since the seminal works by Schottk¢3] and Tonks and 3% 10 cm~2, with the radiusR fixed at 1.0 cm. The non-
Langmuir[44]. Schottky modeled a relatively high-pressure local approximation is expected to work very well at the
positive column in which ion motion is limited by collisions lower end of the range, at least for the confined electrons.
with the background gasnobility limited), and ion transport The radial potential energy for electrons will be approxi-
is well described by the concept of ambipolar diffusion. mated as harmoni¢—e®(r)=b,r?) from the axis to within

@

Il. PHYSICAL ASSUMPTIONS OF THE
DISCHARGE MODELS
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one radial cell of the column wall¥ of the radius. Herer is ~ Here oy is the total cross section (note:
the radius in cylindrical coordinate®(r) is the electrostatic ?t= et Text Tion) » @ndv is the electron speed. In a Monte
potential, andb; is a constant. The potential energy is con- Carlo §|mulat|0n based_ on mean fre.e tlmes_the differential
tinuous at the inner boundary of the last cell, harmonicProbability dP of a collision in the distance incremedts
(—ed(r)=a,+b,r?) in the last cell, and continuous to the &/0ng an electron trajectory is
wall potential energy-ed,,. These approximations result in s
a discontinuity in the slope of the radial potenti@hdial dpzexp( —J’ oNd
field) at the inner boundary of the last cell. The harmonic 0
{)hoeteggftln?rﬁ) F}rr%)r(;m:;ﬁ?nStr?/r%%?g%gg{iﬁﬁtsh?r?]rethﬁa?mxgn?gr he cumulative probabilit}P(s) _of a co_llision within a dis-
potential approximation greatly accelerates the Monte Carl6"C€S along the electron’s trajectory is
simulations. In later investigations, this approximation will s

P(s)= 1—exp{ - fo atNds> .

s| oyNds. (5)

be avoided. The radial potential energyed, at the inner
boundary of the outermost radial cell is assumed to be 8 eV
above the axial potential energy. A steep change in potenti
(Py,—Dg) in the outermost cell represents the plasm
sheath.

The axial electric field E, and the potential drop ri=P(s.) )
o, — D, of the sheath in the outermost radial cell are both
found self-consistently using two constraints. The first conto define the distances,, where the next collisions occurs
straint is that wall losses of electrons be balanced by ionizaalong the trajectory.
tion. The second constraint is that the average ionization rate The equation
per unit volume matches the average ion loss rate per unit

(6)

allhis cumulative probability is set equal to a pseudo-random-
anumberrl on the(0, 1) interval

t

. I . s
volume from the ambipolar diffusion equation, In(l—r1)=f ccrtNds=Nf CO'tUdt ®
D 0 0
—n=ny, (4)
A? v must be solved in order to fing. or the elapsed time,.,

_ until the next collision. The integral becomes analytic by
Here ny; is the average ionization rate per unit volume, adding the fictitious null cross sectiar,, which makes the
A=R/2.405 is the typical diffusion length, andis the av-  integrand constant by makingr(+ o,,)v independent of the
erage electron density. For the ambipolar diffusion Coeffi-e|ectr0n kinetic energy and equa| to the maximumogﬁ
cientDg we use an approximation proposed by Ingpid], [49,50,9. Thus we find
which approaches the free-fall Tonks-Langmuir case in the

smallRXN limit as well as the collision-dominated Schottky B In(1—ry) g

case in the largeRX N limit: Dg=D,/(1+2nv;/(Nvgy)). te= N(ow)max ©®

Here D,~kT.u;/e is the usual ambipolar diffusion coeffi-

cient from the Schottky theory, wheteis the Boltzmann Five variables are needed because two spatial and three

constant, u;=€/M;vs, is the ion mobility, and Velocity coordinates are tracked. We find a convenient set of
vex=Nv;Qcy is the ion-neutral charge exchange collision variables to be: the axial ar component of the speed,,
frequency wheré\ is the neutral gas density; the thermal ~Where thez axis is the column axis; the totgbotential plus
speed of the ions, an®.,=40x10 2° m? the charge ex- Kinetic) z energy.e,; the radius squared?, in a cylindrical
change cross sectioM; is the (argon ion mass. The elec- coordinate system; the radial velocity,; and the totalpo-
tron temperaturd ., is approximated a$ of the mean kinetic  tential plus kineti¢ energy in the plane perpendicular to the
energy of the EDF in the discharge center divided by theZ axis, &,er,. During ballistic motion, two of the coordinates
Boltzmann constark. Both constraints are fulfilled with an are constant, and three need to be updated. Cleardy the
accuracy of better than 2% at the lower three gas densitie§gXxt collision is

and within 5% for the higher three gas densities.

Vzc= U0~ — ¢, (10)
Ill. DETAILS OF THE MONTE CARLO CODE m

Some of the details of the Monte Carlo code used to simuwherev,q is the coordinate value at the preceding collision,
late electron kinetics and transport in the positive column ar@and whereE, is the axial electric field,—e the electron
outlined in this section. The code uses a null collision ap-charge, andn the electron mass. The first integral of the
proach based on von Neumann’'s method of rejection tequation of motion in the perpendicular plane is
eliminate any numerical integratiga8]. The use of a piece-

wise harmonic radial potential is a key approximation be- m , '—5 b.r2= 11
cause it makes the ballistic radial motion completely ana- EUrJ“ 2mr2+aj+ i"" = Eperps 1D
lytic.

