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A method to characterize dynamical interdependence among nonlinear systems is derived based on mutual
nonlinear prediction. Systems with nonlinear correlation will show mutual nonlinear prediction when standard
analysis with linear cross correlation might fail. Mutual nonlinear prediction also provides information on the
directionality of the coupling between systems. Furthermore, the existence of bidirectional mutual nonlinear
prediction in unidirectionally coupled systems implies generalized synchrony. Numerical examples studied
include three classes of unidirectionally coupled systems: systems with identical parameters, nonidentical
parameters, and stochastic driving of a nonlinear system. This technique is then applied to the activity of
motoneurons within a spinal cord motoneuron pool. The interrelationships examined include single neuron unit
firing, the total number of neurons discharging at one time as measured by the integrated monosynaptic reflex,
and intracellular measurements of integrated excitatory postsynaptic potentials~EPSP’s!. Dynamical interde-
pendence, perhaps generalized synchrony, was identified in this neuronal network between simultaneous single
unit firings, between units and the population, and between units and intracellular EPSP’s.
@S1063-651X~96!04012-3#

PACS number~s!: 87.10.1e, 05.45.1b

I. INTRODUCTION

When the dynamical behaviors of two systems are ob-
served, how can we tell if they are coupled? Traditionally,
one tests to see if there is a degree of correlation between
variables observed from each system. In systems with many
components, cross correlation in the time domain and cross
spectrum or coherence in the frequency domain have long
been the mainstays of correlation detection@1#. Cross corre-
lation measures the linear correlation between two variables,
and the cross spectrum is the Fourier transform of the cross
correlation. Measures of cross correlation or coherency in
effect ask whether there exists a functional relationship be-
tween the time series in question. The functional relation is
albeit a very specific one for these linear measures. Never-
theless, for linear systems, these linear measurements are
sufficient to describe the dynamical interdependence of their
parts. Unfortunately, the components of complex extended
systems in nature rarely display only a linear interdepen-
dence, and superposition may break down in describing their
aggregate behavior.

A broader definition of dynamical interdependence was
recently offered by Pecora, Caroll, and Heagy@2#, who sug-
gested that dynamical interdependence implies that observed
variables come from the same dynamical system. We wish to
take two arbitrary nonlinear systems, whose underlying dy-
namical equations are unknown to us, and ask whether their
variables are interdependent. Finding evidence of dynamical

interdependence in such systems implies two things: either
the systems communicate~they are coupled together and in-
formation flows between them!, or they are coupled to a
common driver.

In the case when two arbitrary nonlinear systems are
coupled, it is possible that their temporal evolutions might
become ‘‘synchronized’’ as one adjusts the coupling strength
between them, even though their temporal evolutions will
not be identical. One of the earliest discussions of this topic
was Afraimovich, Verichev, and Ravinovich@3#, who de-
scribed a state they termed ‘‘stochastic synchronization’’ that
occurred between nonidentical nonlinear oscillators with dis-
sipative coupling. Stochastic synchrony was here defined as
the existence of a topological identity~homeomorphic or dif-
feomorphic! between the attractors describing each nonlinear
oscillator of the system. Note here that knowledge of the
separable state variables for each subsystem was assumed.
The termgeneralized synchronywas later applied by Rulkov
et al. @4# to unidirectionally coupled systems with such
‘‘synchronized’’ behaviors. In@4#, through the restriction of
unidirectional coupling, delay coordinate embedding vari-
ables@5# could be used to establish a topological identity.
Rulkovet al. @4# further defined a mutual false nearest neigh-
bor statistic to establish continuity, and thus infered the ex-
istence of generalized synchrony in such systems. Pecora,
Carroll, and Heagy@6# explored the statistics that define the
nature of the topological relationship between two time se-
ries from such coupled systems, in an effort to define
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whether the function that links the systems is continuous or
differentiable. Generalized synchrony is therefore a particu-
lar case of dynamical interdependence@2#.

When two systems are coupled to a common driver, if the
coupling is sufficiently strong to establish generalized syn-
chrony between the driver and the response systems~as-
sumed to be identical!, then the two response systems will
become asymptotically stable and thus synchronize@7#. Un-
der such conditions, the two response systems will synchro-
nize after a finite transient irrespective of their initial condi-
tions. When this occurs, the largest sub-Lyapunov@8#
exponent of the response system will be negative.

Dynamical interdependence or generalized synchrony im-
plies predictability, and such predictions were described in
@4# using local polynomial maps of a driving system to pre-
dict the behavior of a unidirectionally coupled chaotic re-
sponse system. Unfortunately the application of these ideas
to experimental systems with arbitrary coupling is not
straightforward.

In an experimental setting, where the degrees and direc-
tions of coupling between elements are not knowna priori,
we assume that all we can do is to record one or more ob-
servable variables from two potentially dynamically linked
systems. Our goal is to reconstruct the dynamics as best we
can from these observed variables using delay coordinates
@5#, and then apply a statistic to check for the existence of
dynamical interdependence between the two reconstructed
systems. If a function exists that maps the values from one
system to another, this implies the ability to predict one sys-
tem through a knowledge of the other. This is the basis of
our mutual prediction technique, which provides a measure
for both the relative strength and the directionality of the
coupling between the two systems. By defining the predict-
ability of each system based on a knowledge of the other
system, we derive a measure of dynamical interdependence.
In the special case when two systems are unidirectionally
coupled,bidirectionalmutual prediction between their corre-
sponding observable variables implies the existence of gen-
eralized synchrony@4,6,7#.

Seeking a broader definition for dynamical interdepen-
dence in the nervous system has important implications. One
of the central questions facing neuroscience today concerns
the ‘‘binding problem’’ — how the brain integrates separate
neural events into perceptions@9#. Traditionally, cross corre-
lation and coherence have been relied upon to correlate neu-
ronal and behavioral activity in spatially disparate portions
of the brain@10#. Yet the elements of the brain are inherently
nonlinear in that the basic unit of activity is mediated by all
or none action potentials, and even synaptic transmission
tends to be highly nonlinear@11#. Indeed, it is suggested that
the essence of neural computation lies within this inherent
nonlinearity @12#. Furthermore, neural activity seems to be
incessantly ‘‘noisy’’@13#. Whether some of this noise might
be deterministic, perhaps chaotic, has been investigated re-
cently, and there is mounting evidence that a degree of de-
terminism not accounted for by linear models may be ob-
served in neuronal ensembles@14–16#. We therefore
postulate that the study of synchrony in the nervous system
could be broadened by examining nonlinear coupling. We
note that others have recently speculated on whether gener-
alized synchrony occurs in information processing of neural

assemblies@7#. To our knowledge, what follows is the first
attempt to detect nonlinear coupling or generalized syn-
chrony in a neuronal ensemble.

We chose to study a relatively simple neuronal ensemble
— the motoneurons of the monosynaptic spinal cord stretch
reflex. The monosynaptic stretch reflex is among the simplest
and most accessible of mammalian neuronal ensembles. It is
also perhaps the best studied of all mammalian neuronal net-
works @17,18#. This preparation offers the ability to measure
both the firing of multiple individual neurons, and simulta-
neously measure the population activity in terms of the total
number of neurons firing in response to a stimulus. In addi-
tion, because of the thickness of the spinal cord and the large
size of alpha motoneurons, stable intracellular recordings are
achievable over considerable periods of time.

Monosynaptic reflexes are known to be extremely vari-
able @19,20#, and in previous work@14# we have demon-
strated that in the decerebrate cat spinal cord, a degree of
nonlinear predictability was present in the reflex variations
that could not be accounted for by linear models. We also
demonstrated that the recruitment order of motoneurons
could be altered as a function of stimulation frequency, as
well as by the recent history of stimulation@20#.

In Sec. II, we first describe a zero order mutual predictor
and define a method to optimize the different operational
parameters. We then discuss the implications of observed
mutual predictability in terms of the system’s dynamical
linkage. The technique of mutual prediction is then applied
to unidirectionally coupled maps with identical and noniden-
tical system parameters in Sec. III A, and the relationship
between mutual prediction and generalized synchrony ex-
plored through the use of sub-Lyapunov exponents. These
results of deterministic driving are then contrasted with ran-
dom driving of a deterministic numerical system in Sec.
III B. We then apply these results to a neuronal ensemble.
The experimental preparation is described in Sec. IVA. An
analysis of the dynamical interdependence of individual mo-
toneurons and the activity of the motoneuron pool is given in
Sec. IVB. A description of the construction of multivariate
surrogate data@21# can be found in Appendix A, a discussion
of correlation statistics is provided in Appendix B, and a
description of sub-Lyapunov exponents can be found in Ap-
pendix C.

