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Fluctuation-induced interactions between rods on a membrane
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We consider the interaction between two rods embedded in a fluctuating surface. The modification of
fluctuations by the rods leads to an attractive long-range interaction between them. We consider fluctuations
governed by either surface tensi@films) or bending rigidity(membraneks In both cases the interaction falls
off with the separation of the rods asRf/ The orientational part of the interaction is proportional to
cos[ 6+ 6,] in the former case and to Gp&(6,+ 6,)] in the latter, wher@); and#, are angles between the rods
and the line joining them. These interactions are somewhat reminiscent of dipolar forces and will tend to align
collections of such rods into chains$1063-651X96)07012-2

PACS numbdrs): 87.22~q, 82.65.Dp, 34.26:b

[. INTRODUCTION They include the van der Waals interaction, which falls off
with separatiorR as 1R® at long distances. The Coulomb

f n add'ft'?r? 0 tnelr Ztr.L:Ctl.Jr?I role of forrTI1I|ng thz exte_ruI)r interaction is strongly screened under physiological condi-
rames of the cell and IS Interior organelles and VesICIeSy, (Typical ion concentrations are a few hundred milli-

lipid biIaygrs act as the ho§t and regulator of many biophysi-mmar, which give a screening length of less than 10)A .
cal and biochemical reaction4,2]. Inter- and intracellular Hydration and structural forces are also short ranged. The
recognition and transport, adhesion, regulation of ion consecond category includes interactions that are mediated by
centrations, and energy conversion are but a few of the prahe membrane itself: the inclusion disturbs the lipid bilayer
cesses taking place at the membrane. These tasks are carriggli this disturbance propagates to neighboring inclusions
out by a variety of proteins, glycolipids, and other macro-(cf. [2,7,8,1Q and references ther@inWhen macroscopic
molecules that move through the many different lipids thathermal fluctuations are unimportafute refer to this case as
make up the bilayer. The resulting membrane is thus far fronT=0), the resulting interactions tend to be short ranged. For
uniform; there are even examples in which inhomogeneitiegxample, if in the region around an inclusion the membrane
occur on a larger scale, e.g., domains of phase separatéiforced to deviate from its preferred thickness40 A), the
lipids or two-dimensional protein assemblies. In modelingresulting disturbance in the bilayer decaffeal3 over a

the physical properties of the cell, it is thus essential to havéength of order this thickneslO]. Two nearby inclusions

a good understanding of the interactions between inclusionen experience an interaction that falls off exponentially
in fluid membranes. with this characteristic length.

The pursuit of “biologically inspired” materials, which There are also long-range interactions that are mediated
do not possess the full complexity of their natural counterRy the membrane. To describe such interactions, it should be
parts, yet retain some of their useful features, is quite activelossible to neglect the microscopic properties of the mem-
Artificial protein assemblies within lipid membranes are nowbrane and its molecular lipid bilayer structure and focus on
routinely produced in the laboratof}8—5]. Such model- its macroscopic properties. In the long-distance limit, the
membrane systems have potential applications for targeteéembrane is well described by the elastic Hamiltonian
drug delivery and may also lead to applications such a$11,12
nanoscale pumps, templates, functionalized interfaces, and
chemical reactors. The appropriate design of such artificial H_f ds{ K2, —

. . . . = o+ zH + kK
membranes again requires an understanding of how inclu- 2
sions modify the physical properties of the bilayer and how
the membrane in turn contributes to the interactions betweewheredS is the surface area element aHdandK are the
inclusions. The forces between the inclusions can be broadljmean and Gaussian curvatures, respectively. The elastic
subdivided into two categorief6]. The first category in- properties of the surface are then described by the tension
cludes interactions that are present in the bulk of the solventr and the bending rigidities and . A finite surface tension
is in general the strongest coupling in Ed)) and dominates
the bending terms at long wavelengths. This term is present
" Present address: Center for Studies in Physics and Biology, Théer films on a frame, interfaces at short distances, and possi-
Rockefeller University, 1230 York Avenue, New York, NY 10021. bly membranes subject to osmotic pressure differences be-
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kgT L3L3

VI(R,01,0,)=— 128 Fco§[2( 6,+ 6,)]+O(1/RS).

