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A method to characterize dynamical interdependence among nonlinear systems is derived based on mutual
nonlinear prediction. Systems with nonlinear correlation will show mutual nonlinear prediction when standard
analysis with linear cross correlation might fail. Mutual nonlinear prediction also provides information on the
directionality of the coupling between systems. Furthermore, the existence of bidirectional mutual nonlinear
prediction in unidirectionally coupled systems implies generalized synchrony. Numerical examples studied
include three classes of unidirectionally coupled systems: systems with identical parameters, nonidentical
parameters, and stochastic driving of a nonlinear system. This technique is then applied to the activity of
motoneurons within a spinal cord motoneuron pool. The interrelationships examined include single neuron unit
firing, the total number of neurons discharging at one time as measured by the integrated monosynaptic reflex,
and intracellular measurements of integrated excitatory postsynaptic potéBf8&’$. Dynamical interde-
pendence, perhaps generalized synchrony, was identified in this neuronal network between simultaneous single
unit firings, between units and the population, and between units and intracellular EPSP’s.
[S1063-651%96)04012-3

PACS numbds): 87.10+e, 05.45+b

[. INTRODUCTION interdependence in such systems implies two things: either
the systems communicafthey are coupled together and in-
When the dynamical behaviors of two systems are obformation flows between themor they are coupled to a
served, how can we tell if they are coupled? Traditionally,common driver.
one tests to see if there is a degree of correlation between In the case when two arbitrary nonlinear systems are
variables observed from each system. In systems with mangoupled, it is possible that their temporal evolutions might
components, cross correlation in the time domain and crodsecome ‘“synchronized” as one adjusts the coupling strength
spectrum or coherence in the frequency domain have longetween them, even though their temporal evolutions will
been the mainstays of correlation detecti@h Cross corre- not be identical. One of the earliest discussions of this topic
lation measures the linear correlation between two variablesyas Afraimovich, Verichev, and Ravinovid8], who de-
and the cross spectrum is the Fourier transform of the crosscribed a state they termed “stochastic synchronization” that
correlation. Measures of cross correlation or coherency imccurred between nonidentical nonlinear oscillators with dis-
effect ask whether there exists a functional relationship besipative coupling. Stochastic synchrony was here defined as
tween the time series in question. The functional relation ighe existence of a topological identiffgomeomorphic or dif-
albeit a very specific one for these linear measures. Nevefeomorphig¢ between the attractors describing each nonlinear
theless, for linear systems, these linear measurements amscillator of the system. Note here that knowledge of the
sufficient to describe the dynamical interdependence of theiseparable state variables for each subsystem was assumed.
parts. Unfortunately, the components of complex extendedhe termgeneralized synchronyas later applied by Rulkov
systems in nature rarely display only a linear interdepenet al. [4] to unidirectionally coupled systems with such
dence, and superposition may break down in describing thelfsynchronized” behaviors. Ii4], through the restriction of
aggregate behavior. unidirectional coupling, delay coordinate embedding vari-
A broader definition of dynamical interdependence wasables[5] could be used to establish a topological identity.
recently offered by Pecora, Caroll, and Hedgy, who sug- Rulkov et al.[4] further defined a mutual false nearest neigh-
gested that dynamical interdependence implies that observdmbr statistic to establish continuity, and thus infered the ex-
variables come from the same dynamical system. We wish tstence of generalized synchrony in such systems. Pecora,
take two arbitrary nonlinear systems, whose underlying dy<Carroll, and Heagy6] explored the statistics that define the
namical equations are unknown to us, and ask whether theirature of the topological relationship between two time se-
variables are interdependent. Finding evidence of dynamicales from such coupled systems, in an effort to define
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whether the function that links the systems is continuous oassemblie$7]. To our knowledge, what follows is the first
differentiable. Generalized synchrony is therefore a particuattempt to detect nonlinear coupling or generalized syn-
lar case of dynamical interdependerigé chrony in a neuronal ensemble.