II. NONLINEAR MUTUAL PREDICTION
AND DYNAMICAL INTERDEPENDENCE

We begin with two potentially coupled dynamical sys-
temsX andY, of which we have noa priori knowledge of
either their individual dynamics or their dynamical interde-
pendence. For systemsX andY, we measure time series of
observable variables,xi andyi ( i51 . . .N). Since time se-
ries from different systems will in general not contain the
same range of values, each time series will be normalized as

x̂i5
xi2^x&

sxi

and
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ŷi5
yi2^y&

syi

,

where^ & indicates average overi , andsxi
andsyi

are the

standard deviations of the time seriesxi andyi .
Using the method of time delay coordinate embedding

@5#, we can reconstruct a chaotic trajectory$xW i% in an embed-
ding spaceX using the normalized time series$x̂i% with an
appropriately chosen embedding dimensionDx and a lag
time Lx ,

xW i5~ x̂i ,x̂i1Lx
, . . . ,x̂i1Lx~Dx21!!.

Similarly, we can reconstruct a chaotic trajectory$yW i% in an
embedding spaceY using the normalized time series$ ŷi%
with an embedding dimensionDy and a lag timeLy ,

yW i5~ ŷi ,ŷi1Ly
, . . . ,ŷi1Ly~Dy21!!.

After @22#, we choose the lag timeLx,y to be approximately
1
4 of the decorrelation time of the time series, which is de-
fined as the time it takes the autocorrelation function to de-
cay to 1/e of its value at zero lag.

We then ask whether there exists a functional relation
C between the reconstructed systemsX andY, i.e.,

X5
?

C~Y!.

Such a relationC may be continuous, differentiable~smooth
and locally linearizable!, and perhaps it has a continuous
and/or differentiable inverse. As in@6#, we seek a statistical
measure of confidence that such a function exists.

For each pointxW i in the embedding spaceX, there exists a
nearest neighbor ofxW i , xWnnxi, and their imagesxW i11 and

xW (nnxi11), respectively. Similarly, for each pointyW i , and its

imageyW i11 in Y, there exists a nearest neighboryW nnyi and its

imageyW (nnyi11) .
After the manner of@4#, we may also define a mutual

neighborxWnnyi of y
W
nnyi

, which is the point inX that bears the

index of the nearest neighbor ofyW i . Similarly, there is a
mutual neighboryW nnxi of x

W
nnxi

in Y. The iterated images of

these mutual nearest neighbors arexW (nnyi11) and yW (nnxi11) ,
respectively. Figure 1 illustrates these points.

We now incorporate these true and mutual nearest neigh-
bors in a nonlinear mutual predictor. Based on previous work
@14,23,24#, we will choose the simplest implementation of
this predictor—using localzero order ~constant! maps.
While a zero ordernonlinear predictor checks for the exist-
ence of acontinuousmap C betweenX and Y, a higher
order nonlinear predictor could be used to verify the exist-
ence of differentiability.

For each index pointxW0 in the embedding spaceX, we
find its k nearest neighbors,$xWnnx0

j % j51, . . . ,k . With a transla-

tion horizon ofH>0 time steps ahead, the prediction is the
average translation given by

^v&nnx~x!5
1

k(j51

k

xW ~nnx01H !
j

while the translation of the index point isxW01H . The differ-
ence between the actual and average predicted translation is
the prediction error,«nnx(x) ,

«nnx~x!5uxW ~01H !2^v&nnx~x!u.

The prediction error for the mean of the time series,«mean, is

«mean5uxW ~01H !2^x&u.

The normalized prediction errorD is the discriminating sta-
tistic for this method

Dnnx~x![
^«nnx~x!& rms
^«mean& rms

where rms indicates root-mean-square. When this normal-
ized prediction error is no different from the error of guess-
ing the mean,D will equal 1. This is what one would expect
for a time series without nonlinear predictability. On the
other hand, if the time series is deterministic,D will be less
than 1. Source code for this algorithm can be found in@25#.

Similarly, we may define a prediction ofxW0 at H time
steps ahead based on the mutual nearest neighbors

$xWnny0
j % j51, . . . ,k , such that

^v&nnx~y!5
1

k (
j51

k

xW ~nny01H !
j ,

with

«nnx~y!5uxW ~01H !2^v&nnx~y!u

and

FIG. 1. Illustration of points in two phase space reconstructions,
X andY, from two systems,X andY . Each index point,x( i ) and
y( i ) , has nearest neighbors in phase spacex(nnxi ) andy(nnyi ) respec-
tively. Each index point also has a mutual neighbor, a neighbor that
uses the time index of the true nearest neighbor of the other system,
x(nnyi ) and y(nnxi ), respectively. The images~open circles, O! of
these points are the iterated values indicated by the arrows in the
figure.
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Dnnx~y![
^«nnx~y!& rms
^«mean& rms

.

With two time series, one can define four relevant compo-
nents of this nonlinear mutual predictor. WithDnnx(x) and
Dnnx(y) defined above, the equations forDnny(x) andDnny(y)
are similarly constructed.Dnnx(x) and Dnny(y) are simply
statements of determinism within the individual time series
$xi% and $yi%, while Dnnx(y) andDnny(x) indicate the direc-
tionality of prediction between the systemsX andY.

While generalized synchrony between coupled systems
X and Y implies bidirectional mutual predictability
(Dnnx(y),1 andDnny(x),1) in the embedding spacesX and
Y, only in the case of unidirectionally coupled systems will
the inverse be true@4,7#. If the systemsX andY are bidirec-
tionally coupled, Takens’ theorem@5# guarantees that either
xi or yi from X or Y will be a valid scalar variable for
reconstructing the combined dynamics of the coupled system
X%Y using time delay coordinate embedding. The recon-
structed attractors in the embedding spacesX or Y are
equivalentrepresentations of the same combined dynamics.
In other words, by the virtue of the embedding theorem,X
and Y will always be predictable from each other with or
without generalized synchrony. The requirement for general-
ized synchrony is stricter. One has to show the existence of a
homeomorphic map between the driverX and the response
Y. However, in the reconstructed embedding spacesX or
Y, one cannot easily identify the appropriate projections of
the combined systemX%Y onto the original subspacesX
andY. Thus, in bidirectionally coupled systems, mutual pre-
diction in the reconstructed spacesX andY does not guar-
antee generalized synchrony.

On the other hand, if the systemsX andY are unidirec-
tionally coupled~i.e., information only flows fromX to Y),
then bidirectional mutual prediction in the embedding spaces
X andY does imply generalized synchrony. In a unidirec-
tionally coupled system, the reconstructed attractor inX will
represent the dynamics inX alone, while the attractor recon-
structed inY will represent thecombineddynamics ofX
%Y. By Takens theorem again,X will be predictable from
Y, since X%Y contains all dynamical properties ofX
through the one way coupling. Now, ifY is also predictable
from X, implying the topological equivalence of the com-
bined systemX%Y and its projection ontoX, thenY must
also be topologically equivalent toX.

In general, the dimensions of the embedding spaces,
Dx,y required to perform the predictions, true or mutual, are
different. Accordingly, we will need to optimize the embed-
ding dimension and the number of nearest neighbors used for
each calculation. We will do this by searching for a local
minimum of D as a function ofDx,y51,2, . . . ,Dmax in the
one-step prediction error with one nearest neighbor (k51).
Then we use this value ofDx,y as the number of nearest
neighbors is varied,k51,2, . . . ,kmax, until another local
minimum of D is found. For the following calculations we
set Dmax510 andkmax50.02N . Ideally, this optimization
procedure can be continued until the one-step prediction er-
ror falls into a prescribed range, but we have limited the
optimization to three steps for eachDx,y andk pair because
of computational constraints.

III. NUMERICAL STUDIES

A. Coupled identical and nonidentical chaotic systems

As our first simple numerical example showing general-
ized synchrony between two coupled systemsX andY, we
will use two unidirectionally coupled He´non maps,

XH xi1151.42xi
210.3ui

ui115xi ,

YH yi1151.42~Cxi1~12C!yi !yi1Bv i
v i115yi .

These coupled equations form adriver X and responsesys-
temY , with the strength of coupling,C, varying from 0 to 1.
We will set the coefficientB50.3 for identical systems, and
B50.1 for nonidentical systems. The numerical experiments
were performed using 1024 time series pointsxi from the
X system, and 1024 time series pointsyi from theY system,
sampled following the systems’ initial transient responses.

With this driver-response system, we will first demon-
strate that mutual prediction gives information regarding the
direction of coupling~or the direction of information flow in
an experimental system where the underlying equations are
unknown!. Then we will show that generalized synchrony
between the driver and the response system is possible by
demonstrating the existence of mutual predictability~in both
directions! in certain ranges of coupling valuesC. Lastly,
using a common driving system to drive two identical copies
of the response system, we will illustrate the concept of syn-
chronization between two responses driven by a common
driver. Three types of numerical experiments will be per-
formed: ~1! coupling of identical systems;~2! coupling of
nonidentical systems; and~3! stochastic driving of a deter-
ministic system. The statistical significance of our results
will be demonstrated using the technique of surrogate data
@21# ~see Appendix A!.