()

The orientational dependence is thguareof a quadrupole-
quadrupole interaction, with the unusual property of being
minimized for both parallel and perpendicular orientations of
the rods. Note that the strength of the interaction is the same
in both cases. The above fluctuation-induced interactions de-
cay less rapidly at large distances than van der Waals forces
and may play an important role in aligning asymmetric in-
: : . clusions in biomembranes. Since orientational correlations
FIG. 1. Two rod-shaped inclusions embedded in a membrane, . )
; , are often easier to measure than forces, this result may also
The rods are separated by a distafteThe ith rod has length b ful be of the fluctuation-ind d int i
L;, width ¢, and makes an anglé; with the line joining the € usetul as a probe of the fluctuation-induced interaction.
Finally, this interaction could give rise to new two-dimen-
centers of the two rods. . . .
sional structures for collections of rodlike molecules. In par-
ticular, the resemblance of the orientational part of the inter-

tween their interior and exterior. On the other hand, for Un-5tion to dipolar forces suggests that a suitable way to mini-

stressed vesicles, the surface tension is quite smgll and MaYize the energy of a collection of rods is to form them into
be _n;eglected at Wha}velengthﬁ well below th? ﬂS|ze OT thechains.(lf the rods are not collinear, the interactions cannot
vesicle[13-16. In this case, the energy cost of fluctuations ye minimized simultaneouslySuch chainlike structures are

is controlled by the rigidity terms. For simplicity we shall ;serveqd for ferromagnetic particles controlled by similar
refer to surface-tension-dominated surfaces as films and tfbrces[lS].

rigidity controlled ones as membranes.

The long-range interactions between inclusions in a mem
brane that result from Ed1) were examined in Ref8]. If
the inclusions are asymmetric across the bilayer and impo
a local curvature, even at=0, there is a long-ranged repul-
sive interaction that falls off with distance asRt/ The en-
ergy scale of this interaction is set lyand . On the other
hand, if thermal fluctuations of the membrane are included
(T+0), there is a R* interaction forgeneric inclusions.
The only requirement is that the rigidity of the inclusion  We start with a thermally fluctuating planar membrane
differs from that of the ambient membraf®. In particular, ~ subject to the Hamiltonian in Eq1). We assume that the
the interaction is attractive if the inclusions are stiffer thansjze of the membrane is well below the persistence length
the membrane. The magnitude of this fluctuation-induced inz [13]. In this limit, the membrane undergoes only small
teraction is set bkgT and is totally independent of the ri- fluctuations about a flat state. We may then parametrize the
gidities x and « [8,9]. membrane surface with a height functiagr) and approxi-

In a recent report, we considered the dependence of th@ate the full coordinate-invariant Hamiltonian of Ea) by
fluctuation-induced T+#0) interaction between rodlike in- the quadratic form

clusions on their orientatiord.7]. The rods are assumed to

be sufficiently rigid so that they do not deform coherently K S )

with the underlying membrane. They can thus only perform Hozszzd rfvau(n]=. 4)

rigid translations and rotations while remaining attached to

the surface. As a result, the fluctuations of the membrane argince we assume is large (compared toR andL;), we
constrained, having to vanish at the boundaries of the rodgjenote thefinite but large reference plane b2.

Consider the situation depicted in Fig. 1, with two rods of  Now consider the situation depicted in Fig. 1, where two
lengthsL, and L, at a separatioR>L;. For fluctuating rigid, rodlike objects are attached to the membrane. We shall
films (o#0), there is an attractive fluctuation-induced inter-represent the rods by narrow rectangles of lengthsand

In both [8] and [17], the calculational details are only
briefly sketched. In this article we provide a detailed deriva-
tion of the fluctuation-induced interaction and justify the ap-
SSroximation of only working to leading order in the inclusion
tilt. Asymmetric inclusions have also been recently consid-
ered in[19], where results similar to ours are reported.

Il. MEMBRANES

action given by L, and widthse; and e,, ultimately taking the limit of
€;— 0. We assume that the rods are infinitely rigid and there-
T L2L§ fore must each lie in a plane. However, each rod is still free
VE(R,0y,6,)=— %%cosz[ 6.+ 6,]+O(1/R®), 2 to rigidly transjate up gnd dgwn and rotate. We can param-
etrize all possible configurations of the rods by
where6; and 6, are the angles between the rods and the line u(r)lrc,=ai+bj-r for i=12, )

adjoining their centers, as indicated in Fig. 1. This angular

dependence is actually tieguareof that of a dipole-dipole where we have also used to denote thdth rod. The con-
interaction in two dimensions, with; andL, as the dipole stantsa; andb; parametrize the planes that the rigid rods are
strengths. The fluctuation-induced interaction on a memeonstrained to lie in; variations ig; andb; correspond to
brane ¢=0) is very similar and given by rigid translations and rotations, respectively.
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To calculate the partition function, we follow a procedure expansion and keep only the leading term, which comes
similar to Ref.[8] and sum over all possible configurations from the quadrupole moments
of the membrane, weighted by the corresponding Boltzmann
factor and subject to the constraints imposed by the rods via Q<i>5f d2rr k(1)
Eq. (5). The constraints may be implemented with the aid of ab alb
é functions as in Ref[20], leading to