When two systems are coupled to a common driver, if the We chose to study a relatively simple neuronal ensemble
coupling is sufficiently strong to establish generalized syn— the motoneurons of the monosynaptic spinal cord stretch
chrony between the driver and the response syst@ms reflex. The monogynaptic stretch_reflex is among the simples_t
sumed to be identical then the two response systems will @nd most accessible of mammalian neuronal ensembles. It is
become asymptotically stable and thus synchrofideUn- @IS0 perhaps the best studied of all mammalian neuronal net-
der such conditions, the two response systems will synchrd’-"orks[17v_1_8|- This preparation pffers the ability to measure
nize after a finite transient irrespective of their initial condi- both the firing of multiple |nd_|V|duaI_n_eu_rons, and simulta-
tions. When this occurs, the largest sub-Lyapun@l neously measure the_ popglanon activity in terms of the totgl
exponent of the response system will be negative. number of neurons f|r|_ng in response tp a stimulus. In addi-

tion, because of the thickness of the spinal cord and the large

Dynamical interdependence or generalized synchrony im-. ) .
plies predictability, and such predictions were described isize of alpha motoneurons, stable intracellular recordings are

[4] using local polynomial maps of a driving system to pre_acrlulevable OV?.r cor;lslderable Fl)(e”OdS tOf tkl)me. ¢ | .
dict the behavior of a unidirectionally coupled chaotic re- onosynaptic Teflexes are known 1o be extremely varl-

sponse system. Unfortunately the application of these idea%ble [19,20, and in previous wor{14] we have demon-

to experimental systems with arbitrary coupling is notstra}ed that |r(11_trt]ebg|i$cerebrate catts:plr;r?l co;ld, a dggtr_ee of
straightforward. nonlinear predictability was present in the reflex variations

In an experimental setting, where the degrees and direédhat coutld tncét ?ﬁ f\(‘:[(r:lounted f(t)r bytllneé':lr m(;dels.t We also
tions of coupling between elements are not knaavpriori, emonstrate at the recruitment order of motoneurons

we assume that all we can do is to record one or more Obc_ould be altered as a function of stimulation frequency, as

servable variables from two potentially dynamically linked well as by the recent hlstory of stimulatiga0]. .

systems. Our goal is to reconstruct the dynamics as best we In Se_c. Il, we first descnbg a zero ordgr mutual pred_|ctor
can from these observed variables using delay coordinat d define a method tq optimize t.he @ffgrent operational
[5], and then apply a statistic to check for the existence oparameters. We then discuss the implications of observed

dynamical interdependence between the two reconstruct utual predictabili;y in terms of the _sy_ster_n’s dynamic_al
systems. If a function exists that maps the values from on hkage. The technique of mutual prediction is then applied

system to another, this implies the ability to predict one sys—p unidirectionally coupled maps with identical and noniden-

tem through a knowledge of the other. This is the basis o ical system parameters in Sec. lIA, aﬂd the relationship
our mutual prediction technique, which provides a measur etween mutual prediction and generalized synchrony ex-

for both the relative strength and the directionality of theplored through the use of sub-Lyapunov exponents. These

coupling between the two systems. By defining the predict-reSUItS of deterministic driving are then contrasted with ran-
ability of each system based on a knowledge of the othe om driving of a deterministic numerical system in Sec.

system, we derive a measure of dynamical interdependenc lhB' We then f;\plply thesi' reS.UItch to gbngqror;al eT\iimﬂe'
In the special case when two systems are unidirectionall € expenimental preparation 1S described in Sec. - AN

coupled,bidirectionalmutual prediction between their corre- nalysis of the dynam_lc_al interdependence of |nd|\_/|du_al mo-
oneurons and the activity of the motoneuron pool is given in

sponding observable variables implies the existence of er% o . 9
P g P 9 ec. IVB. A description of the construction of multivariate

eralized synchrony4,6,7]. . ) ; .
Seekinz a brogder giefinition for dynamical interdepen-surrogate datf21] can be found in Appendix A, a discussion
f correlation statistics is provided in Appendix B, and a

dence in the nervous system has important implications. Or:gL e .
of the central questions facing neuroscience today concer escription of sub-Lyapunov exponents can be found in Ap-
the “binding problem” — how the brain integrates separatepend'x C.

neural events into perceptiof@]. Traditionally, cross corre-
lation and coherence have been relied upon to correlate neu-
ronal and behavioral activity in spatially disparate portions
of the brain[10]. Yet the elements of the brain are inherently
nonlinear in that the basic unit of activity is mediated by all We begin with two potentially coupled dynamical sys-
or none action potentials, and even synaptic transmissiotems X and, of which we have na priori knowledge of
tends to be highly nonline4f 1]. Indeed, it is suggested that either their individual dynamics or their dynamical interde-
the essence of neural computation lies within this inherenpendence. For systenig and), we measure time series of
nonlinearity[12]. Furthermore, neural activity seems to be observable variables; andy; (i=1 ...N). Since time se-
incessantly “noisy”’[13]. Whether some of this noise might ries from different systems will in general not contain the
be deterministic, perhaps chaotic, has been investigated reame range of values, each time series will be normalized as
cently, and there is mounting evidence that a degree of de-