Figure 2 shows plots ofxi versusyi for identical systems
with C50.1, 0.65, and 0.9. For nearly identical chaotic sys-
tems, sufficient degrees of coupling generate near perfect
synchrony@8#. The corresponding prediction errors for these
data are shown in Figs. 3~A!, 3~B!, and 3~C!. In Fig. 3,
circles represent the prediction errors for the data, and the
thin black lines represent the surrogate data predictions~see
Appendix A!. Notice that the 19 thin lines representing the
19 surrogates form a tight group around the surrogate mean.
With the use of 19 surrogates, experimental prediction errors
smaller than any of the 19 surrogate predictions have signifi-
cance~although the actual separation of the experimental re-
sults from the surrogate mean in terms of standard deviations
of separation—sigmas—may not be very substantial!. In this
figure, the labelsX(X), X(Y), Y(Y), andY(X) stand, re-
spectively, for the delay space reconstructions ofX predicted
by X (Dnnx(x)), X predicted byY (Dnnx(y)), Y predicted by
Y (Dnny(y)), andY predicted byX (Dnny(x)). For each of the
four panels in the figure, the optimized values of embedding
dimension (D) and number of nearest neighbors~NN! used
in the calculations for experimental and surrogate data are
indicated. AtC50.1, each individual system inX andY is
predictable, indicating determinism in bothX andY. Notice
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that the prediction errors are larger for the response system
Y @errors are lower forX(X) than forY(Y)#, becauseY is
driven by X, and it represents the combined dynamics of
bothX andY. Hence the reconstructed attractor inY should
have a larger dimension than eitherX or Y alone, and, with a
given length of data set,Y should be harder to predict than
X.

In Fig. 3~A!, it is difficult to see much predictability for
the driverX from the responseY for H>1. Our methodol-
ogy allows the prediction horizonH to includeH50. Cal-
culating mutual nonlinear prediction withH50 is in a sense
analogous to the calculation of cross correlation at a lag of
zero. Such a calculation would be particularly revealing if
the series were very high dimensional or truly stochastic, yet
were nonlinearly coupled. Similarly, allowingH50 would
help account for the possibility that the systemsX andY are
deterministic, yet are sampled too sparsely~the sampling pe-
riod is greater than the decorrelation time! to pick up the
determinism. If we allowH50 for Fig. 3~A!, X is clearly
predictable fromY for nonzero values ofC, as expected~see
Fig. 7!.

At C50.65 in Fig. 3~B! each individual system is again
predictable. Most importantly, at this value of coupling
(C50.65), both systemsX andY are mutually predictable
indicating the onset of synchrony between the driverX and
its responseY @again, the higher dimensional system,
Y(X), has larger errors than the lower dimensional system,

X(Y)#. Lastly, atC50.9, each systemX andY is well pre-
dicted through either its true or mutual neighbors, indicating
the fully synchronized state of the driver-response system
@see also Fig. 2~C!#.

Figure 4 shows the difference between the plotted attrac-
tors with B50.3 in theX system versusB50.1 for theY
system whenC50. The equations with the smaller value of
B generate an attractor~circles in the figure! that is smaller
and fits inside the other one~dots!. Figure 5 shows the plots
of xi versusyi for these nonidentical systems withC50.1,
0.65, and 1.0. ForC51.0, the systems are in generalized
synchrony, and even for values ofC51.0 the plot is not a
straight line ~identical synchrony!, as shown in Fig. 2 for
identical systems. This is a generic feature of generalized
synchrony for systems with different parameters@4#. Figure
6 shows the prediction and mutual prediction results for
C50.1, 0.65, and 0.9 in these coupled nonidentical systems.
Similar to the previous case with identical system param-
eters, at low levels of coupling (C50.1), the driver is pre-
dictable from the response, indicating that the system is uni-
directionally coupled. At moderate levels of coupling
(C50.65), bidirectional mutual prediction is observed, indi-
cating the onset of generalized synchrony between the driver
and the response. Finally, at a strong level of coupling
(C50.9), each is well predicted through its mutual neigh-
bors, as guaranteed by the existence of generalized syn-
chrony.

An instructive way to visualize the transition to synchrony
for these two numerical examples (B50.3 and 0.1! is to plot
their mutual predictabilities atH50 as a function of the
strength of their couplingC. Figures 7~A! and 7~B! are
graphs ofDnny(x)(H50) and Dnnx(y)(H50) for the case
B50.3, and Figs. 8~A! and 8~B! are graphs of
Dnny(x)(H50) andDnnx(y)(H50) for the caseB50.1. In
these graphs, the thinner lines are nonlinear prediction errors
calculated from the time series, and the thicker dashed and
solid lines indicate the mean and the upper and lower bounds
of the surrogates. As a reference to the system’s actual be-
havior in phase space, we also plotted the values ofyi2xi
~with the first 1000 iterates deleted! for each coupling value
C in Figs. 7~C! and 8~C!. The nonlinear mutual prediction
for each coupling value is calculated using 1024 time series
points from the driver and response. In order to be consistent
in our calculations, all operational parameters are kept fixed
with D55, k55, andL51. In both cases, the appearance of
bidirectional mutual predictability indicates the occurrence
of synchrony~identical in Fig. 7 and generalized in Fig. 8!.

Because of the unidirectional coupling, the driverX is
always predictable from the responseY as long as the cou-
pling is nonzero in Figs. 7 and 8. WithB50.3 ~Fig. 7!, the
transition to synchrony occurs nearC50.65. There are large
fluctuations in the mutual predictability near this onset value
due to intermittent desynchronizations. This on-off intermit-
tency behavior is also evidenced in theyi-xi plot in Fig.
7~C!. The system finally settles down to the fully synchro-
nized state atC.0.7. For nonidentical systems, the transi-
tion to synchrony seems to be more complicated. There is no
significant bidirectional mutual predictability forC less than
0.2. Then, in the range, 0.2,C,0.5, Y(X) predictability
hovers around the surrogate bounds, and occasionally bursts
out with significant mutual predictability. Similar to the iden-

FIG. 2. Plot ofx vs y for Hénon equations with identical pa-
rameters for various levels of couplingC. For these chaotic sys-
tems, sufficient levels of coupling gives perfect linear~identical!
synchrony as indicated by the straight line in the panel where
C50.9. Units are dimensionless.
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tical system’s case, this on-off synchronization usually char-
acterizes the behavior of a moderately coupled system. Fi-
nally, for C.0.5, the coupling is eventually large enough to
ensure full generalized synchrony.

As discussed earlier, for unidirectionally coupled systems,
it is relevant to examine a different concept of synchroniza-
tion between two responses driven by a common driver. In
this case, for sufficiently large coupling, two responses with
a common driver will synchronize to each other irrespective
of their initial conditions. This state of dynamical interdepen-
dence between the responses is characterized by the condi-
tional stability of the response system@7#. Pecora and Carroll
@8# first introduced sub-Lyapunov exponents as a measure of
this conditional stability~see Appendix C for a detailed de-
scription of sub-Lyapunov exponents!. In effect, if all sub-
Lyapunov exponents of the driven system are negative, then
one should expect that all responses with a common driver

will asymptotically synchronize to each other. It is important
to note that in unidirectionally coupled systems, if the driver
and its responses are in generalized synchrony, then two re-
sponses with the same driver must synchronize to each other
also. Figures 9~A! (B50.3) and 10~A! (B50.1) are plots of
the largest sub-Lyapunov exponent calculated from the re-
sponse system as a function of the couplingC. In order to
check if this form of synchronization occurs, we iterated two
copies of the response system,Y and Y8, with the same
driver X. Starting with different initial conditions for the
response systemsY and Y8, we plotted the difference
yi2yi8 ~with the first 1000 iterates deleted! as a function of
C in Figs. 9~B! (B50.3) and 10~B! (B50.1). If the re-
sponses synchronize to each other at a particular coupling
value, the iterates of the differenceyi2yi8 should be zero.
From Figs. 9 and 10, one can see that whenever the largest
sub-Lyapunov exponent becomes negative, the difference

FIG. 3. Nonlinear prediction for identical coupled systems shown in Fig. 2. Four plots are shown for each level of coupling, with the
X system as a function ofX, X(X), theY system as a function ofY, Y(Y), X system as a function of mutual neighbors fromY, X(Y); and
theY system as a function of mutual neighbors fromX, Y(X). Each of these four types of plots are shown forC50.1 ~A!, C50.65~B!, and
C50.9 ~C!. Experimental values given by open circles~O!, and surrogate values given by thin black lines (2). Nineteen multivariate
surrogate pairs are generated from eachX andY pair of experimental data. The optimized values of number of dimensions (D) and nearest
neighbors~NN! used in each of the panels are indicated. These values ofD and NN are determined from optimizing the one-step prediction
error of the experimental data, and the same values are used for the surrogate data calculations. Units for normalized prediction error along
the ordinate are dimensionless and normalized to 1, while units for translation horizon along the abscissa are integer iterations of the map.
See text for discussion of results.
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betweenY andY8 is indeed zero. One interesting feature in
the case withB50.1 is the existence of two distinct ranges
of coupling (0.18&C&0.3 andC*0.5) where this type of
synchronized response occurs.