(10

After inserting

2
z=fz>u(r)1'[ da;d?b,
i=1

2

1=]1 dQ(”dg(”exr{iE g;‘@,( Q;‘g—f d2rrarbki(r)”
=1 a,b L

x IT s —a=by-r )exp{ HO} 6) (1)

r'el; keT into Eq.(8) and performing the multipole expansion, we ob-
tain

In Eq. (6) we have included only the leading term in an
expansion in powers ofy;. As described in Appendix A,
higher-order terms come from the projectionlgfonto the
x-y plane, as well as from the integration measure dgr
which is on the sphere of unit normals. Sirtgecontrols the
gradient ofu(r) at the boundary of; , the expansion iib; is
in the same spirit as the gradient expansion for the Hamil-
tonian in Eq.(4). In Appendix A we further demonstrate that,
just as in the case of anharmonic terms that have been ne-
glected in Eq(4), the higher-order terms ib; left out from
Eq. (6) are suppressed in the limit<¢. Expressing thed i
functions as functional integrals over auxiliary fielkgr) +'E g ()_ _U[Q Q ]] (12)
defined on the rods, we obtain

Z= fpk r)JdQ')dg(')da,dzb
keT
xexp[——B > f d2rd?r'ki(r)G(r—r)ki(r’)
2k Ty

—i}i: dezrki(r)[aﬁrbi-r+r-g(”-r]

where we have recast thefunctions in Eq.(8) in terms of

2 integrals overa; andb;. The quadrupole-quadrupole inter-
Z=J Du(r)_]_[l fdaidzbif Dk;(r) action is given by
=

XGXF{ S | VRO o[QY,Q)= ;o [QEQE +20508%)

) ~2QFR-Q?-R-2QZR-Q"R

+i§1 lezriki(ri)[u(ri)_ai_bi'ri]}- ) _8R.QM.Q2.R

| +8R-QV.RR-Q?.R]+0O(1/R%)
(13

—H f Dki(r) 8 J' d2r ki(r)) | 82 f d2r rk;(r;) (with impli’cit sum_mat_ion over repeateml andb). _Note that
L L the Green'’s function in Eq9) should also contain homoge-

Integrating outu(r), a;, andb;, then gives

neous terms, which reflect the boundary conditions at the

xex;{ f 42r f a2 k(1) outer edge of the membrame=d. However, we have only
2K| used the explicit form of the Green’s function in computing

the leading terms in the multipole expansion. As long as

L, andL, are sufficiently facompared tdR) from the edge,
XG(ri— ri)kj(rj)}’ () the particular choice of boundary conditions atd does not

modify the leading terms in this expansion. The homoge-

neous terms can therefore be safely suppressed if9Eq.

We first isolate the integration ovég(r) in Eq. (12),

G(r—r')= L =i|r—r’|zln|r—r’| 9 keT 2,421 ' '
v4 L 8w ' l1=| Dky(r)exp — 2% ), dorder'ky(r)G(r—r")kqy(r")
1

where

Equation(8) is analogous to the partition function for a pair .

of plasmas confined to the interior of rods andL,. The - Ldzrkl(r)[aﬁbl' r+r-g<1>-r]]. (14)

6 functions impose the constraints that the net charge and

dipole moments vanish within each rod. When the distanc&o perform the above integration, the Green'’s function in
R between rods is much bigger than their sfze., L;<R), Eq. (9) has to be inverted in the finite regidan. In order to
we may approximaté&s(r;—r,) in Eq. (8) by a multipole  do this, we introduce an auxiliary fieli(r) and write
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_ _ K 4202 2 f 2,102 2_ (12 1 2
I4 JDh(r)exp{ 2kBTf1gzd r(veh(r)] } Rz,,_ld r[Veho(r)]°=2m(L1g,y) "+ In(4d/Ll)[Slblx

2
x [T sth(r’)y—a;—by-r—r-gP.r). (15 * 5Py 1+ O(L. /d), @)

r'eL
' wheres; are numerical constants. The second term on the
This is just the partition of a membrane constrained by aight-hand side of Eq(21) is examined in Appendix A,
single rod. After evaluating the contribution dn (via the  where the irrelevance of higher-order termsbins demon-
S function), we are left with strated. In the limitd>L, it suffices to keep only the first
term on the right-hand side of E(R1), which gives

2
|1=exp[— =L qLﬂgi&J)z}
kBT K
I, =A exp — —=[2€,L1(g5) 2+ 7(L1gid)?] 1. (22)
KgT y

xf Dh(r)ex;{— 2kKTf i d2r[V2h(r)]2},
B IR The result of theék,(r) integration in Eq(12) is similar, with