terminism not accounted for by linear models may be ob-

served in neuronal ensembled4-16. We therefore o Xi—(X)

postulate that the study of synchrony in the nervous system oy,
could be broadened by examining nonlinear coupling. We

note that others have recently speculated on whether gener-

alized synchrony occurs in information processing of neurahnd

II. NONLINEAR MUTUAL PREDICTION
AND DYNAMICAL INTERDEPENDENCE
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where() indicates average ovér and oy, and oy, are the o <i+1) | ynn;(i)\m
standard deviations of the time serigsandy; . Xnnx() | o Y+
Using the method of time delay coordinate embedding . | v
[5], we can reconstruct a chaotic traject¢ry} in an embed- X0 Xrny(+1) |
ding spaceX using the normalized time seri¢g;} with an . 0 | . o
a_lpproprlately chosen embedding dimensibp and a lag Xnny(i) L YanxG) Ynx(i)+1)
timeL,, :
|
xi= (X, XitLy o XitL(D—1)- !

. FIG. 1. lllustration of points in two phase space reconstructions,
Similarly, we can reconstruct a chaotic trajectdyy} in an X andY, from two systemsd’and) . Each index pointx, and
embedding spac¥ using the normalized time seridy;} Y. has nearest neighbors in phase spagg;) andy(nny, respec-

with an embedding dimensidd, and a lag time., tively. Each index point also has a mutual neighbor, a neighbor that
uses the time index of the true nearest neighbor of the other system,

gi:(yi ,g/HL . S/HL D 71))_ X(nny,) and Y(nnx): respectively. The image®@pen circles, @ of
y oy these points are the iterated values indicated by the arrows in the

After [22], we choose the lag time, , to be approximately figure.

1 of the decorrelation time of the time series, which is de-
fined as the time it takes the autocorrelation function to de- 1 .
i () nmun =72 X!
cay to 1¢ of its value at zero lag. nnx(x) k=) "o tH)
We then ask whether there exists a functional relation
¥ between the reconstructed systexhandY, i.e.,

k

while the translation of the index point ig. . The differ-
ence between the actual and average predicted translation is

? the prediction errorg ,nyx »

X=W(Y).

Such a relation? may be continuous, differentiab{emooth Ennx(x) = X0+ 1)~ (V) nnuo |-
and locally linearizablg and perhaps it has a continuous
and/or differentiable inverse. As (6], we seek a statistical
measure of confidence that such a function exists.

For each poinﬁi in the embedding spack, there exists a

nearest neighbor ok, X,nx, and their images,1 and  The normalized prediction errax is the discriminating sta-
i(nmﬁl), respectively. Similarly, for each point, and its  tistic for this method

The prediction error for the mean of the time ser€g.an IS

Emean |)Z(O+H)_ <X>|

imagey; 1 in Y, there exists a nearest neighlygr,, and its (Enmma)
_ nnx(x)/rms

. - A =
IMagey nny, +1)- oo <8mear>rms
After the manner of4], we may also define a mutual

neighbori,my_ of ;nny_, which is the point inX that bears the yvhere rms 'indicates' root—mean—square. When this normal-
: : ized prediction error is no different from the error of guess-

index of the nearest neighbor ¢f . Similarly, there is & jng the meana will equal 1. This is what one would expect
mutual neighboty,,, of X,ny in Y. The iterated images of for a time series without nonlinear predictability. On the
these mutual nearest neighbors g% o1y andYne 1y, Other hand, if the time series is deterministicwill be less

: : . ity (1) than 1. Source code for this algorithm can be foun@2.
respectively. Figure 1 illustrates these points.

We now incorporate these true and mutual nearest neigh- Similarly, we may define a prediction oy at H time
bors in a nonlinear mutual predictor. Based on previous wori!€ps ahead based on the mutual nearest neighbors

[14,23,24, we will choose the simplest implementation of {xanyo}jzl _____ ,» such that

this predictor—using localzero order (constant maps.

While azero ordernonlinear predictor checks for the exist- 1.X

ence of acontinuousmap ¥ betweenX and Y, a higher <U>””X(y):Fj§=:1 Xj(nny0+H),

order nonlinear predictor could be used to verify the exist-
ence of differentiability.