It is both convenient and physically reasonable to choos&herel, is the angular momentum about the columnzor
a model set of cross sections such that the collision rateaxis, anda; andb; define the harmonic potential in théh
Now, has an absolute maximum for any electron energyradial cell. A convenient change of variable is to define
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) (8= &perp column. A positive column simulation should have wall
B=ro+ ~2b (12 losses matched by ionization in each axial cell. Too laaye
! too smal) an axial field for a given radial potential causes

The first integral of the harmonic oscillator equation is re-the electron current to grovor shrink exponentially along

covered as the z axis.
We actually developed several versions of this code in
., 8b;  8bj[aj—epen|’ aL? order to test the versions against each other, and eliminate
B+ B =" 25 ) " (13)  any possible coding errors. Versions were written in
! FORTRAN, C, andFORTH. All ran well on desktop computers
The analytic solution used to advanceandv, is with an Intel 486 or faster processor. Usually? ¥ectrons
are followed. The calculation times are of the order of sev-
B(t)= B2+ (Bol w)?X cog wt+0), (14)  eral hours to days for the self-consistent calculations.
B(t)=2rv,=—wVB5+(Bolw)*Xsin(wt+©), (15) IV. NONLOCAL MODEL
where The nonlocal approximation has recently attracted great
attention, and it has been discussed in detail in a number of
w=8b;/m (16)  review articles. Thus only a brief description of the method
is presented here. For more details the reader is referred to
and Refs.[51,52,27. The problem of the electron losses to the
] walls is treated in more detail here.
B 4| Bo In a typical dc positive column the average energy gain of
O=—tan | /. 17 lect between two collisions is usually small compared
wBo electrons be y p

to their average kinetic energy, and elastic collisions are
This analytic solution is conveniently structured to evaluatemuch more likely than inelastic collisions, so that the EDF is
the minimum timet,, required for the electron to penetrate a usually approximated by the well-known two-term expan-
boundary of its current spatial cell. The electron distributionsion into spherical harmonid$3,54. Since the EDF lacks
function is sampled at 25 radial cell boundaries, uniformlyany axial and azimuthal dependence, it is represented as
spaced irr, and is also sampled at 15 axial cell boundaries F(r,v) = Fo(r,v)+Vv/v- Fy(r,v), with the normalization
uniformly spaced ire. The tracking of the axial motion is [ F(r,v)d®v=n(r), and withn the electron density.
maintained in order to eliminate end effects near the cathode The nonlocal approximation addresses weakly collisional
and anode in these simulations. These end or sheath effeqsmas, where the energy relaxation length
will be studied in future work. The approach for sampling
the distribution function is outlined ifB]. If ty<t., then the Ao(U)= VA (U)NF (U) (18)
electron’s velocity and energy are evaluated at the cell
boundary and contribute to the electron distribution function . . ) . o
at the cell boundary. The electron is subsequently released fxceeds the discharge dimensions in the rangeii)f_ kinetic en-
a different spatial cell with a timet{—t,) remaining until ~ €rgies of interes{55], where Ay(u)=(Noe(u))™~ is the
the next collision. When the electron penetrates a spatial cefl€an free path length for elastic momentum transfer of the
wall all of its coordinates change continuously, but there is lectrons, and\* (u) =[N(oe{u) +0i(u))]"" is the mean
possibility of a discontinuity in the radial electric field. The free path length for all kinds of inelastic collision processes.
potential defined by; andb; is continuous, but can have In this case a _typ|cal electron_moves across the discharge
discontinuities in its slope at radial cell boundaries. In futureWithout a significant change of its total ener@., the sum
work we will explore how fine a radial mesh is required in of kl_netlc p_lus potential energylt is therefore assumed that
order to eliminate errors from a discontinuous radial field. Itthe isotropic part of the EDEFy(r,v), when represented as
seems extremely likely that a mesh cell size comparable t§ function of total energy
the electron mean free path would eliminate errors, but it
may not be necessary to use such small cells. mo 2 mv§

In these comparisons to the nonlocal model we assume e=u—ed(r)=———ed(r)=—-+epep (19

thata; andb; are the same in all but the outermost radial
cell. The only discontinuity in the radial field therefore oc-

curs at the radial sheath boundary. is essentially spatially constaf#1,55:
Once an electron has been advanced to the location of a
collision, the procedure described by Boeuf and Marode is }—O(r,v)ﬁpo(ryg):|:80>(8)+|:E)1)(r,8)_ (20)