(16)  the index 2 replacing 1 and with the coordinate axis appro-

) o ] ) priately rotated to align with the second rod. The overall
where the prime indicates that the functib(r) and its nor-  eynression for the partition function now reattiropping
mal gradient are constrained to satisfy the following Cond"unimportant multiplicative constants

tions on the boundarylL, of L;:

_ 1 2
=1 B

ah(r) d )
—p lrea, = o-(@tbyrtr-gthn. 7

(L] -1 aliod
Now let hy(r) denote a solution to the biharmonic equation T
_ 2B oW o®@
V4he=0 (18) P v[Q™,Q ]], (23

on R2—L, with the boundary conditions of Eq§l7). We

then set where we have set the widths of the rods to zém®, taken

the €—0 limit). The primed indice’,y’,x",y” indicate
h(r)=hy(r)+ 8h(r), that the corresponding components are with respect to the
coordinate frames wherk,|ly’ and L,|y”. We define an
where bothsh(r) and its normal gradient are zero on the unprimed coordinate system such that xhexis is parallel to
boundary ofiL;. Following this change of variables, R and the two rods make angles &f and 6, with respect to
the x axis as in Fig. 1. Integration overyields

2k
I1=Aexp[—kB—Te1L1<gg%£>2 ,
z=]] fdQ“)E(QQ)Zcoszoi+Q§(iy)sin20i
=1

Xex;{—ZKKTf ) er[vzh()(r)]Z} (19 , . |
sl Jr2-1, +Qyysint 6;) S(Qiysin’ 6, — Qjyysin26,

: k
+Q§,'y)cosz0i)exp[ - zi:[z !

T 27L?

where

A=f1>5h(r)ex K d2r[V2sh(r)]2
2KgT Jr2—1,

X

1 : : . 2
_ o _ 5 ;'y)—Q§'2)3|n20i+Q§('300320i) H
is a normalization constant, independent af b, and g,
which does not affect the remaining computations. In order keT
to solve Eq{(18) we must specify the boundary conditions at ><exp[ - Z—U[Q(l),Q(Z)]] ) (24)
r=d, which are the same as those fofr). As discussed K
earlier, the results should be independent of this choice, and

it is convenient to select Since we are working in the largedimit, the Q integra-
tions are most easily performed by expanding Exf)) to
_oh B second order in. After expanding—kgT InZ, we find the

h|f:d_(9_r ) =0. (20 (R, 0,,65)-dependent part of the free energy given in Eq.

¢ (3). We can rewrite this interaction in a coordinate invariant

As shown in Appendix B, the solution for the case when theform, in terms of the vectoR and the directord ; andL,
rod is along they axis, in the limitd>L 4, gives along the rods, as
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kgT L3L3 A A A A a 1 . .
VI =— 2“2 20020, R) (L, R)— Ly - L,]2— 112 u[p®,p@]1= — —[p®.p@—-2(p.R)(p?-R)]
128 R 7R
(30)
+O(1/R%). (25
is the effective dipole-dipole interaction, analogous to Eq.
L. FILMS (13), andg; is the variable conjugate {@"). We integrate out

ki(r) as in Sec. Il by introducing an auxiliary fiel(r). In
We now turn to the analogous calculation for films. Againthis case we must solve a harmonic equationlidn-L;,

we use a Gaussian approximation for the Hamiltonian in Eqginstead of the biharmonic Eq18), with the boundary con-
(1), but keep only the surface tension this time, dition onL;,

Ho:%f dzl’[VU(l’)]z. (26) hO(r)lrgaLi a|+(b|+g|) r. (31)

The harmonic problem can be solved either by a method
All anharmonic corrections to the above expression are unsimilar to that described in Appendix B or by conformal
important in the limitca?>kgT, wherea is a microscopic Mapping. The resulting expression for the partition function
length. We follow a procedure similar to that described inféads

Sec. Il, but with the differences noted below. The expression 4%

for the partition function is similar to Eq6), with H, now 2=T11 f dp“)dg-—ziex;{ __7
given by Eq.(26). For films, however, we cannot justify i '(1+b)¥2 2kgT
keeping only the leading terms in an expansiorbjn Thus

the full rotationally invariant measure of integration on the %
sphere of slopeb; should be employegsee Appendix A