For each index poinﬁo in the embedding spac¥, we
find its k nearest neighborsﬁi{mxo}j:1 _____ « - With a transla-

tion horizon ofH=0 time steps ahead, the prediction is the
average translation given by and

with

Ennxy) = |)Z(0+H)_ <U>nnx(y)|
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(Ennxy))rms lll. NUMERICAL STUDIES
A = "

XY g meanrms A. Coupled identical and nonidentical chaotic systems

As our first simple numerical example showing general-

With two time series, one can define four relevant compodized synchrony between two coupled systethand ), we
nents of this nonlinear mutual predictor. Witky, .,y and  will use two unidirectionally coupled H®N maps,
Annxy) defined above, the equations i,y and A,y ,
are similarly constructedA n,x and Apqy, are simply X[ Xi+1=1.4=x7+ 0.3y
statements of determinism within the individual time series
{xi} and{y;}, while A,y and Apny) indicate the direc-
tionality of prediction between the systemdsand.

While generalized synchrony between coupled systems y[

Ui+1=X%,

Yi+1=1.4=(Cx +(1-C)y;)y;+Bu;
X and Y implies bidirectional mutual predictability Vit1=Yi.
(Annxy)<1 andA,,y<1) in the embedding spac&sand

Y, Only in the case of Unidirectiona”y COUpIed SyStemS will These Coup|ed equations forndaver X and responsgys-
the inverse be trup4,7]. If the systemsY and are bidirec-  tem, with the strength of couplingz, varying from O to 1.
tionally coupled, Takens' theorepd] guarantees that either \ye will set the coefficienB=0.3 for identical systems, and
x; ory; from & or ¥ will be a valid scalar variable for B=0.1 for nonidentical systems. The numerical experiments
reconstructing the combined dynamics of the coupled systefyere performed using 1024 time series poirtsrom the
X&) using time de_lay coordinate _embedding. The recon-y system, and 1024 time series poigtsrom the) system,
structed attractors in the embedding spa¢esor Y are  sampled following the systems' initial transient responses.
equivalentrepresentations of the same combined dynamics. ith this driver-response system, we will first demon-
In other words, by the virtue of the embedding theorém, strate that mutual prediction gives information regarding the
and Y will always be predictable from each other with or girection of couplinglor the direction of information flow in
without generalized synchrony. The requirement for generalan experimental system where the underlying equations are
ized SynChrony is stricter. One has to show the existence of a.nknowr)_ Then we will show that genera”zed Synchrony
homeomorphic map between the drivErand the response petween the driver and the response system is possible by
Y. However, in the reconstructed embedding spaXesr  demonstrating the existence of mutual predictabilityboth
Y, one cannot easily identify the appropriate projections ofgirections in certain ranges of coupling values. Lastly,
the combined syster¥® ) onto the original subspace¥  using a common driving system to drive two identical copies
and). Thus, in bidirectionally coupled systems, mutual pre-of the response system, we will illustrate the concept of syn-
diction in the reconstructed spack¥sand Y does not guar- chronization between two responses driven by a common
antee generalized synchrony. driver. Three types of numerical experiments will be per-
On the other hand, if the system$and ) are unidirec- formed: (1) coupling of identical systemg2) coupling of
tionally coupled(i.e., information only flows fromX'to ))),  nonidentical systems; an@) stochastic driving of a deter-
then bidirectional mutual prediction in the embedding spacesinistic system. The statistical significance of our results
X andY does imply generalized synchrony. In a unidirec-will be demonstrated using the technique of surrogate data
tionally coupled system, the reconstructed attractox imill [21] (see Appendix A
represent the dynamics ik alone while the attractor recon- Figure 2 shows plots of; versusy; for identical systems
structed inY will represent thecombineddynamics of X  with C=0.1, 0.65, and 0.9. For nearly identical chaotic sys-
®). By Takens theorem agaitX will be predictable from tems, sufficient degrees of coupling generate near perfect
Y, since X®Y contains all dynamical properties ot  synchrony{8]. The corresponding prediction errors for these
through the one way coupling. Now, ¥f is also predictable data are shown in Figs.(8), 3(B), and 3C). In Fig. 3,
from X, implying the topological equivalence of the com- circles represent the prediction errors for the data, and the
bined systemY¥® ) and its projection ontot, then) must  thin black lines represent the surrogate data predictises
also be topologically equivalent t&. Appendix A). Notice that the 19 thin lines representing the
In general, the dimensions of the embedding spaced9 surrogates form a tight group around the surrogate mean.
Dy, required to perform the predictions, true or mutual, areWith the use of 19 surrogates, experimental prediction errors
different. Accordingly, we will need to optimize the embed- smaller than any of the 19 surrogate predictions have signifi-
ding dimension and the number of nearest neighbors used f@ance(although the actual separation of the experimental re-
each calculation. We will do this by searching for a localsults from the surrogate mean in terms of standard deviations
minimum of A as a function oD, ,=1,2,... Dy in the  of separation-sigmas—may not be very substantjaln this
one-step prediction error with one nearest neighléct 1). figure, the labelsX(X), X(Y), Y(Y), andY(X) stand, re-
Then we use this value dD,, as the number of nearest spectively, for the delay space reconstructionX qiredicted
neighbors is variedk=1,2,... Kynax, until another local by X (A,,xx), X predicted byY (Annyy)), Y predicted by
minimum of A is found. For the following calculations we Y (Apnyy)), andY predicted byX (A,ny). For each of the
set D o= 10 andk,,=0.0N . Ideally, this optimization four panels in the figure, the optimized values of embedding
procedure can be continued until the one-step prediction edimension D) and number of nearest neighbd@hN) used
ror falls into a prescribed range, but we have limited thein the calculations for experimental and surrogate data are
optimization to three steps for ea€h, , andk pair because indicated. AtC=0.1, each individual system X andY is
of computational constraints. predictable, indicating determinism in bathandY. Notice
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X(Y)]. Lastly, atC=0.9, each syster{ andY is well pre-
dicted through either its true or mutual neighbors, indicating
the fully synchronized state of the driver-response system
C=0.1 [see also Fig. @)].
Figure 4 shows the difference between the plotted attrac-
2l tors with B=0.3 in the X system versu8=0.1 for the)
n system wherC=0. The equations with the smaller value of
' ' ' ' B generate an attractdcircles in the figurgthat is smaller
and fits inside the other orléots. Figure 5 shows the plots
of x; versusy; for these nonidentical systems wi@=0.1,
0.65, and 1.0. FoC=1.0, the systems are in generalized
synchrony, and even for values 6f=1.0 the plot is not a
straight line (identical synchrony as shown in Fig. 2 for
identical systems. This is a generic feature of generalized
synchrony for systems with different parametpt$ Figure
6 shows the prediction and mutual prediction results for
C=0.1, 0.65, and 0.9 in these coupled nonidentical systems.
Similar to the previous case with identical system param-
eters, at low levels of couplingd=0.1), the driver is pre-
dictable from the response, indicating that the system is uni-
directionally coupled. At moderate levels of coupling
(C=0.65), bidirectional mutual prediction is observed, indi-
A cating the onset of generalized synchrony between the driver
and the response. Finally, at a strong level of coupling
(C=0.9), each is well predicted through its mutual neigh-
bors, as guaranteed by the existence of generalized syn-
x chrony.
An instructive way to visualize the transition to synchrony
X - - for these two numerical exampleB£0.3 and 0.1is to plot
rameters for various levels of couplin@. For these chaotic sys- their mutual predictabiliies aH=0 as a function of the