B. Stochastic coupling of nonlinear systems

To simulate stochastic coupling of nonlinear systems, we
start with the iteratesxi of the driving systemX of the non-
identical coupled He´non maps. We then randomly shuffle the
order of the values ofxi , and then iterate the driven system
Y with the randomized sequence of values ofxi . The ampli-
tude distribution of the values from the driving systemX is
thus preserved, but any sequence dependent structure or de-

FIG. 4. Illustration of nonidentical He´non attractors. The black
dots (–) correspond to parameterB50.3, and the open circles~O!
correspond to parameterB50.1. Units are dimensionless.

FIG. 5. Plot ofx vs y for Hénon equations with nonidentical
parameters for various levels of couplingC. In system X,
B50.3, and in systemY, B50.1. For these nonidentical chaotic
systems, no level of coupling is capable of achieving identical syn-
chrony, and illustrated in the lowest panel is the plot forC51.0
corresponding to generalized synchrony. Units are dimensionless.

FIG. 6. Nonlinear prediction for nonidentical systems shown in
Fig. 5. Four plots are shown for each level of coupling. Symbols,
notation, and units are as in Fig. 3. See the text for a discussion of
the results.
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terminism is destroyed. With large enough coupling, it is
possible that the random perturbations from the shuffled
drive might push the orbit in the response system outside its
basin of attractor. In this case, the trajectory of the response
system might escape to infinity. Numerically, with 106 iter-
ates used in our experiment, all orbits in the response system
with C&0.5 remain bounded. ForC*0.5, there exist initial
conditions inY such that their orbits escape to infinity after a
transient of less than 106 iterates.

Figure 11~C! is a plot ofyi2xi as a function of the cou-
pling C. It appears from this plot that random values ofX
have little relation to values ofY. The differencesyi2xi
randomly scatter within the range of possible values for the
system. Nevertheless, there exists significant predictability in
Y(X) with C.0.3, in that the predictabilityY(X) is signifi-
cantly outside of the bounds of the surrogates. Despite this
predictability, there exists no bidirectional mutual predict-
ability and thus no generalized synchrony betweenX and
Y. On the other hand, forC.0.3, two identical copies of the

response systems with different initial conditions and driven
by the same random driverX are able to synchronize with
each other, as shown in Fig. 12~B!. This occurrence of syn-
chronized responses corresponds to the conditional stability
of the response system as indicated by the negative values of
the sub-Lyapunov exponents@Fig. 12~A!#. Thus a stochastic
driver can, for suitable levels of unidirectional coupling to a
response system, show evidence of predictability in the re-
sponse system through knowledge of the driver@Y(X)#, and
can even synchronize two response systems, despite the fact
that there is no mutual predictability and therefore no gener-
alized synchrony.

IV. MOTONEURON EXPERIMENTS

A. Preparation

The data for this study were collected previously, and the
experimental preparation was fully described elsewhere@20#.

FIG. 7. Normalized mutual prediction errorsD: ~A! Y(X) and
~B! X(Y) at H50 as a function of coupling~thin lines!. System
parameters are identical withB50.3. 1024 data points were used
for calculating the mutual prediction errors, and 30 multivariate
surrogates were used as a comparison. The thicker dashed and solid
lines indicate the surrogate mean, upper, and lower bounds, respec-
tively. All calculations are performed with a set of fixed operational
parameters:Dx,y55, k55, and L51. A plot of 30 iterates of
yi2xi ~with the first 1000 iterates deleted! are shown as a function
of coupling in ~C!. Units are dimensionless.

FIG. 8. Normalized mutual prediction errorsD: ~A! Y(X) and
~B! X(Y) at H50 as a function of coupling~thin lines!. System
parameters are nonidentical withB50.3 for the driver andB50.1
for the response. 1024 data points were used for calculating the
mutual prediction errors, and 30 multivariate surrogates were used
as comparison. The thicker dashed and solid lines indicate the sur-
rogate mean, upper, and lower bounds, respectively. All calcula-
tions are performed with a set of fixed operational parameters:
Dx,y55, k55, andL51. A plot of 30 iterates ofyi2xi ~with the
first 1000 iterates deleted! are shown as a function of coupling in
~C!. Units are dimensionless.
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In brief, four cats were anesthetized, and the blood pressure
and temperature maintained within physiological limits. A
precollicular postmammillary transection of the midbrain
was performed and the spinal cord was exposed.

In the leg the nerves to the medial gastrocnemius~MG!,
lateral gastrocnemius~LG!, soleus (S, often combined with
LG as LGS!, and posterior biceps and semitendinosus
~PBST! muscles were placed on fine platinum bipolar elec-
trodes for stimulation. Muscles were pharmacologically
paralyzed to prevent movement artifacts, and the proximal
ends of the cut last lumbar~L7! and first sacral~S1! spinal
cord ventral~motor! roots were placed on bipolar platinum
recording electrodes. Thus a reflex arc with one synapse
~monosynaptic! was isolated, from muscle nerve sensory fi-
bers to the output motoneurons from the spinal cord.

Constant voltage 50-ms square wave stimuli were applied
to muscle nerves at a frequency of 2 Hz. The intensity of the
stimulation was adjusted to yield just supramaximal group-I
fiber responses~the large sensory nerve fibers that participate

FIG. 9. ~A! A plot of the largest sub-Lyapunov exponent in the
response as a function of coupling. System parameters are identical
with B50.3. 106 iterates were used in calculating the sub-
Lyapunov exponent.~B! A plot of 30 iterates of the difference
between two responses,yi2yi8 ~with the first 1000 iterates deleted!,
as a function of coupling. Units are dimensionless.

FIG. 10. ~A! A plot of the largest sub-Lyapunov exponent in the
response as a function of coupling. System parameters are noniden-
tical with B50.3 for the driver andB50.1 for the response. 106

iterates were used in calculating the sub-Lyapunov exponent.~B! A
plot of 30 iterates of the difference between two responses,
yi2yi8 ~with the first 1000 iterates deleted!, as a function of cou-
pling. Units are dimensionless.

FIG. 11. Normalized mutual prediction errorsD: ~A! Y(X) and
~B! X(Y) at H50 as a function of coupling~thin lines!. The non-
identical response system (B50.1) is driven with a shuffled driver.
1024 data points were used for calculating the mutual prediction
errors, and 30 multivariate surrogates were used as comparison. The
thicker dashed and solid lines indicate the surrogate mean, upper
and lower bounds, respectively. All calculations are performed with
a set of fixed operational parameters:Dx,y55, k55, andL51. A
plot of 30 iterates ofyi2xi ~with the first 1000 iterates deleted! are
shown as a function of coupling in~C!. Units are dimensionless.
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in the monosynaptic reflex! as measured by the cord dorsum
potential ~recorded with a fine platinum ball placed on the
surface of the spinal cord!. We attempted to evoke monosyn-
aptic reflexes with single stimulus volleys delivered to MG,
LG, andS, or PBST muscle nerves. However, for some of
the experiments it was necessary to use two stimulus volleys
to evoke a measurable monosynaptic reflex~4-ms interval
between paired volleys, pairs delivered at 2 Hz!; when the
response to the second volley was analyzed, special attention
was given in these cases to eliminate reflex series showing
any detectable response to the first volley.

Recordings were stored digitally and analyzed with Lab-
View2 ~National Instruments, Inc.!, or Datapac II ~Run
Technologies, Inc.!. The implementation of algorithms to
test for autocorrelation, cross correlation, and mutual predic-
tion was performed with MatLab~The MathWorks, Inc.! or
C. In the analysis of these data, time windows were set to
incorporate the positive deflection of the monosynaptic reflex
potential. These recordings were made from ‘‘crushed end’’
ventral roots in order to remove biphasic and triphasic com-
ponents. Baseline potential recordings just before the mono-
synaptic reflex were subtracted to give the absolute voltage
changes recorded at the time of the reflex, and the monosyn-
aptic reflex deflections were integrated during a time window
of 1–2 ms.