Also, the appropriate domain replacinhg is the projected T
length Ly=L,;/y1+ bizy. After introducing auxiliary fields +i2 gi.pﬁ)_iu[p(l),p(m]} (32)
ki(r) as in Sec. ll, the analog of E¢8) may be written as [ 20

a7 —, m—
ZLlZ(bly' + gly’)2+ Z L22(b2y//+ gzyu)z)

a2b. where the meaning of_ the primes is 'the same as in S.ec. Il.
Z:H f—2‘|3/2f pki(r)g( j—dzriki(ri)) One can now see expllcnly tha_t the_hlgher-order terms in the
i (1+b7) Li expansion inb; are important in this case. The remaining
2 integrations, except those bf,, andb,,~, can be performed
X ex _kB_TE f d2r, |_d?r ki(r;) in a straightforward manner. The latter two integrals are
20521 ) ! L R rather complicated and in order to get a simple result, we

restrict ourselves to the cas# ?(L2%/R?)<kgT. In this limit,

the integrals can be approximated by Gaussian forms. After
expanding—kgT InZ, we find Eq.(2), which can be ex-
pressed in a coordinate invariant form, in terms of the vector

XG(ri—rj)k;(f;)—iZ bi'J’?eririki(ri)} 27

where R and the director£1 andI:2 along the rods, as
2 2
1 1 1 keTLily o nn aa 6
Q(r—r’)z(_—vz) zzln|r—r’|. (28) VF__l_ZSF[Z(LlR)(LZR)_LlLZJ +O(1/R ).
'

(33

Note that for films, the dipole moment & (r) does not
vanish. Expandingi(r—r’) in a multipole expansion and IV. DISCUSSION
keeping only the leading term, which now comes from the

We shall now discuss some general aspects of the
dipole momentg;= [rk;(r), we find J P

fluctuation-induced interactions Eq®) and(3). The magni-

&b tudes are solely determined g T and are independent of
z=]] f Dki(r)f dp<i>dgidail—2'3/2 the tension and rigidity coefficients and «. This is a sig-
[ (1+b7) nature of the entropic nature of the interactions. The number
T of allowed modes in the membrane is independent of the
Xexpl — ——> jfdzrdzr’ki(r)g(r—r’)ki(r’) membrane elastic constants; however, it does depend on the
209 i, position and orientation of the rods. Note that, although the

total entropy of the membrane modes diverges, the contribu-
—iE f_dzrki(r)[ai+(bi+gi)-r]+i2 g-p" tion that depends on the rods’ orientations and separation is
TJL i finite. (A similar effect is seen in the Casimir effect and other
fluctuation-induced interactions; cf.l20] and references
_ kB_Tu[pm p<z)]} (29) therein) In the above calculations we have taken the rods to
20 ' ' be infinitely rigid. This approximation holds in the limit that
the rod elastic constants are much larger than those of the
where membrane; for sufficiently large values of the membrane
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L4

2 U'(R)
a) V(R,01,0,)=L*U(R) + &

—t U”(R))

(cos29,+cos2b,).

L4(U’(R) .,
TR Y®

(39

Note that the angular dependence is nhow completely differ-
ent and minimized when the two rods are parallel to their
axis of separation. Presumably both interactions are present
for rods of finite thickness; the additive interaction is propor-
tional to L?(Le/R)?, wheree is the thickness. The previ-
ously calculated interactions are thus larger by a factor pro-
portional to R/ €)? and should dominate at large separations.
The unusual dependence on orientation in Egjsand(3)
could lead to new types of orientational ordering in en-
FIG. 2. Minimal-energy orientations for two rods in a mem- sembles of rod-shaped particles. Of course, due to the non-
brane[(a) and(b)] and a film[(a) only]. The energy is minimal for additive nature of the forces, the fluctuation-induced interac-
all values ofé. tion should be calculated separately for each arrangement.
) ) _However, a cursory examination suggests that three-body
bending energy, the above results will break down. Thus ifnq higher-order interactions fall off with separation as
we denote the bending rigidity of the rods ky, we expect  1/r6 Thys, forRs>L, a collection of rods can be treated as if
the leading correction to E¢3) to be of order/«, ; similar  they interact through additive pair potentials. It is amusing to
considerations apply for films. An explicit calculation of the gyamine the minimum of such an interaction for three rods
fluctuation-induced interaction for disks in the limit in which placed on the vertices of an equilateral triangle. One possible
the inclusion and membrane elastic constants are Comparat&%;uilibrium configuration is a three arm star with the relative

is described irf8]. _ _ _ angles of 27/3 between the rods. Interestingly, this so-called
For both membranes and films, the interaction falls off«yigkelion” structure is indeed formed by three rodiike