used to determine the type of collisipB]. If a null collision

occurs the electron is released with no changes in any of its o o )
coordinates. Excitation and ionization events are tracked if he Vvalidity of the nonlocal approximation requires that
each spatial cell. The location and kinetic energy of eactfs (g)>|F§"(e.r)|. The spatially constant main part of the
secondary electron is stored, and its motion is subsequentlDF, F((,O), is calculated from a spatially averaged kinetic
followed. Electrons leave the simulation when they reach thequation, which is an ordinary differential equation in total
absorbing outer radial wall or the anode at the end of thenergy[55]:
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d o dFE)O)(S)—I—V_F(O)(S) 8O (e,r)=2m[1—codap(e,r))]
©ods 0 \/ e(— byt B(1))
= (U1 (8)FO(8) — uPg( &+ Ug) FO (& + Ugy) =2m 1= (W) L
+ Uy, (s)F(°>(e)—|+(a))+ ul?y,(e)FV(e). It was pointed out in Ref56] that a rigorous description of

the unconfined electrons requires the solution of the space-

(22) dependent, nonaveraged kinetic equation
Here v,, denotes an effective wall loss frequency which is IFo(T &)
discussed in detail below. The barred quantities denote spa- — (UUZDJL>
tial averages performed over the part of the discharge cross 9" an
section, which is accessible for electrons with a given total
J 12 aFo(r,S)
energy: F o UTDe— ——+V.Fo(re)
22 3/2
ul 2e E _zf (r) dr, (22) :(Ul/ZV&&ryS)FO(r'S)
— U2y (1 e+ Ug) Fo(r, &+ Ugy)
— 2m 2 *(e 12, -t
Vs:_aﬁfor ( )Vm(U)u3/2(l’)rdr, (23) +(u V|(r,8)Fo(r,8) I (I’,s)), (28)

with De=)\r2n(u)vm(u)/3 the electron diffusion coefficient,
2 [ exi and all other symbols as defined in E¢82)—(25) without
ullzvexyi(e)Zﬁf vei(W)u(r)Y2rdr, (24)  performing the spatial averaging. This equation has to be
0 solved subject to the boundary condition that the fraction of
_ the thermal flux of the electrons which is scattered into the
17 (8) = 4u"; (26 + U FG (22 +uy). (25  loss cone and escapes to the wall is balanced by the diffusion
flux from the plasm#55,25. This boundary condition has to
Herel * (&) represents the scattered and secondary electronsge applied at the sheath boundary R:
which are produced in an ionization event,

r(u)=Noy(u)y2u/m is the total collision frequency, oQ) dFo
— Bulm i vFoz—|  =-De—r (29
vm(U)=Nog(u) y2u/m denotes the elastic momentum Am| _ a | _q

transfer collision frequencyye,=Nae(U)y2u/m is the ex-
citation collision frequency with the threshold energy,, Here it should be noted that a zero boundary condition for
and »;=No;(u)y2u/m denotes the ionization frequency the EDF was used in Ref56] in order to obtain a simple
with the thresholdy; . The turning pointr* (¢) of the elec- analytical solution of the problem. However, as will become
tron motion is defined by(r*(¢))=0. Analogously, the evident below in the discussion of our Monte Carlo results,
maximal radiir®(e) andr'(¢), at which excitation and ion- this boundary condition may overemphasize the spatial de-
ization, respectively, are possible, are defined bypendence of the EDF far>—e®,,, at least within the va-
u(r®(e))=Uue; - (See Refs[51,52,27 for details) lidity range of the nonlocal approximation. In reality, par-
The spatially dependent EDF of the kinetic energy,ticularly if the loss cone solid angl&2 is small compared to
Fo(r,u), can be calculated from the EDF of the total energy4, only a small fraction of the electrons is actually able to

F((e) using a “generalized Boltzmann relation” escape to the wall, and the EDF may show only a weak
radial dependence.
Fo(r,u)=FP (e=u—ed(r)). (26) In order to avoid the complicated procedure of solving

Eq. (28) we will rely on the approximate spatial constancy of

In the total energy picture, all electrons which haveFo(r,e), and adopt the more approximate procedure of in-
gained a total energy higher than the potential energy at thioducing a wall loss termu?y,, into the space-averaged
wall, —ed,,, are able to escape to the wall. For the unconkinetic equation(21), which treats the wall losses essentially
fined electrons witke>—ed,,, the nonlocal approach does as an additional inelastic loss process depleting energetic
not strictly apply[56], since the assumption that the elec- electrons. The validity of this approach will be discussed
trons are reflected by the space charge potential at their turtpelow in the comparison to our Monte Carlo results.
ing point is an important prerequisite for the averaging pro- In the following we will estimate the wall escape fre-
cedure which leads to Eq21). However, electrons with a quencyw,, for electrons in a positive column. It will be as-
total energy only slightly exceeding the potential energy asumed that the potential drop between the plasma and the
the wall (and which are at a distance\,, from it) have to  wall is concentrated in the sheath, so thafr)
move almost normally toward the wall in order to overcome~u(r=0)=¢ for the entire discharge cross section. Instead
the potential barrier in front of the wall. This means that theof solving the stationary diffusion problem E®8) with its
velocity vector of the escaping electrons has to be within asource termdi.e., the electron heating tejnand its sink
loss cong56]. In planar geometry the derivation of the solid terms (the wall losses and inelastic collisionge consider
angle 6Q) of the loss cone with the aperture angig is  the(auxiliary) problem of finding the decay time of the EDF
straightforward, yielding in the energy ranges>-—ed®,, which can be identified
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with the typical lifetime or wall escape timeof an electron The expression for the wall escape term in the kinetic
in the discharge(This procedure is commonly used in dif- equation(21) is given by
fusion problems. Assuming that for electrons in this total o
energy range the wall losses are much more important than m(8)~ & 37)
inelastic collisions, we retain only the spatial diffusion term w T
in the kinetic equation fofy(r,e,t) which describes the
temporal decay of the EDF: It should be mentioned that the loss cone approximation
of Eqg. (27) is actually correct only for an electron in front of
IF(r,e,t) 1 9 dFq(r,e,t) a plane wall. This should be a good approximation for elec-
Tt Per o T o 30 trons in close vicinity to the positive column wall. In the free
flight case, however, electrons from the central regions of the
This equation is solved subject to the boundary conditiordischarge also contribute to the wall loss. A more rigorous