tems, sufficient levels of coupling gives perfect lindatentica) . . .
synchrony as indicated by the straight line in the panel whereStrength of their couplingC. Figures TA) and 4B) are

- . ! : graphs of A, (H=0) and A, (H=0) for the case
C=0.9. Units are dimensionless. B—03, andy( I):igs. 8y and ()ElZ)B) are graphs of
o Anny(H=0) and A, (H=0) for the caseB=0.1. In
that the prediction errors are larger for the response systefese graphs, the thinner lines are nonlinear prediction errors
Y [errors are lower foiX(X) than for Y(Y)], because€) is  calculated from the time series, and the thicker dashed and
driven by &, and it represents the combined dynamics ofsolid lines indicate the mean and the upper and lower bounds
both X and). Hence the reconstructed attractorirshould  of the surrogates. As a reference to the system’s actual be-
have a larger dimension than eithé¢or Y alone, and, with a  havior in phase space, we also plotted the valuey; 6fx;
given length of data se¥ should be harder to predict than (with the first 1000 iterates deletetbr each coupling value
X. C in Figs. 1C) and 8C). The nonlinear mutual prediction
In Fig. 3(A), it is difficult to see much predictability for for each coupling value is calculated using 1024 time series
the driverX from the respons& for H=1. Our methodol- points from the driver and response. In order to be consistent
ogy allows the prediction horizoH to includeH=0. Cal- in our calculations, all operational parameters are kept fixed
culating mutual nonlinear prediction with=0 is in a sense with D=5,k=5, andL=1. In both cases, the appearance of
analogous to the calculation of cross correlation at a lag obidirectional mutual predictability indicates the occurrence
zero. Such a calculation would be particularly revealing ifof synchrony(identical in Fig. 7 and generalized in Fig). 8
the series were very high dimensional or truly stochastic, yet Because of the unidirectional coupling, the driveris
were nonlinearly coupled. Similarly, allowing=0 would  always predictable from the respongeas long as the cou-
help account for the possibility that the syste¥handY are  pling is nonzero in Figs. 7 and 8. With=0.3 (Fig. 7), the
deterministic, yet are sampled too spardghe sampling pe- transition to synchrony occurs ne@r=0.65. There are large
riod is greater than the decorrelation tim® pick up the fluctuations in the mutual predictability near this onset value
determinism. If we allonH=0 for Fig. JA), X is clearly  due to intermittent desynchronizations. This on-off intermit-
predictable fromY for nonzero values o, as expecte(see tency behavior is also evidenced in thex; plot in Fig.