; i 4 ai ; ; . . : .
with distance as R". Since the direct van der Waals inter- «q|athrin” proteins [1]. (Another stable configuration has

actions between inclusions still fall off asRfl, the forces  each rod parallel to the corresponding side of the equilateral
mediated through the two-dimensional surface will alwaysyjangle) Of course, given the relative proximity of the three
asymptotlc?l_ly dominate. Of course, the dimensional depenpoteins, it is not clear that the asymptotic interactions of Eq.
dence ofR"™ is canceled by a product of lengths in the nu-(3) are applicable to this case. Another generic aspect of
merator. For spherical inclusions, this is given by the productjinole and quadrupolar interactions is that they are frustrated
of two inclusion areagsee Ref.[8]) and for rods by the (i e  cannot be simultaneously minimized with respect to the
product of the squares of their lengths. Presumably, for genyrientations if the rod centers are not aligned. There may
eral shapes, there is a formula that interpolates between theggys be an overall tendency to arrange rod-shaped molecules
two limits. Another potential extension is to a polymer float- jnto chains(Naturally this effect competes with the tendency
ing on a membrane. The interplay between the. elasticity ang, aggregate the inclusions togethewe hope that the
shapes of a polymer and membrane, neglecting membrangientational-dependent interactions calculated in this paper

fluctuations, has been examined[Z1]; an extension to the il provide a fresh perspective on the behavior of inclusions
case of a fluctuating membrane has also recently appeargd piological membranes.

[22]. There is also interesting behavior in the opposite limit
of R<L for the interaction between two parallel semiflexible
polymers[23].

Finally, the most interesting aspect of our calculation is M.K. and M.G. acknowledge the hospitality of the ITP at
the orientational dependence of the force. This is most easilganta Barbara where this work was initiatetipported by
discussed for the film, where an intermediate stage involves|SF Grant No. PHY-89-04035The work at MIT is sup-
calculating the angular dependence of a dipole-dipole interported by the NSF Grant No. DMR-93-03667. R.G. ac-
action, which is subsequently squared. The final angular deknowledges support from the Institute for Advanced Studies
pendence is thus that sfjuared dipolar interactionsSimi-  in Basic Sciences, Gava Zang, Zanjan, Iran.
larly, the result for the membrane correspondsstmuared
guadrupolar interactions The minimal-energy orientations APPENDIX A: INTEGRATION OVER TILT ANGLES
are shown in Fig. 2; note that there is a large degeneracy. We
also note that these interactions cannot be obtained by adding In this appendix we examine the higher-order terms in the
two-body potentials on the rods: To find the orientationaltilts of the rodsb; and show that they may be neglected. For
dependence of additive forces, let us consider an interactiosimplicity we shall focus orb,; similar arguments apply to
U(|r;—r5|)du,du, between any two infinitesimal segments b,. Whenever possible we drop the index and biseh; and
of two rods of lengthL at a distanceR>L. Expanding L=L;. The integration forb must be performed over all
|r1—r5,| and integrating over the two rods leads to the inter-possible orientations of the rad in the three-dimensional
action embedding space. The manifold of orientations is the unit

ACKNOWLEDGMENTS
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sphere. In terms of the vectbr defined in Eq(5), the rota-  In the above equation, the ellipsis denotes factors that are

tion invariant measure on the unit sphere is given by independent ok,(r), b, andf and identical to the corre-
sponding terms in Eq.(12) with the exception that

d’b v[QW,Q@)] is replaced byw[p,QM,Q?)], i.e., the multi-

dQ= (1+b2)32 (A1) pole energy now also depends pn The integration over

ky(r) is the same as in E@14), except thab, is replaced by
The |eading term of the expansion of EA_’]_) in b, dzb, was f. Thus, after SUbStitUtinngf bl in Eqg. (21), we are left with
used as the integration measure in E). Additional b de-  the modified integrals
pendence comes from the projection of the tilted rods onto
thex-y reference plane. For example, the conditions imposed Z:f dbdfdp exp{
in Eq. (5) do not really apply for € L but rather forr in the
projected image ofL, which is a rod of length

K

- 2 2
kg In(aaiD) StixTs2fy)

L/(1+bJ)Y2 Again, in Eq.(6) we have taken the leading —i(b—f)-p|(1+Tb,2+Tb,?)
order in' an expansion i by setting 1/(kb2)"?~1.
We shall now demonstrate that the higher-order terms in X(WO+Wlxp>2<+lep§+ c). (AB)

b can be neglectelds discussed after E(B)]. The argument

is presented explicitly for terms of ordd?, but is easily In the above equatiof Wy, Wy, , Wy, . ..} refer to the re-
extended to higher orders. Including the first corrections tasults of the remaining integrations, which are performed after
Eq. (7) results in expanding exp-ksTo(p,Q™,Q3)/2«] in powers ofp and