(29). It has the following fundamental solution: analysis requires a consideration of the angular momentum.
Due to its conservation the loss cone becomes asymmetric
s r except for electrons very close to the wall. In the cylindrical
Fo(r,e,t)ce”""Jo D7) 31 system an electron may reach the wall when its total energy
e

of the perpendicular motio® e, surpasses the sum of its
HereJ, is the zeroth order Bessel function of the first kind. Potential energy and its centrifugal energy at the wall, i.e., if

Inserting Eq.(31) into Eq. (29) yields L2
=>—ed,+ —s. 38
Ji(RINDer)  3yDgr 6Q Eperr= =W 2 mR2 (38)
== (32
Jo(R/Der) m i For an electron at a radius this means
with J, is the first-order Bessel function of the first kind. For Mo 2 L2 2
r z z

Am<<R the right hand side of Eq32) is large compared to
unity, and Jo(R/{D.7) approaches zero. This yields the
well-known lifetime in the diffusion dominated casgy :

5 +—2mr2>—e(<l>w—<1>(r))+ A (39

By introducing the anglex as the polar angle of the electron
2 q velocity vector referenced to the local radius vector, the ra-

R
T=Tat=|55| =~ (33 dial kinetic energy mv¥/2 can be expressed as
24] De (coga)Xu=(coga)X (e +ed(r)). One obtains
In the opposite case the left hand side of E8R) can be L2 1
expanded into the lowest order, which yields the lifetime in —e(®y—P(N)+ s—| =5 — _2)
the free flight casery : cofaler )= 2m\R" r
R e+ed(r)
R 47 1 (40)
T= rﬁ—o.s)\—m 0 7 (39

If the electron has no angular momentum aboutzteis ,

An interpolation for the intermediate regime can be obtained--=0, thena corresponds to the aperture angle in planar
by adding both timest= 744+ 4 . In the free flight case the geometry,a;, as described by Eq27). If L,#0, i.e., for

electron escape time becomes so small that the time whichnite azimuthal velocity, then the second term in the nu-
an electron needs to be scattered into the loss cone must Beerator causes to increase. The loss cone therefore be-

included. This timer is given by comes elliptic, i.e., for the same total energyhe aperture
angle« is smaller for electrons moving in a plane containing
50\t the z axis than for electrons moving in the azimuthal plane.
Tsc™ ( 2vm E) (39 As can be seen from E®0) the rotational asymmetry of the

loss cone becomes maximal m$ends toward 0, and it dis-

The factor 2 on the right hand side of E§5) arises from the ~ appears ifr approachesR. The curved wall appears planar
fact that in the free flight case two loss cones have to béor the electrons very close to it. For electrons close to the

considered, as will be illustrated below. axis it may even happen that the forward and backward loss
A general interpolation for the wall escape time of thecones(referenced to the closest watherge in the azimuthal
electrons is thus given by direction, and form a “loss band” in velocity space, as will
be demonstrated below. Equatiof0) could in principle be
R\?21 1/R+\,\47 1 used to determine a wall loss rate in a calculation based on a
7= Taiff + Tif T Tsc™ (ﬂ) D" E()\—m)m . nonlocal model, but the complexity of using E0) would

(36)  Violate the spirit of the simple nonlocal approach. Therefore
we will use the loss cone expression Eg7) in the follow-
It should be noticed thaty contributes only in the case ing comparisons to the Monte Carlo results, since, due to the
Am~R. In the free flight case\,>R and =7, 1 and cylindrical geometry even in the free flight case, the major
74, and in the highly collisional case~ 44> 7w and  part of the wall escape is carried by electrons close to the
Tsc- wall, for which the loss cone is almost symmetric.
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N=3x10'* cm™: E =3.64Vicm, ©,=-17.81V

(a) N=3x10"*cm™: E =1.38V/cm, ®,=-23.70V (b)

Radi
Radius {cm) ius (cm)

(c) N=3x10" cm™: E =12.4V/cm, &,=-18.30V

Radius (cm)

FIG. 1. EDF'’s from the Monte Carlo calculations plotted as function of the total enecegyg the radius for various pressures. The EDF’'s
are normalized to the electron densityrat0.04 cm.