Fig. 7). 7(C). The system finally settles down to the fully synchro-
At C=0.65 in Fig. 3B) each individual system is again nized state aC>0.7. For nonidentical systems, the transi-
predictable. Most importantly, at this value of coupling tion to synchrony seems to be more complicated. There is no

(C=0.65), both systemX andY are mutually predictable significant bidirectional mutual predictability f& less than
indicating the onset of synchrony between the drixeand  0.2. Then, in the range, 02C<0.5, Y(X) predictability

its responseY [again, the higher dimensional system, hovers around the surrogate bounds, and occasionally bursts
Y(X), has larger errors than the lower dimensional systemout with significant mutual predictability. Similar to the iden-

X

FIG. 2. Plot ofx vsy for Henon equations with identical pa-
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FIG. 3. Nonlinear prediction for identical coupled systems shown in Fig. 2. Four plots are shown for each level of coupling, with the
X system as a function of, X(X), theY system as a function of, Y(Y), X system as a function of mutual neighbors frddimX(Y); and
theY system as a function of mutual neighbors frédmY (X). Each of these four types of plots are shown@sr 0.1 (A), C=0.65(B), and
C=0.9 (C). Experimental values given by open circlg3), and surrogate values given by thin black lines)( Nineteen multivariate
surrogate pairs are generated from edcandY pair of experimental data. The optimized values of number of dimensDhsd nearest
neighbors(NN) used in each of the panels are indicated. These valuBsaofd NN are determined from optimizing the one-step prediction
error of the experimental data, and the same values are used for the surrogate data calculations. Units for normalized prediction error along
the ordinate are dimensionless and normalized to 1, while units for translation horizon along the abscissa are integer iterations of the map.
See text for discussion of results.

tical system’s case, this on-off synchronization usually charwill asymptotically synchronize to each other. It is important

acterizes the behavior of a moderately coupled system. Fio note that in unidirectionally coupled systems, if the driver

nally, for C>0.5, the coupling is eventually large enough to and its responses are in generalized synchrony, then two re-

ensure full generalized synchrony. sponses with the same driver must synchronize to each other
As discussed earlier, for unidirectionally coupled systems@lso. Figures @) (B=0.3) and 10A) (B=0.1) are plots of

it is relevant to examine a different concept of synchronizathe largest sub-Lyapunov exponent calculated from the re-

tion between two responses driven by a common driver. IFfponse system as a function of the couplidgin order to

this case, for sufficiently large coupling, two responses witheheck if this form of synchronization occurs, we iterated two

a common driver will synchronize to each other irrespectivecopies of the response systegi,and ), with the same

of their initial conditions. This state of dynamical interdepen-driver X. Starting with different initial conditions for the

dence between the responses is characterized by the conégsponse system$’ and )’, we plotted the difference

tional stability of the response systéif]. Pecora and Carroll y;—Y; (with the first 1000 iterates deleteds a function of

[8] first introduced sub-Lyapunov exponents as a measure ¢ in Figs. 9B) (B=0.3) and 10B) (B=0.1). If the re-

this conditional stability(see Appendix C for a detailed de- sponses synchronize to each other at a particular coupling

scription of sub-Lyapunov exponehtdn effect, if all sub-  value, the iterates of the differengg—y, should be zero.