are independent gb, b, andf. After integrating overf and

2 . . .
dropping an unimportant constant, we obtain

z=| Du(n)[] Dki(r)dad?b;(1+T,b2+Tb2)
i=1
B sz dbdp exf —ib-p](1+Tb,2+T,b,?)
_ 2 2 2
Xex;{ SkaT dor[Veu(r)]

keT In(4d/L) [ p?> p?
lw—w g(&+& ol

0 0 2k Sl SZ

+I2i fLid r,kl(rl)[u(r,) a; b| rill, (A2) a7

whereTl', andT, are independent df. If, as in Sec. II, only ~Note that thev,, andW,, have been dropped since they are
the leading term is retained, the integration obeleads to  Subleading in the limid>L. Integrating oveib andp then
the constraint that the dipole momeki(r) must be zero 9IVesS
[see Egs(7) and (8)]. Due to the higher-order terms in keT In(4d/L)
this constraint is modified and we have to take into account Z=W,y+W, B

ry Ty
: = 0 =t
the dipole moment

st (49

As discussed in Sec. Il, we assume that the size of the
pEJ d?rrky(r). (A3) membrane is much less than the persistence leégithus
L the higher-order terms in the expansion in E48) are

. smaller by powers of
Following the same procedure used for the quadrupole mo- yp

ment in Sec. I, we introduce an auxiliary varialflevia kgT In(4d/L) In(d/L)
Here we have used the resul8] é~a exp(2rx/kgT), with a

K In(da) "
1=f dpdf ex;{if-(p—J d?rrky(r)
Ly
short-distance cutoff of order molecular size, leading to the

Inserting Eqs(A4) and(11) into Eqg. (A2) and performing hierarchy of length scalea<L<d<¢. To leading order,
the multipole expansion gives then, we haveZ=W,, which is independent of, and T,

and therefore the lowest-order term in the expansiob. il

is interesting to note that the above argument does not hold
for films controlled by surface tension, as discussed in Sec.
Il

1 (A9)
. (A4)

Z=f [T Dki(r)dQ"da,dg™db,dbdfdp
I

X (1+T,bZ+Tb?)
KT APPENDIX B: SOLUTION OF THE BIHARMONIC
xexp{—x d?rd?r'ky(r)G(r—r")ky(r’) EQUATION
L
! The biharmonic equatiofEq. (18)] for a single rod is

discussed in detail in this appendix. The problem is to find

—i(b—"f)-p—i fL d2rky(r)[a;+f-r+r-g.r] the solution to

1

X, (A5) V4h=0 (B1)
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on a finite disk of radiugd from which a line segment of V4G (X,y;x",y ) =8(x—x")8(y—y"), (B8)
lengthL along they axis has been removed. The boundary

conditions are . J
VIGa(x,yixy') = — 6(x=x") 8(y~y")

L L
h{ x=0,— s <y=<—|=a+byy+g,,y? B2
2=Y=2 T Oy (B2) and obey the conditions in E¢B12) atr=d, are given by
L L ’ 1 2 12 XZ"'(Y_Y’)Z
&h(x=0,— S=y= E)sz+2gxyy, Ga(xy.y') = 7o [X*+(y=y) N —
_ 1yy ) 1 )
h(d)=0, g (P A+ [P,
T )= (B9)
ar h(d)=0. i i
o i +(y—-y’) yy'
Note that for the boundary conditions, the derivatives are ~ C2(x.¥.y")=g—1In a2 trgEtl
taken before the limit—0. It turns out to be easier to im-
pose a weaker boundary conditionratd, namely, _ re+r'2 }
d? '
L
h(d)=0 d/’ 5h(d)=oa. (B3 Note that the boundary conditions in E¢B3) do not

uniquely specifyG; andG,, but allow different choices that

Since we havel> L, it will suffice to keep the leading terms differ by subleadingd(L/d) terms atr =d. Indeed the asym-

in the limit L/d—0. Performing the integration by parts metry inG; with respect to the interchangexandy—y' is
yields a result of this freedom. If we requiteanddh/dr to vanish

atr=d, thenG,; would be rotationally symmetric. The un-
oo 5, oh av2h known functionsf; in the above solution can now be ob-
LZ_Ld r(veh) :Lmz—udl Vehoo—h— tained self-consistently by matching to the known forms of

h and gh/dx on L, as given by the boundary conditions in
L2 dh Eqg. (B2). We thus end up with the integral equations
= fuzdy( h(0y)fa(y)~ 5<o,y>fz(y>), q ° e