Fine filaments were teased from the ventral root showing
the largest monosynaptic reflex, and the filaments were sub-
divided until single motoneuron~unit! discharges to a se-
lected muscle nerve were detected. One to three such ‘‘single
fiber’’ filaments were placed on separate fine bipolar plati-
num electrodes for simultaneous recording with the mono-
synaptic reflex from the bulk of the ventral root. A schematic

of the experimental preparation is shown in Fig. 13. In order
to study how the variability in the firing frequency of such
units contributes to the dynamics of the population, we
eliminated from this study units with firing probabilities
greater than 0.95 and less than 0.05~the firing probability is
the probability that a motoneuron will fire in response to a
single stimulus!.

Intracellular recordings were made with glass micropi-
pettes~1.0–2.5 MV) filled with 3-M potassium acetate or
100-mM QX314~Alomone Laboratories, Jerusalem! in 2-M
potassium acetate to suppress sodium spikes@27#. Figure 14
illustrates an example of simultaneously measured cord dor-
sum potential~CDP!, intracellular excitatory postsynaptic
potential ~EPSP!, a single fiber unit response~UNIT!, and
monosynaptic reflex~MSR!. Shown in the figure is the time
window ~dotted lines! defined by the MSR duration during
which the MSR is integrated and the unit responses corre-
sponding to that MSR are identified. Since the synaptic cur-
rents precede the MSR, the time window~dotted lines!
shown for EPSP integration is different.

B. Experimental results

Applying the mutual prediction technique to the data from
our motoneuron experiments, we will illustrate the dynami-
cal relationship between single motoneurons and the mono-
synaptic reflex amplitude. The reflex is stimulated periodi-
cally, and recordings from single motoneuron axons from the

FIG. 12. ~A! A plot of the largest sub-Lyapunov exponent in the
response as a function of coupling. The nonidentical response sys-
tem (B50.1) is driven with a shuffled driver. 106 iterates were used
in calculating the sub-Lyapunov exponent.~B! A plot of 30 iterates
of the difference between two responses,yi2yi8 ~with the first 1000
iterates deleted!, as a function of coupling. Units are dimensionless.

FIG. 13. Schematic of the experimental preparation. Periodic
square wave stimuli were applied to an isolated motor nerve con-
taining group Ia afferents which monosynaptically activate
a—motoneurons. The axons of the motoneurons pass into the ef-
ferent ventral root. Measurements of the electrical monosynaptic
reflex were made from the bulk of the cut ventral root, the inte-
grated amplitude of which reflects the number of neurons discharg-
ing @28#. Fine filaments from the ventral root were dissected from
the bulk of the root, until single motoneuron discharges were de-
tected within the filament. In some experiments, intracellular re-
cordings of EPSP’s were made simultaneously with the unit and
reflex measurements. Not shown are the dense interneuonal connec-
tions within the motoneuron network~‘‘pool’’ !, nor the extensive
branching of the afferent fibers so that each one synapses with
nearly all of the motoneurons within the pool.
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same motoneuron pool are made simultaneously with the
population discharge. Thus this experiment captures the in-
stantaneous activity of a population of coupled neurons, and
samples several of the individual neurons at the same time.
We examine the interactions not only of the individual motor
units with the population of the motoneurons from the pool,
but also study the interactions between individual units. For
some experiments, simultaneous sampling of the synaptic
currents~EPSP! from individual motoneurons was also ob-
tained, and the degree of nonlinear coupling between the
EPSP’s and both the unit and population responses was de-
termined.

Figure 15 shows a pair of simultaneously measured time
series of a MSR and a unit response. Each monosynaptic
reflex value reflects integration over a 1–2-ms time window
~see Fig. 14!, and these values are proportional to the number
of neurons discharging within the motoneuron pool at one
time @28#. The unit response is a 1 or 0,depending on
whether the unit fired during the time window defined by the
duration of the MSR. Firings and failures of the unit re-
sponse are frequent, reflected in the overlapping of 1’s and
0’s in Fig. 15.

Figure 16 demonstrates the linear correlations for this
MSR and a single unit response. The linear correlations of
each time series are expressed as autocorrelation, and the
dotted lines represent62 standard deviations assuming a
null hypothesis that no significant autocorrelation exists~see
Appendix B!. The lowest tracing in the figure illustrates the
linear cross correlation between these two time series, and
the dotted lines again represent62 standard deviations. For
these two time series, although there is no significant auto-

correlation for either series, there is significant cross correla-
tion at a lag equal to 0.

Figure 17 plots the nonlinear prediction and mutual pre-
diction of these two time series, plotted as open circles.
Shown are four plots illustrating the normalized prediction
errors of the MSR as a function of the MSR, MSR~MSR!,

FIG. 14. Sample of raw data recorded from an experiment. The
cord dorsum potential~CDP, indicated by an asterisk! reflects the
incoming afferent discharge and is recorded from the surface of the
spinal cord with a small platinum ball electrode. The stimulation
artifact is indicated~A!. The EPSP is recorded from an intracellular
electrode within a single motoneuron. The UNIT response is from a
dissected filament and reflects the action potential from a single
motoneuron. The monosynaptic reflex~MSR! is the compound ac-
tion potential of the single units, and the integrated MSR is propor-
tional to the number of units discharging in response to a stimulus.
The dotted lines represent the windows of the monosynaptic reflex,
and are discussed further in the text. The calibration bars give the
scale of the ordinate and abscissa in mV and ms, respectively, for
each panel in the figure.

FIG. 15. Sample of two simultaneous time series. In the upper
panel are integrated values of monosynaptic reflexes~MSR!, and
the lower panel reflects whether a single unit~UNIT! fired ~1! or not
~0! during each MSR. Unit firings and failures are frequent, and
there is much overlap in the plotted points in the lower panel. The
abscissa records the number of events analyzed, and the 1000 points
recorded correspond to 500-s elapsed time~the stimulation fre-
quency is 2 Hz!. The ordinate is in arbitrary units of voltage for
MSR.

FIG. 16. Shown for the data in Fig. 15 are the autocorrelation of
the MSR and UNIT. One lag is equivalent to 500 ms. The dotted
lines represent 95% confidence intervals that the autocorrelations
are different from white noise~see Appendix B!. The lower panel
shows the cross correlations for these time series. The dotted lines
here represent the 95% confidence intervals that these cross corre-
lations are produced at random for a given lag. Note that the axis of
the time lags are different—autocorrelations are presented as one-
sided functions for positive lags only, while cross correlations are
shown for both positive and negative lags. Units of all ordinates are
dimensionless.
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MSR as a function of the unit response, MSR~UNIT!, the
single unit as a function of itself, UNIT~UNIT!, and the unit
as a function of the MSR, UNIT~MSR!. Nineteen multivari-
ate surrogate data sets were generated for each pair of time
series, as described in Appendix A, and their surrogate re-
sults were plotted as solid lines without symbols. These sur-
rogate data sets preserve both the autocorrelation of each
individual data set, and the cross correlation. The prediction
errors for both the experimental and surrogate data are nor-
malized so that if the prediction is no better than guessing the
mean~or worse!, the values will be>1. Only values less
than 1 and less than any of the surrogate values for a given
translation horizon are considered significant. For this MSR
and the single unit, the MSR had nonlinear predictability
@MSR~MSR!#, as well as mutual predictability
@MSR~UNIT!#. The existence of mutual predictability indi-
cates that the MSR could be predicted through knowledge of
the unit firing, beyond the predictability inherent in their lin-
ear correlations. On the other hand, the unit demonstrated no
nonlinear predictability@UNIT~UNIT!# of its own, and no
mutual predictability in that the unit could not be predicted
through knowledge of the MSR@UNIT~MSR!#. Unlike cross
correlation, mutual prediction demonstrates directionality of
coupling.

Similar computations were performed for each of 69 pairs
of data from three experiments where the quality of the si-
multaneous time series permitted this sort of comparison.

Figures 18~A!, 18~B!, 18~C!, and 18~D! illustrate the dy-
namical coupling between the MSR, units, and when avail-
able, intracellular data for all 69 pairings. On the left side of
these figures, the linear correlations are diagrammed, and on
the right side the nonlinear correlations are given in terms of
predictions that the linear correlations could not account for.
Symbols used are MSR:a–e for UNIT’s, and IC for intra-
cellular responses. For each symbol, statistically significant
autocorrelation and nonlinear prediction are indicated by a
superscript1 ~and lack of significance as a superscript -!,
linear cross correlation by a solid line, and mutual prediction
by a directional arrow. For pairs of data that showed no
mutual predictability atH.1, computations were reopti-
mized for H50, and significant mutual predictability at
H50 only is indicated with dashed arrows. At the far right
of these figures, the specific motoneuron pool under study is
indicated~MG, PBST, etc.!.