In order to illustrate the effect of the second loss cone inonization in our models means that the absolute electron
the free flight case, we will also perform nonlocal calcula-density is arbitrary. The reader may consider all EDF’s pre-
tions using only one loss cone, which may be more justifiedsented in the subsequent figures to have been divided by the
for A\ ,y<R. This means we neglect the factor of 2 in E8F). axial electron density. For example, in comparison to the

nonlocal results, we plde{")(g)/n(r=0).
V. RESULTS AND DISCUSSION In Fig. 1, EI_DF’s for various neutral gas densitie_s are plot-
ted as a function of the total energy and the radius. At the

In this section we first present and discuss Monte Carldower N in Figs. 1a and ib) the EDF’'s show a nonlocal
results which demonstrate that the nonlocal approach ibehavior, i.e., they are spatially constant for a given total
qualitatively correct using the energy and radial dependencasnergy. Only at the wall do the EDF’s drop due to the wall
of the EDF’'s. Then we explore angle-resolved EDF'’s fromloss of electrons. At the highest pressure in Fig) the EDF
the Monte Carlo simulations to test the two-term sphericablso shows deviations from the nonlocal behavior in the
harmonics expansion underlying the nonlocal approach. Herglasma bulk. For a given total energy the EDF decreases
we are concerned about the anisotropy of EDF’s in velocitytoward the discharge axis. The reason for this decrease has
space from the axial field at loN (high E,/N) and from  been discussed in detail elsewhere. It is basically due to the
wall losses at allN. Finally we compare the Monte Carlo effect that for a given total energy the kinetic energy of the
results and the results of the nonlocal discharge models witblectrons is maximum in the discharge center, and therefore
and without wall losses. The inclusion of only single-stepso is the efficiency of the inelastic collisions which lead to a
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FIG. 2. EDF’s from the Monte Carlo calculations at different radial positions plotted as functions of the total energy. The EDF’s are
normalized to the electron density at 0.04 cm.

removal of the electrons from the high energy tail of theneutral gas density of 210 cm™2 the nonlocal behavior
EDF. The results presented in Fig. 1 are consistent with presf the EDF begins to break down and it disappears totally for
viously obtained result§25,27], in which the wall loss of N=3x10 cm 3. The upper limit for a nonlocal EDF of
electrons was not consistently included. It should be notetx R<1x10' cm™2 in an argonlike model gas is consis-
that even for total energies significantly higher than the poient with results of previous investigatiof35,27], and with
tential energy at the wall, the nonlocal behavior of the EDFthe intuitive criterion\ =R [55]. The wall losses of elec-
prevails at the lower neutral gas densities in spite of the waltrons, which have been neglected in most previous investi-
losses. gations, do not lead to a reduction of the range of applica-
In Fig. 2 we present a more quantitative picture of thebility for a nonlocal model for the EDF.
radial dependence of the EDF. Monte Carlo results for In order to investigate the loss cone it is necessary to
EDF's in the discharge centerr€£0.04 cnm) at about study the angle-resolved EDF'’s. In Fig. 3 we present the
R/2, r=0.52 cm, and, at the inner boundary of the last cellEDF resolved in the azimuthal angfeand the cosine of the
before the wally =0.96 cm, are plotted for various gas den- polar angle ¥ referenced to the discharge axisvith
sities. For neutral gas densities as high as18'® cm 3the cos¥=1 in the direction of the electric field at
EDF's as functions of the total energy agree very well. For aN=3x 10" cm™ 2 sampled at three radial positions. The
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N=3x10"%e¢m™, r=0.06xR, £=19-20 eV N=3x10"%cm™>, r=0.42xR, £=19—20 eV

EDF (arb. units)
EDF (arb. units)

0
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0

FIG. 3. The EDF resolved in the velocity angle spaceNer3x 10'° cm™ 2 at different radial positions. The EDF has been sampled in
three radial bins and over an energy interval of 1 eV. The dashed lines show the aperture angle found {&#n Eq.

angle¢=0 denotes an electron moving normally toward theantiparallel to the electric field. However, the fact that the
nearest wall. For each plot we merged three radial bins ifEDF increases almost linearly with cosd indicates that the
order to improve the statistics, and the center positions ofwo-term approximation is still accurate especially if the loss
each interval is given in the plots. At this gas densitycone were absent.

Am~3 mm for the energy shown. For the EDF close to the In Fig. 4 we present a plot similar to that above, but this
wall the effect of the loss cone is quite visible. It should betime for a value ofN that is ten times lower. The mean free
noted that the effect of the loss cone is foundpat 7. This  path\ , is about 3 cm, which corresponds to the almost free
means that the EDF is not depleted of the electrons flyindlight case. The EDF close to the wall now shows a second
toward the wall, but of those electrons which have hit theloss cone atp=0. This loss cone is the “anti-loss-cone”
wall but do not return. The EDF is actually depleted in thecaused by wall losses at the adjacent wall of the discharge
“anti-loss-cone.” The dashed lines show the aperture angléube. Moving toward the center the loss cones show exactly
of the loss cone to be expected from ER7). They are in  the behavior that was predicted in the discussion of(EG).
good agreement with the Monte Carlo results. It should b&Vhile its polar aperture angle remains almost constant, it
noted that the walls of the loss cone are not vertical, since awidens in the azimuthal direction. In the center both loss
averaging over the radius and an energy interval of 1 eV hasones merge to form a loss band. The difference between the
been performed. At =R/2~2)\, the loss cone has almost level of the EDF at the bottom of the loss cone and the EDF
completely disappeared due to scattering of electrons into that the outside edges of the cone decreases exponentially with
loss cone. It is totally invisible in the center of the dischargethe distance from the wall asexp((r —R)/\,,). The fact