L/2
B arbyrou= |y G0y 0y Iy

where (B10)
2 2 L2 9
PP A L) A bx+2gxyy=f dy'--Ga(x=0y;x' =0y )f5(y").
1(y) X X ; (BS) L2~ OX
x=0% x=0" (Bll)
fa(y)=V?hly—o+—V?h[—o-, (Note that atx=0, G, and dG,/dx are both identically

zero) We start with Eq(B11) for f,(y), which is somewhat
and, as in the text, we have denoted the finite disk of radiU§asier to solve. After Changing variables ygz(L COS¢)/2
d by R? for simplicity. It is easy to check that the above andy’ = (L cosy')/2, this equation reads
boundary value problem oR?—L is completely equivalent
to the problem

L~ L
bX+Lgxycos¢=§J0 d¢’'sing’f, Eco&b’)G’(cﬁ,gb’),
4 J (B12)
Vh=11(y) 6(x)+ faly) - 8(x) (B6)

where
on R?, provided that the conditions in Eq®3) atr=d are

satisfied. The solution to E¢B6) can be given in terms of , 1 , 4d
the unknown function$;(y) andf,(y) as G'(d.¢")=5g—-|2 In(2|cosp—cosp’[)—2In L
L2 (B13)
h(x,y)= fﬁuzdy’Gl(x,y;x’=0,y’)f1(y’) We now use the expansid@4]
L/2 * 2
+f L/Zdy’Gz(x,y;x’=0,y’)f2(y’). (B7) In(2|cosp—cosp’|)=— >, —com¢ conigp’ (B14)
_ n=1

The Green'’s function&;, which satisfy and define a series



= a,coamg’. (B15)
m=0

sing’ f (—co&ﬁ

Solving Eq.(B12) for the a,,’s gives, to leading order in

a>L, for f4,
1 [ —8b, ,
cos¢ S|n¢ —Tad — 80y, cosp (B16)
LIn T

The integral equation fafr; requires more care. First, note
that the choice 06, in Eqg. (B9) does not lead to a vanishing
normal derivative at =d unless the condition

L/2
f dy'y’?f1(y’)=0 (B17)
—L/2

is satisfied. Setting up the expansion

FLUCTUATION-INDUCED INTERACTIONS BETWEEN ...

where
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. L -
smqb’fl(§co&1>’)= > bycosng’ (B18)
m=0
this requirement implies
2by+b,=0 (B19)

The integral equatiofiB10) can now be written as

L2 L L2
+ @gyﬁ Ebycos¢+ Egyycos2¢

_L m I H i L I li
_Efo dg'sing’f;| coss )G(¢,¢ ), (B20)

2 d\ d? 1
G(p,¢')= 35| (Cosp— cosp’)?In(2|cosp— cosp’|) — (cosp— cosp’ )2In(T +27 Ecos’-gb
L ) 2 WECIE 3 1 [4d ,
=T\ 2t T Tt Tt il ) |cos
5 4d 1 1 1 (4d 1
+cosp ——2In cosp’ + =c0s3p’ | +c0S2p| — =+ =In| — | — =Cc0s2P’ + os4¢
6 2 2 L 3
+§ 1 1 A +1 2 Y ,+1 11
&, 00N | 5T T Ty )N T gl T T ) oSNt e n-2 ' n
- ﬁ) cogn—2)¢ D (B21)
|
In going to the second form d&(¢,¢') in Eq. (B21), we 5 4d 1 64
have used the expansion in E@14) and rearranged the 5 ~2In| =] |b1F gbs=—1{zby, (B22b
resulting expression as a series expansion so that it resembles
the left-hand side of the integral equation. Substituting the 5
expansion of Eq(B18) in the integral equatioriB20) and +in d) ol =24 —In(ﬂ”b
. .. . . 12 0 2
equating the coefficients of cag on both sides, we obtain L L) 4 4 2 \L
the following set of linear equations for thw, : 128 16
=-1Fa T 9 (B229
( —1 —1 b+1—1 +1 —2 b 1 1 (4d 1 1 16
n n-1 n+1/ " 2\pnt2 " n n+1) "2 a2l b Zp+ —b= — —
2[ +2In( L”bo 3b2+ 24b4 vy
1/ 1 1 2 b .—0 5 (B22d)
otz TR T ag)Pe2=0 (n>2),

(B22a  d>L)

The solution to the above equations(ie leading order in
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L2\[4 32 b;=0,
boz dT Egyy+ fga , (823)
384
32 _
b,=——b bs=—T"9yy

4d\ Y’
2
L In(—L)

5 and all otherb,, are determined by the recursion relation
_ L\ |4 32 (B22a. Putting the results fof, and f, into Eq. (B4), we
b2— -2 ? Egyy+ Fa

' find Eq. (21), with s;=s,=41r.
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