Each of these diagrams illustrate the flow of a given ex-
periment, from top to bottom. Each of the results, indicated
by the linkages of MSR,a, b, c, d, e, and IC, are determined
from time series recorded at 2 Hz. In between each 2-Hz
recording period, different experimental manipulations were
performed, as indicated by dotted lines~- - -! with embedded
comments: a period of higher-frequency stimulation~10, 50,
and 100 Hz!, different motoneuron axons were substituted on
the recording electrodes, a different peripheral nerve was
used for stimulation~e.g., MG changed for PBST!, or periph-
eral nerve conditioning was turned on and off@20#. The long-
est dotted lines correspond to a transection of the spinal cord,
thus physically isolating the lumbar motoneuron pools~spi-
nalization!. Detailed descriptions of the physiology of condi-
tioning and frequency changes on motoneuron physiology
can be found in@20#, and a detailed discussion of the dynam-
ics of MSR’s before and after sectioning the spinal cord can
be found in@14#.

In the decerebrate state@upper portions of Figs. 18~A! and
18~B!#, all but one of the MSR recordings demonstrated
strong linear correlation, and at times there was a strong
element of nonlinear predictability in these decerebrate MSR
series~as fully discussed in@14#!. These significant linear
and nonlinear properties of the time series are indicated in
the figure by superscripted plus signs~MSR1).

The network diagrams in Fig. 18 demonstrate that nonlin-
ear coupling can frequently be observed in a neuronal en-
semble between units, between units and the population, and
between units and the intracellular EPSP’s. Cross correla-
tions are at times observed when no nonlinear coupling is
seen, between units and the MSR, and between the EPSP’s
and units or MSR. The converse of this, nonlinear correlation
without linear cross correlation, is also observed between the
units and the population or the EPSP. One way mutual pre-
diction is seen, between units and MSR or EPSP, and even
between units themselves. Bidirectional mutual prediction is
observed only between units and the population~MSR!.

Several specific examples are instructive. In the top row
of Fig. 18~A!, note that the MSR has a significant linear
correlation ~1!, but the unita does not~-!. Nevertheless,
there is a significant cross correlation between this MSR and
the unit. Both the MSR and unit have no nonlinear predict-
ability nor nonlinear correlation. Following exposure to
50-Hz stimulation, the system goes into the posttetanic state

FIG. 17. Nonlinear prediction for the data shown in Figs. 15 and
16. Shown are four plots illustrating the normalized prediction er-
rors of the MSR as a function of the MSR, MSR~MSR!, MSR as a
function of the unit response, MSR~UNIT!, the single unit as a
function of itself, UNIT~UNIT!, and the unit as a function of the
MSR, UNIT~MSR!. The prediction errors are normalized so that a
prediction error of 1 or greater is no better than guessing the mean
value of the time series. Experimental values given by open circles
~O!, and surrogate values given by thin black lines~2!. As dis-
cussed in the text, the MSR has nonlinear predictability,
MSR~MSR!, and mutual predictability through consideration of the
unit response, MSR~UNIT!. This unit had no nonlinear predictabil-
ity, UNIT~UNIT!, and no mutual predictability UNIT~MSR!. A dot-
ted line ~- - -! at 1 is shown in the upper panels, below which
predictability is significant. Abscissae are in units of the period of
stimulation, each translation horizon corresponding to 0.5 s. Ordi-
nate units are dimensionless.
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FIG. 18. Network figures for linear~autocorrelation and cross correlation! and nonlinear correlations for 69 pairs of time series
representing monosynaptic reflexes~MSR!, single unit responses (a, b, c, d, ande), and, when available, intracellular EPSP data~IC!. The
left hand columns indicate the results of the linear analysis, and the right columns the nonlinear analysis. The muscle nerve stimulated~and
therefore the particular motoneuron pool under study! is indicated at the far right of each panel~MG, LG, and PBST — see Sec. IVA!.
Statistically significant autocorrelation, or significant nonlinear prediction not accounted for by the autocorrelation, is indicated by a
superscripted plus sign, and the absence of such correlation by a superscripted minus sign. Statistically significant cross correlation is
indicated by a solid line~—!, and significant mutual nonlinear prediction by a directional arrow (→). For data where mutual prediction is
only seen forH50, the directional arrow is dashed. The time series were collected before and after various experimental manipulations, and
these events are commented upon in between rows~time proceeds downward in these figures!. Although various stimulation frequencies as
indicated were applied in between collecting the time series under study, all the time series analyzed here were collected at 2 Hz. Panel~B!
represents an experimental sequence where the unitsa, b, andc were the same throughout the experimental manipulations. Panel~C! shows
data from the same experiment in panel~B!, but the units are different.

6720 54SCHIFF, SO, CHANG, BURKE, AND SAUER



~an increased amplitude of EPSP’s with an increased prob-
ability of unit responses, and an increase in MSR amplitude
following high frequency stimulation!. Although the linear
properties are unchanged, there now appears to be nonlinear
predictability in the MSR, but not in the unit. Nonlinear mu-
tual prediction of the MSR also appears through a knowledge
of the unit. The converse is not true—the MSR does not
nonlinearly predict the unit. This mutual prediction reveals a
functional coupling that is fleeting; following a period of
10-Hz stimulation, the nonlinear coupling is no longer appar-
ent.

Now look at the fourth row of Fig. 18~A!, recorded after
new units were placed on the recording electrodes and while
PBST conditioning was turned on. Here a MSR and two
units b and c demonstrated no linear properties. Neverthe-
less, there exists significant nonlinear predictability of unit
b ~1!, and furthermore, there is mutual nonlinear predict-
ability of unit b through knowledge of the MSR. Note fur-
ther that the MSR has no detectable linear or nonlinear
predictability—it is stochastic.Thus this MSR and the unit
demonstrate a nonlinear functional relationship that would
have remained undetected with traditional linear methods. In
addition, this MSR and unit demonstrate what appears to be
an example of mutual prediction resulting from stochastic
driving of a deterministic system at moderate levels of cou-
pling, as predicted in Sec. III B.

The fifth row in Fig. 18~A!, following 50-Hz stimulation,
again shows changes in the posttetanic state. The unitb is no
longer detectable. Linear cross correlation now emerges, as
does nonlinear correlation, between unitc and the MSR.
This functional coupling would therefore have been detected
by linear analysis, but the nonlinear component of the cou-
pling would not have been appreciated.

Although bidirectionally coupled systems may exhibit
generalized synchrony, as discussed above, we have no
straightforward way of identifying such synchrony from de-
lay variables at present. The complexity of the spinal moto-
neuron pool dictates that we cannot be sure that we know the
direction of couplinga priori. Nevertheless, we can search
for evidence of unidirectional coupling through unidirec-
tional mutual prediction, and then see if a perturbation of the
system introduces bidirectional mutual predictability. Exami-
nation of the network figures in Fig. 18 shows examples
where unidirectional mutual prediction from MSR to units
was converted to bidirectional mutual prediction following a
perturbation, generally following high frequency stimulation,
and our interpretation of this is that we may indeed be ob-
serving the conversion of unidirectionally coupled systems to
generalized synchrony in these cases. In Fig. 18~B!, in the
decerebrate state in the first row, note that there is unidirec-
tional nonlinear coupling evident in the prediction of the unit
behaviors (a, b, and c) from the MSR. Following 10-Hz
stimulation, note the conversion of the nonlinear prediction
to bidirectional between these same elements.This may rep-
resent an example of the induction of generalized synchrony
as the effective coupling strength of these elements was in-
creased in the posttetanic state.

Between the third and fourth rows in Fig. 18~B!, section-
ing the spinal cord~spinalization! was performed without
losing the unit recordings. This isolated the motoneuron pool
under study, removing the influence from higher in the spinal

cord and from the brain stem. Following spinalization, both
autocorrelation and nonlinear prediction were almost entirely
lost ~as previously reported in@14#!, but many of the cross
correlations were preserved. The two dashed arrows in the
fourth row of this figure indicate that prediction was seen
only for H50 for these elements~MSR predicting unitsa
and b only!. Although nonlinear coupling appeared weak
following spinalization, strongH.0 mutual prediction re-
turned following high frequency~100 Hz! stimulation, again
during posttetanic potentiation. In the third row from the
bottom of Fig. 18~B!, there is no nonlinear predictability
between the units (b andc) and the intracellular EPSP am-
plitude ~IC!. Following 100-Hz stimulation, there emerges
evidence of nonlinear coupling in that the units now predict
the intracellular response, even though the units themselves
have no nonlinear predictability and there is no linear cross
correlation between the units and the intracellular response.
In the bottom row of Fig. 18~B!, following a period of 10-Hz
stimulation, the nonlinear relationships again change. Al-
though the units no longer nonlinearly predict the intracellu-
lar response~unit a was lost!, unit c now mutually predicts
the MSR, even though both unitc and the MSR have no
nonlinear predictability themselves. The results in the lower
part of Fig. 18~B! correspond to the same experimental data
as detailed in the raster plots in Fig. 7 from@20#.