It should be noted that the EDF also exhibits a significanthat the bottom of the loss cone remains flat and the walls
anisotropy outside the loss cone region due to the axial eled¢almos} vertical when the center is approached is a conse-
tric field visible by the increase of the EDF in a direction quence of our assumption of isotropic scattering. Electrons
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FIG. 4. The EDF resolved in the velocity angle spaceNer3x 10 cm™ 2 at different radial positions. The EDF has been sampled in
three radial bins and over an energy interval of 1 eV. The dashed lines show the aperture angle found f&#n Eq.

are scattered to every angle within the loss cone with equglroximation is founded on the correct physical assumptions
probability. Conversely, anisotropic small angle scatteringand that it should thus be qualitatively valid. In the follow-
caused, for instance, by Coulomb collisions would lead to ang, we will discuss the quantitative correctness of the non-
rounded bottom of the cone and smoother walls, since thiocal approximation. In Fig. 6 we compare different solu-
electrons would diffuse in angle space into the cone. The¢ions of the kinetic equation(21) of the nonlocal
axial anisotropy of the EDF is even more pronounced than impproximation with the results of the Monte Carlo method.
Fig. 3. The increase of the EDF withcosy is significantly  All calculations have been performed with the same axial
nonlinear. This shows that even in the absence of the losslectric fieldE, and the same wall potentidt,, which were
cone, higher order harmonics in the spherical harmonics exsbtained from the self-consistent Monte Carlo-based model.
pansion would be present, and that the two-term approximaNonlocal calculations have been performed without includ-
tion would be questionable. These results should be kept img the wall losses of electrons, and using the lifetime ap-
mind when a comparison with nonlocal calculations are perproximation of Eq.(37) including one or two loss cones in
formed, which are formally based on the two-term approxi-the free flight case. In particular the results for the lowest gas
mation. densities in Fig. 6 demonstrate the vital importance of in-
Figure 5 demonstrates the dependence of the loss cone atuding the wall losses in the nonlocal approximation. The
the energy. With an increasing energy difference above thaonlocal calculations without wall losses show overpopu-
wall potential energy, the loss cone angle increases. The ankted EDF tails and too high mean energies for all neutral gas
lytically predicted aperture angle of the loss cone from Eqdensities investigated, since the most important channel for
(27) is again in good agreement with the Monte Carlo re-the loss of high energy electrons is neglected. The inclusion
sults. of the wall losses using E§37) enables us to achieve much
The results in Figs. 1 and 2, obtained with a benchmarlbetter agreement with the Monte Carlo results if both loss
Monte Carlo method, provide evidence that the nonlocal apeones are properly included. At the lower gas density, when
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FIG. 5. The EDF resolved in the velocity angle spaceNer3x 10** cm™3 for different energies above the wall potential. The EDF has
been sampled in three radial bins and over an energy interval of 1 eV. The dashed lines show the aperture angle found2fom Eq.

Am=R, the use of only one loss cone yields significantlylisions. At lower gas densities, ionization represents a larger
worse discordance with the Monte Carlo results. Both apfraction of the total inelastic processes than at higher pres-
proximations yield reasonable agreement with the Monteures. The fraction of ionization processes in the total num-
Carlo results at the highet for the confined and unconfined per of inelastic processess;/(nv;+nve,) obtained from the
electrons. It should be noted that fiir=1x10" cm™® the  Monte Carlo model is 0.571 foN=1x 10 cm 3, 0.452
mean free path is already slightly smaller than the dischargg,, N=3x 104 cm3, 0.318 for N=1x10'° cm 3, and
radius. The good agreement of the solutions using one al 1203 forN=3x 105 cm 3.

two loss cones in Eq(37) visible in Figs. &c) and Gd)
shows that the wall losses are predominantly determined b,
the diffusion time of the electronsy;; . In general one can

At first glance the good agreement of the nonlocal calcu-
Mtions, which are based on the two-term approximation, and
the Monte Carlo results may seem surprising, since our

in very good agreement with the Monte Carlo results for?VIonte Carlo results have demonstrated significant deviations

confined electrons. Relatively small deviations occur, usuall);_rom It-Te two-term appro|X|mat|on a; |0\_Ner n_eutr?l ﬁas den%'
above the potential energy at the wall due to the approximatf€S- HOWeVer, our results prove that in spite of the consid-
description of the unconfined electrons. The slight deviation§'aPle anisotropy of the EDF, the nonlocal approximation

at very low energies reflect the deviations in the high energ)\"elds guantitatively reasonable results, and is thus still ap-
tail of the EDF due to the different particle source termsplicable even under these extreme conditions. This is based

from ionization. The drastic errors caused by the neg|ect ofn the fact that the EDF reflects the fraction of time which an
the wall losses in the nonlocal calculations, particularly atelectron spends during its lifetime in the discharge in some
low neutral gas densities, originate in the fact that the walenergy interval. The simple and physically transparent
loss of electrons, in the energy range where it is possible, hawethod of finding the mean lifetime of an electron in the
an even stronger effect on the EDF than the ionization coldischarge before it escapes to the wall is obviously capable
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FIG. 6. Comparison of EDF's from the Monte Carlo calculations and from nonlocal calculations with different treatments of the wall

losses of the unconfined electrons. All EDF’s are evaluated=&.04 cm withR=1.0 cm. The values of the axial electric fidkg and the
wall potential®,, are the self-consistent values from the Monte Carlo model.