Lyapunov exponents of the driven system are negative, theRrom Figs. 9 and 10, one can see that whenever the largest

one should expect that all responses with a common drivesub-Lyapunov exponent becomes negative, the difference
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FIG. 6. Nonlinear prediction for nonidentical systems shown in

Fig. 5. Four plots are shown for each level of coupling. Symbols,
notation, and units are as in Fig. 3. See the text for a discussion of
the results.

x B. Stochastic coupling of nonlinear systems

To simulate stochastic coupling of nonlinear systems, we
FIG. 5. Plot ofx vs y for Henon equations with nonidentical Start with the iterateg; of the driving systemt of the non-
parameters for various levels of coupling. In system X,  identical coupled Heon maps. We then randomly shuffle the
B=0.3, and in systeny, B=0.1. For these nonidentical chaotic order of the values of;, and then iterate the driven system
systems, no level of coupling is capable of achieving identical syn? with the randomized sequence of valuexof The ampli-
chrony, and illustrated in the lowest panel is the plot @=1.0  tude distribution of the values from the driving syste¥ris
corresponding to generalized synchrony. Units are dimensionlessthus preserved, but any sequence dependent structure or de-
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FIG. 7. Normalized mutual prediction errofs (A) Y(X) and FIG. 8. Normalized mutual prediction errofs (A) Y(X) and
(B) X(Y) atH=0 as a function of couplingthin lines. System  (B) X(Y) at H=0 as a function of couplingthin lines. System
parameters are identical witB=0.3. 1024 data points were used parameters are nonidentical wieh=0.3 for the driver and3=0.1
for calculating the mutual prediction errors, and 30 multivariatefor the response. 1024 data points were used for calculating the
surrogates were used as a comparison. The thicker dashed and sakiditual prediction errors, and 30 multivariate surrogates were used
lines indicate the surrogate mean, upper, and lower bounds, respegs comparison. The thicker dashed and solid lines indicate the sur-
tively. All calculations are performed with a set of fixed operational rogate mean, upper, and lower bounds, respectively. All calcula-
parametersD, ,=5, k=5, andL=1. A plot of 30 iterates of tions are performed with a set of fixed operational parameters:
yi—X; (with the first 1000 iterates deletedre shown as a function Dyy=5,k=5, andL=1. A plot of 30 iterates of/;—x; (with the
of coupling in(C). Units are dimensionless. first 1000 iterates deletgdre shown as a function of coupling in

(C). Units are dimensionless.

terminism is destroyed. With large enough coupling, it is
possible that the random perturbations from the shuffledesponse systems with different initial conditions and driven
drive might push the orbit in the response system outside itby the same random drivet are able to synchronize with
basin of attractor. In this case, the trajectory of the responseach other, as shown in Fig. 8. This occurrence of syn-
system might escape to infinity. Numerically, with®li€er-  chronized responses corresponds to the conditional stability
ates used in our experiment, all orbits in the response systenf the response system as indicated by the negative values of
with C=<0.5 remain bounded. F&=0.5, there exist initial the sub-Lyapunov exponeniBig. 12A)]. Thus a stochastic
conditions inY such that their orbits escape to infinity after a driver can, for suitable levels of unidirectional coupling to a
transient of less than fQterates. response system, show evidence of predictability in the re-

Figure 11C) is a plot ofy;—x; as a function of the cou- sponse system through knowledge of the drivéfX)], and
pling C. It appears from this plot that random valuesXf can even synchronize two response systems, despite the fact
have little relation to values o). The differencesy;—x;  that there is no mutual predictability and therefore no gener-
randomly scatter within the range of possible values for thelized synchrony.
system. Nevertheless, there exists significant predictability in
Y(X) with C>0.3, in that the predictabilityr (X) is signifi- IV. MOTONEURON EXPERIMENTS
cantly outside of the bounds of the surrogates. Despite this
predictability, there exists no bidirectional mutual predict-
ability and thus no generalized synchrony betweérand The data for this study were collected previously, and the
Y. On the other hand, fa€>0.3, two identical copies of the experimental preparation was fully described elsewh20¢

A. Preparation
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FIG. 9. (A) A plot of the largest sub-Lyapunov exponent in the
response as a function of coupling. System parameters are identical
with B=0.3. 16 iterates were used in calculating the sub-
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Lyapunov exponent(B) A plot of 30 iterates of the difference
between two responseg—y; (with the first 1000 iterates deleted
as a function of coupling. Units are dimensionless.
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FIG. 11. Normalized mutual prediction errass (A) Y(X) and
(B) X(Y) atH=0 as a function of couplingthin lines. The non-
identical response systerB€0.1) is driven with a shuffled driver.
1024 data points were used for calculating the mutual prediction
errors, and 30 multivariate surrogates were used as comparison. The
thicker dashed and solid lines indicate the surrogate mean, upper
and lower bounds, respectively. All calculations are performed with
a set of fixed operational parametes; =5, k=5, andL=1. A
plot of 30 iterates of/; —x; (with the first 1000 iterates deletedre
shown as a function of coupling ifC). Units are dimensionless.