In Fig. 18~C!, the top row suggests that for this unit and
the MSR, there was significant cross correlation without au-
tocorrelation, and evidence of unidirectional nonlinear pre-
diction forH50. Note that after 50-Hz stimulation, the non-
linear prediction is converted to bidirectional, again highly
suggestive that generalized synchrony is induced.

V. DISCUSSION

These results demonstrate that there is a wide variety of
linear and nonlinear coupling among the network of moto-
neurons generating a monosynaptic reflex. The coupling is
quite fluid as a function of time, and changes in experimental
conditions. Although some of these couplings would be de-
tected with linear cross correlation, others would not. Since
neurons are floridly nonlinear in their action potential gen-
eration and synaptic transmission, we are not surprised to
identify nonlinear coupling between neurons. The important
point is whether such couplings can predict or confirm func-
tional relations between neurons that previous tools could
not. Our data suggest that this is so, and methods such as
presented here offer a broader understanding of dynamical
interdependence in a neuronal network than previously pos-
sible.

Although several recent studies suggested both geometri-
cal @4# and statistical@6# approaches to the detection of gen-
eralized synchrony, we focused on mutual prediction for
neural data. We set up our prediction approach so that the
choice of drive and response system need not be knowna
priori , and that knowledge of coupling strength and informa-
tion flow in a system may be inferred from the results. In
addition, our method permits the use of prediction without
time lag (H50), and this can significantly improve the iden-
tification of coupling in our data.

Although our findings are highly suggestive, we lack the
ability to prove the existence of generalized synchrony in
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networks such as these where the coupling may be bidirec-
tional. Our best examples are those that started out with evi-
dence of unidirectional mutual prediction only, and changed
to bidirectional prediction following an increase in apparent
coupling strength after high frequency stimulation~during
posttetanic potentiation!. One possibility in these experi-
ments is that following high frequency stimulation there
emerged true bidirectional coupling. For bidirectionally
coupled systems, using delay coordinate embeddings, non-
linear coupling but not generalized synchrony is proven by
mutual prediction. Future work to develop our theoretical
tools to handle synchrony in bidirectionally coupled experi-
mental systems would be of significant value.

The numerical simulations presented in Sec. III B pre-
dicted that driving a nonlinear system with a stochastic sig-
nal might reveal mutual prediction, if the coupling levels
were moderately strong. This type of coupling was identified
within the motoneuron pool in Sec. IVB. Stochastic driving
of a deterministic system is poorly categorized by present
concepts of generalized synchrony, and further theoretical
work in this area would be useful. Nevertheless, these find-
ings provide further evidence that neurons are deterministic
nonlinear elements, and perhaps in some sense we may view
neurons as nonlinear equations wrapped in protoplasm.

Stochastic resonance was recently experimentally demon-
strated in neural networks from mammalian brain@29#. In
recent numerical work, aperiodic stochastic resonance was
quantified in a neuronal model using a measure of linear
correlation@30#. Nonlinear methods such as mutual predic-
tion may form a more powerful approach to answer the ques-
tion of whether an arbitrary input signal is reflected in the
output of a nonlinear system, and could be applied to sto-
chastic resonance data. Whether generalized synchrony may
exist in the context of stochastic resonance is an open ques-
tion for now.

Much interest has been generated in recent years concern-
ing the so-called 40-Hz oscillations in the brain@9#. Of major
interest is how such oscillations may synchronize neurons to
accomplish an information processing task. Nonlinear mu-
tual prediction and generalized synchrony allow one to take a
much broader view of synchrony than simple phase locking.
The methods presented here, which are not restricted to mo-
toneurons, open up widely the question of where in the ner-
vous system identifying nonlinear dynamical interdepen-
dence or even generalized synchrony could identify new
functional relations among neurons.

Our experiments were limited by constraints imposed by
the study of motoneuron monosynaptic reflexes. Such re-
flexes must be studied as input-output relations only, al-
though the simplicity of this neuronal network lent itself well
to establishing the existence of neural nonlinear coupling and
probably generalized synchrony. We are keen to study con-
tinuous time data from autonomously firing neuronal en-
sembles and their single units~in systems such as used in
@15,16#!. Indeed, we anticipate that the methods presented
here can be readily extended to large scale study of the ce-
rebral cortex, using either traditional electrode or newer op-
tical techniques.
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APPENDIX A: MULTIVARIATE SURROGATE DATA

Surrogate data are models of experimental data based on
the null hypothesis we wish to reject~e.g., that the data are
explained by a linear stochastic model with linear coupling!.
We draw upon the work of@21# to construct multivariate
surrogate data for our experimental data. In this method, lin-
early stochastic time series pairsxi8 and yi8 are generated
from the experimental time series pairsx̂i and ŷi , with the
linear correlations within each component time series and the
cross correlation between them preserved. Such surrogate
data have no nonlinear properties.

The cross correlationr xy(t) of x̂i and ŷi is

r xy~t!5^x̂i ŷi1t&.

If F( x̂i) and F( ŷi) represent the Fourier transforms of
x̂i and ŷi , then their cross spectrum, which is the Fourier
transform ofr xy(t), is

F~ x̂i !F* ~ ŷi !5Ax~ f !Ay~ f !e
i [fx~ f !2fy~ f !] .

HereAx,y( f ) andfx,y( f ), respectively, are the Fourier coef-
ficient amplitudes and phase angles ofF( x̂i) andF( ŷi). As
suggested by@21#, adding the same random phase sequence
w( f ) to the phase angles of the Fourier transform ofx̂ and
ŷ will preserve both the autocorrelations of each time series
and the cross correlation upon transform inversion. The sur-
rogate data pairsxi8 andyi8will therefore be

xi85F21$Ax~ f !e
i [fx~ f !1w~ f !]%

and

yi85F21$Ay~ f !e
i [fy~ f !1w~ f !]%.

For each pair of experimental data setsx̂i and ŷi , at least
19 separate surrogate data pairsxi8 andyi8 are generated, to
permit a one-tailed nonparametric test of significance ca-
pable of rejecting the null hypothesis that these data are lin-
early synchronized at the 0.05 level@26#.

APPENDIX B: CORRELATION STATISTICS

Given a time serieszi , the degree of correlation in time is
given by the autocorrelation. For a given time lag
k50,1,2, . . . , and time series lengthN, the autocorrelation
r z(k) was estimated from

r z~k!5

(
i51

N2k

~zi2 z̄!~zi1k2 z̄!

(
i51

N2k

~zi2 z̄!2
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where z̄ is the mean ofzi . The variance of the estimated
autocorrelations at lagsq beyond which the autocorrelation
function is not significantly different from zero is@31#

var@r z~q!#>
1

N S 112(
k51

q

r ~k!2D ,
and the square root of this function is taken as the standard
deviation. When the estimated autocorrelation is less than
twice this standard deviation, the result is not significantly
different from the value generated by white noise. In prac-
tice, all time series were detrended prior to estimation of the
autocorrelation, with zero order detrending for unit responses
~all ones and zeros corresponding to whether the unit fired or
not!, and first order detrending for all other data to remove
both the mean and any simple linear drift from the time
series.

Given two time seriesyi and zi , the degree of linear
correlation between the two is measured by the cross corre-
lation. The cross correlationr yz(k) can be estimated from the
cross covariancecyz(k),

cyz~k!55
1

N (
i51

N2k

~yi2 ȳ!~zi1k2 z̄!, k50,1,2, . . .

1

N (
i51

N1k

~zi2 z̄!~yi2k2 ȳ!, k521,22, . . . ,

where ȳ and z̄ are the means of the time series. The cross
correlationr yz(k) is recovered by normalizingcyz(k)

r yz~k!5
cyz~k!

1

N
A(

i51

N2k

~zi2 z̄!2(
i51

N2k

~yi2 ȳ!2

.

The variance of the estimated cross correlation at lags6q
beyond which the cross correlation function is not signifi-
cantly different from zero may be estimated, again after@31#

var@r yz~q!#>
1

N2k (
k52q

q

r yy~k!r zz~k!

and the square root of this function is taken as the standard
deviation. When the estimated cross correlation is less than
twice this standard deviation, it is not significantly different
from two independent white noise processes.