of producing quantitatively reasonable results, even if formatesults is less than 8% for the neutral gas density below
mathematical validity criteria seem to be violated. N=1x10' cm™3, in which the nonlocal approach is valid.
In the following we investigate to what extent the differ- However, the nonlocal approach still yields a reasonable
ences in the distribution functions affect the macroscopiovalue of E, even at the higher neutral gas density of
plasma parameters. In Fig. 7 the self-consistent electric fielld=3x10'® cm 3, where the EDF deviates significantly
strengths as obtained from the Monte Carlo model and thérom a nonlocal EDF. This indicates that the EDF obtained
nonlocal discharge model with different treatment of the wallfrom the nonlocal calculations may still represent a reason-
losses are depicted. Both nonlocal calculations, which inable spatial average of the EDF. The nonlocal calculation
clude the wall losses with one or two loss cones, yield a goodnay thus still yield reasonable spatial averages of the ioniza-
agreement with the Monte Carlo-based model. Their resultion rate, which is decisive for the axial electric field
are practically indistinguishable. A few percent of the differ- strength. The nonlocal calculations, without including the
ences shown in Fig. 7 may be due to an imperfect converwall losses, yield significantly lower values &, than the
gence of the Monte Carlo simulations to self-consistent soMonte Carlo calculations or the nonlocal calculations includ-
lutions. The maximum deviation from the Monte Carlo ing wall losses. This behavior corresponds to the higher
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FIG. 9. Comparison of EDF’s form the Monte Carlo model and

. . from the nonlocal models including the wall losses of the uncon-
population of high energy part of the EDF compared to theyineq electrons each calculated with its self-consistent axial electric

other approachesor reality) (see Fig. 6 which has to be |4 £, and wall potentialb,,.
compensated for by lowet, in order to achieve the particle

balance. less than 8%, except for the lowest neutral gas density with a
The differences between the two approaches using one @eviation of about 15%. In this range of neutral densities the
two loss cones primarily affect the self-consistent wall po-magnitudes of the self-consistent wall potential from the
tential D, rather tharEZ. The self-consistent values of the nonlocal calculations using E(f,?) with two loss cones are
wall potential from the Monte Carlo model and the two non-consistently lower than the results from the Monte Carlo
local calculations including wall losses with one and two lossmethod, since for the santg, and ®,, the nonlocal EDF’s
cones are shown in Flg 8. The results of the nonlocal mOd%howed an excess of h|gh energy electrons as Compared to
using two loss cones agree with the Monte Carlo result$he Monte Carlo results. A decrease of the magnitude of the
within better than 2.5 V in the applicable range of the non-wal| potential increases the amount of wall losses. Hence the
local approximationN<1x 10'* cm™2, except for the low- nponlocal calculations using Eq37) with one loss cone
est neutral gas density. This corresponds to a deviation Gfields consistently smalléib,,| than the calculations using
two cones. Significantly larger deviations fdr, appear at
N>3x10'® cm 3, where the nonlocal approach is not ex-

82 ] pected to apply.
30 o 7 It should be noted that the nonlocal EDF’s and the Monte
og - 0 Monte Carlo ] Carlo EDF'’s look almost identical if each calculation uses its
- T ,’:‘lt one l'OSS o ] own self-consisterf, and®,,. This is demonstrated by Fig.
Skl WO ToSs €0 ] 9 for a neutral gas density ®=1x 10" cm 3. The com-
T 24F N parison in Fig. €a) at the sameRX N shows larger discor-
S ol ] dance, becaudg, and®,, in the nonlocal calculations were
2 | fixed at the values from the self-consistent Monte Carlo
gaor i simulation.
© 18+ . In Fig. 10 we compare the radial profiles of the mean
16 L ] kinetic energy obtained from the Monte Carlo model and the
. 1 self-consistent nonlocal calculations including wall losses
14r ] from Eq.(37) using two loss cones. Each model uses its own
12 b cnl el e self-consistent axial electric fieldE, and wall potential
1014 1015 1016 1017

®,,. The nonlocal results shown here are in good agreement
neutral gas density (cm™3) with the Monte Carlo results. The mean energies from the
nonlocal model are slightly higher than the Monte Carlo re-
FIG. 8. The self-consistent wall potentials, from the Monte  sults in the centefabout 5% and approach the Monte Carlo
Carlo and nonlocal models including the wall losses of the unconfesults toward the wall. The Monte Carlo results definitely
fined electrons as a function of neutral gas denhity support the basic prediction of the nonlocal model that the
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FIG. 10. Comparison of the radial profiles of the mean electron FIG. 11. Comparison of the radial profile of the relative electron
kinetic energy from the Monte Carlo modslymbolg and the non-  density from the Monte Carlo modésymbolg and the nonlocal
local model with wall losses from E@37) (solid lineg. The Monte  model with wall losses from Eq37) (solid lines. The Monte Carlo
Carlo and the nonlocal calculation each used its own self-consistenrind the nonlocal calculation each used its own self-consistent axial
axial electric fieldE, and wall potentialb,, . electric fieldE, and wall potentiakb,, .

f a positive column plasma. We used this method as a

enchmark for testing the nonlocal approximation, which is a
very efficient method for modeling the electron kinetics in
low-pressure plasmas.

mean kinetic energy in a positive column decreases in radi
direction if the EDF is convex. This means that the “local”
temperature of the EDFT(g)=—(d In(FgO))/ds)‘1 (i.e.,

the slope of the EDF in logarithmic presentaliafecreases  1ho Monte Carlo results prove that in the low-pressure

with increasinge as is the case for our EDF's in the inter- roqime the EDF is nonlocal, i.e., a spatially constant function
esting range of energies. Since in the nonlocal model thg¢ tota) energy. For our argonlike model gas the nonlocal

EDF of kinetic energy is found from the EDF of the total \gime for the EDF extends up to a radius times neutral gas
energy by removing the low energy part of the EDF Wh'Chdensity product of RXN<1x 10 cm 2, which corre-

has a high local temperatur(_e, the parts of the EDF with ponds to a gas pressure of about 0.3 torr at 300 K in a
lower local _tem_perature contribute more strongly to the OVer+_cm-radius positive column. This value is consistent with
all mean kinetic energy and thus lead to the observed d&pe more intuitive validity criterion for the nonlocal approxi-
crease of the mean energy toward thg wall. The Monte Carlﬂwation N.=R. The nonlocal character of the EDF is not
results show exactly the same behavior. They therefore de"aisturbeds by the wall losses of electrons.

onstrate the inaccuracy of the traditional view of the positive It has been demonstrated that the wall losses of electrons
column, which assumes that the mean kinetic energy is Ngan be properly included in nonlocal calculations using a

dependent of th? radiis7,58. . ) . simple lifetime approach derived from a wall loss cone. This
The self-consistent electron density profiles resulting fr,omloss cone or its effect on the EDE has been observed in
the Monte Cario model apd the nonlocal model 'nCIUd.'ngMonte Carlo simulations. Its scaling and the correctness of
wall losses from Eq(37) with two loss cones are shown in e anaiytic formula describing its aperture angle have been
Fig. 11. Each model uses its own self-consistent axial eleCgemonstrated. It also has been shown that in the free-flight
t_rlc field E, and Wa," potentiakb,, . Since the different Pro- case two loss cones are present: one loss cone to the nearest
files are all normalized to the same central electron density, -1 and one cone to the opposite wall.
the deviations between the profiles from the nonlocal an The quantitative comparisons conducted between the
Monte Carlo approaches accumulate at the wall. There ongte carlo based-model and discharge models based on
finds deviations of up to 15% with the nonlocal density pro-y,o nonigcal approach demonstrated the importance of in-
files being slightly higher than their Monte Carlo counter- cluding the wall losses of unconfined electrons in the nonlo-

parts. The slower decrease of the electron density just reflecs,, approximation. EDF’s calculated using the nonlocal

the remaining slight differences in the nonlocal and they,,e| without the wall losses showed significant deviations

Monte Carlo EDF’s. As discussed_ above, these difference, om the Monte Carlo results for the sarfe and d,,. A
seem to be due to the only approximate treatment of the waly oy agreement between both methods is achieved if the

losses of the unconfined electrons in the nonlocal approxiy,a| |gsses are included in the nonlocal model. Usually the

mations. inclusion of wall losses from Eq37) with two loss cones in
the free-flight case yields the best agreement of nonlocal cal-
VI. SUMMARY AND OUTLOOK culations with the Monte Carlo results. Within the validity
range of the nonlocal approximation agreements within 8%
In the present investigation we presented an accurate arfdr the axial electric field strengths and the wall potential
efficient Monte Carlo method to study the electron kinetics(except for the lowest neutral gas density consideneithin
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5% for the mean kinetic energies and 15% for the electrorficient Monte Carlo technique as a benchmark method for
density profiles, were achieved with the nonlocal model in-testing and improving simpler approximations methods. Fur-
cluding the wall losses from Eq37). ther improvements of the Monte Carlo—based positive col-
In particular, we demonstrated that nonlocal calculationsimn model are planned. By implementing a fluid description
yield good quantitative results, even if a significant anisot-of the ions, a self-consistent potential profile in the plasma
ropy of the EDF exists at low pressures. In this case thehould be obtained. The efficiency of the present Monte
two-term spherical harmonic approximation, which is usedCarlo approach can be conserved by approximating the self-
in the nonlocal approximation, becomes questionable. Howeonsistent potential by a piecewise parabolic function. With
ever, our results prove that the nonlocal approximation ighis improved model the positive column at higher pressures
valid nevertheless, if the physically based lifetime approactwill be investigated in future studies in order to test the range

is used for describing the wall losses. of validity of the local approximation.
From the above results we conclude that the nonlocal ap-
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