Artifacts from significant autocorrelation in individual
time series can create spurious cross correlation. These arti-
facts can be eliminated by filtering the data to ‘‘prewhiten’’
it prior to cross correlation estimation@1#. We tested all posi-
tive results suggesting significant cross correlation with the
algorithm of Ljung and Glad@32#, applying the same linear
filter to both time series prior to cross correlation. Results
that appeared spurious were rejected.

APPENDIX C: CALCULATING THE LARGEST
SUB-LYAPUNOV EXPONENT

FROM A DRIVE-RESPONSE SYSTEM

In this section, we briefly describe an algorithm for com-
puting the largest sub-Lyapunov exponent from a unidirec-
tionally coupled drive-response system. As a generalization
of the unidirectionally coupled He´non system in Sec. III A,
we represent a general drive-response system in discrete time
by the following pair of mapsf:Rm→Rm andg:Rn1m→Rn,

xi115f~xi !,

yi115g~yi ,xi ,C!, ~C1!

wherex is anm dimensional state vector in the driving sys-
tem, y is ann dimensional state vector in the response sys-
tem, andC is a scalar parameter in the response systemg
describing the strength of the coupling. Notice that the cou-
pling ~information flow! is one directional from the drive to
the response, i.e., them dimensional mapf(x) is a function
of the driver’s state vectorx only.

The asymptotic stability of the response system is deter-
mined by its largest sub-Lyapunov exponentl. The largest
sub-Lyapunov exponent gives the average exponential rate
of divergence of two infinitesimally close by points,
(x0 ,y0) and (x0 ,y01dy) in the response system. If we de-
note the initial deviation of two nearby points by

e05~x0 ,y01dy!2~x0 ,y0!,

then the magnitude of their deviation aftert time steps in the
future can be approximated by

uetu;exp~lt !ue0u.

A negativel signifies that any infinitesimally small errors
between two different initial points in the response system
will asymptotically converge to zero ast increases. Math-
ematically,l is defined as the following limit:

l5 lim
t→`

1

t
ln

u]ygt~y0 ,x0 ,C!ê0u

uê0u
, ~C2!

whereê0 is the projection ofe0 onto then dimensional sub-
space of the response system,]yg

t is an n3n dimensional
Jacobian matrix representing the derivatives ofgt with re-
spect to the variabley only, andgt is the tth iterated map of
g ~see Refs.@33,34# for more detailed descriptions of
Lyapunov exponents!. Here l is assumed to be evaluated
along a typical trajectory (x0 ,y0), . . . ,$(xt ,yt)
5„f t(x0),g

t(y0 ,x0 ,C)…% of the drive-response system, Eqs.
~1!.

Using the chain rule, the Jacobian matrix of thetth iter-
ated map,]yg

t(y0 ,x0 ,C), in Eq. ~C2! can be rewritten as a
product oft terms,

]yg
t~y0 ,x0 ,C!5]yg~yt21 ,xt21 ,C!•••]yg~y1 ,x1 ,C!

3]yg~y0 ,x0 ,C!, ~C3!

where]yg(yi ,xi ,C), 0< i<t21 is the Jacobian martrix of
the mapg with respect toy only, evaluated at thei th iterate
of the orbit (xi ,yi).
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The calculation ofl using Eqs.~C2! and ~C3! can be
numerically implemented in the following recursive proce-
dure ~see Ref.@35# for a detailed description of methods to
compute all Lyapunov exponents of an arbitrary chaotic sys-
tem!.

To begin, we start with a random initial point (x0 ,y0) on
the attractor of the drive-response system and a randomn
dimensional unit vectorê0. Then we recursively define and
calculate the following quantities fori>1,

a i5u]yg~yi21 ,xi21 ,C!êi21u, êi5
]yg~yi21 ,xi21 ,C!êi21

a i
.

Here the scalara i is the magnitude of the vector
]yg(yi21 ,xi21 ,C)êi21 , and serves to renormalizeêi for each
successive time stepi . Using Eq.~C3!, it is easy to see that

u]ygt~y0 ,x0 ,C!ê0u5a1 . . .a tuêtu5a1 . . .a t ,

and by Eq.~C2!, l can be approximated by the following
finite time average:

l;
1

t (i51

t

lna i .

@1# C. Chatfield,The Analysis of Time Series, 4th ed.~Chapman
and Hall, London, 1989!.

@2# L. M. Pecora, T. L. Carroll, and J. F. Heagy, inNonlinear
Dynamics and Time Series: Building a Bridge Between the
Natural and Statistical Sciences, Fields Institute Communica-
tions Vol. 11, edited by C. D. Cutler and D. T. Kaplan~Ameri-
can Mathematical Society, Providence, RI, 1996!.

@3# V. S. Afraimovich, N. N. Verichev, and M. I. Ravinovich, Izv.
Vyssh. Uchebn. Zaved. Radiofiz.29,1050~1986! @Sov. Radio-
phys. Bol.29, 795 ~1986!#.

@4# N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I.
Abarbanel, Phys. Rev. E51, 980 ~1995!.

@5# F. Takens, Lecture Notes Math.898, 366 ~1981!: T. Sauer, J.
Yorke, and M. Casdagli. J. Stat. Phys.65, 579 ~1991!.

@6# L. M. Pecora, T. L. Carroll, and J. F. Heagy, Phys. Rev. E52,
3420 ~1995!.

@7# L. Kocarev and U. Parlitz, Phys. Rev. Lett.76, 1816~1996!.
@8# L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.64, 821

~1990!.
@9# J. G. R. Jefferys, R. Traub, and M. A. Whittington, Trends

Neurosci.19, 202 ~1996!.
@10# S. L. Bressler, R. Coppola, and R. Nakamura, Nature366, 153

~1993!.
@11# H. C. Tuckwell, Introduction to Theoretical Neurobiology:

Volume 2 Nonlinear and Stochastic Theories~Cambridge,
Cambridge, 1988!.

@12# J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A.81, 3088~1982!.
@13# W. R. Adey, Intern. J. Neurosci.3, 271 ~1972!.
@14# T. Chang, S. J. Schiff, T. Sauer, J.-P. Gossard, and R. E.

Burke, Biophys. J.67, 671 ~1994!.
@15# S. J. Schiff, K. Jerger, T. Chang, T. Sauer, and P. G. Aitken,

Biophys. J. 67, 684 ~1994!.
@16# S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano,

and W. L. Ditto, Nature370, 615 ~1994!.
@17# C. S. Sherrington,The Integrative Action of the Nervous Sys-

tem ~Scribners, New York, 1909!.
@18# V. Mountcastle,Medical Physiology~Mosby, St. Louis, MO,

1980!.
@19# W. Rall and C. C. Hunt. J. Gen. Physiol.39, 397 ~1956!.
@20# J.-P. Gossard, M. K. Floeter, T. Chang, S. J. Schiff, and R. E.

Burke, J. Neurophysiol.72, 1227 ~1994!.
@21# D. Prichard and J. Theiler, Phys. Rev. Lett.73, 951 ~1994!.
@22# A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E.

Rapp, Phys. Rev. A38, 3017~1988!.
@23# T. Sauer, inTime Series Prediction: Forecasting the Future

and Understanding the Past, edited by A. S. Weigend and N.
A. Gershenfeld, SFI Studies in the Sciences of Complexity,
Proceedings Vol. XV~Addison-Wesley, Reading, MA, 1993!,
p. 175.

@24# T. Chang, T. Sauer, and S. J. Schiff, Chaos5, 118 ~1995!.
@25# S. J. Schiff, T. Sauer, and T. Chang, Integrative Physiol. Be-

havioral Sci.29, 246 ~1994!.
@26# A. C. A. Hope, J. R. Stat. Soc. B30, 582 ~1968!.
@27# D. T. Frazier, T. Narahashi, and M. Yamada, J. Pharm. Theor.

171,45 ~1970!.
@28# W. Rall, J. Cell Comput. Physiol.46, 413 ~1955!.
@29# B. J. Gluckman, T. I. Netoff, E. J. Neel, W. L. Ditto, M. L.

Spano, and S. J. Schiff, Phys. Rev. Lett.~to be published!.
@30# J. J. Collins, C. C. Chow, and T. T. Imhoff, Nature376, 236

~1995!.
@31# G. E. P. Box and G. M. Jenkins,Time Series Analysis, Fore-

casting and Control~Holden-Day, Oakland, CA, 1976!.
@32# L. Ljung and T. Glad,Modeling of Dynamic Systems~Prentice

Hall, Englewood Cliffs, NJ, 1994!.
@33# E. Ott, Chaos in Dynamical Systems~Cambridge University

Press, Cambridge, 1993!.
@34# S. H. Strogatz,Nonlinear Dynamics and Chaos~Addison-

Wesley, Reading, MA, 1994!
@35# G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Mec-

canica15, 21 ~1980!.

6724 54SCHIFF, SO, CHANG, BURKE, AND SAUER