In brief, four cats were anesthetized, and the blood pressure
and temperature maintained within physiological limits. A
precollicular postmammillary transection of the midbrain
was performed and the spinal cord was exposed.

In the leg the nerves to the medial gastrocnentMs),
lateral gastrocnemiug.G), soleus §, often combined with
LG as LGS, and posterior biceps and semitendinosus
(PBST) muscles were placed on fine platinum bipolar elec-
trodes for stimulation. Muscles were pharmacologically
paralyzed to prevent movement artifacts, and the proximal
ends of the cut last lumbdt.7) and first sacra(S1) spinal
cord ventral(motor roots were placed on bipolar platinum

FIG. 10. (A) A plot of the largest sub-Lyapunov exponent in the écording electrodes. Thus a reflex arc with one synapse
response as a function of coupling. System parameters are nonideflonosynaptic was isolated, from muscle nerve sensory fi-
tical with B=0.3 for the driver and8=0.1 for the response. 10  bers to the output motoneurons from the spinal cord.

iterates were used in calculating the sub-Lyapunov expofBhiA

Constant voltage 5@s square wave stimuli were applied

plot of 30 iterates of the difference between two responsesio muscle nerves at a frequency of 2 Hz. The intensity of the

yi—y; (with the first 1000 iterates deletedas a function of cou-

pling. Units are dimensionless.

stimulation was adjusted to yield just supramaximal group-I
fiber response@he large sensory nerve fibers that participate
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R - | | | FIG. 13. Schematic of the experimental preparation. Periodic
0.0 0.1 02 03 04 0.5 square wave stimuli were applied to an isolated motor nerve con-
Coupling taining group la afferents which monosynaptically activate

a—motoneurons. The axons of the motoneurons pass into the ef-

FIG. 12.(A) A plot of the largest sub-Lyapunov exponent in the ferent ventral root. Measurements of the electrical monosynaptic
response as a function of coupling. The nonidentical response syseflex were made from the bulk of the cut ventral root, the inte-
tem (B=0.1) is driven with a shuffled driver. f@terates were used grated amplitude of which reflects the number of neurons discharg-
in calculating the sub-Lyapunov expone(®) A plot of 30 iterates  ing [28]. Fine filaments from the ventral root were dissected from
of the difference between two responsgs; y; (with the first 1000  the bulk of the root, until single motoneuron discharges were de-
iterates deleted as a function of coupling. Units are dimensionless. tected within the filament. In some experiments, intracellular re-
cordings of EPSP’s were made simultaneously with the unit and
reflex measurements. Not shown are the dense interneuonal connec-
tions within the motoneuron networKpool” ), nor the extensive
branching of the afferent fibers so that each one synapses with
nearly all of the motoneurons within the pool.

in the monosynaptic refl¢xas measured by the cord dorsum
potential (recorded with a fine platinum ball placed on the
surface of the spinal coydWe attempted to evoke monosyn-
aptic reflexes with single stimulus volleys delivered to MG,
LG, andS, or PBST muscle nerves. However, for some Ofof the experimental preparation is shown in Fig. 13. In order

the experiments it was necessary to use two stimulus volleyg, gy,qy how the variability in the firing frequency of such
LO tevoke a .mczasulrlable mqnozyr;apﬂc dreidé;n&rllntert\:]al units contributes to the dynamics of the population, we

etween paired volleys, pairs delivered at 2); EN € eliminated from this study units with firing probabilities
response to the second volley was analyzed, speqal attentiNe ater than 0.95 and less than 0(@%e firing probability is
was given in these cases to e"”.“”ate reflex series show e probability that a motoneuron will fire in response to a
any detectable response to the first volley. single stimulug

. Recordlngs were stored digitally and analyzed with Lab- Intracellular recordings were made with glass micropi-
View2 (N?t'ona' Instruments, Ing. or Datapac I (Run pettes(1.0-2.5 M) filled with 3-M potassium acetate or
Technologies, Ing. The implementation of algorithms to ;74 -\ QX314(Alomone Laboratories, Jerusalgin 2-M
test for autocorrelation, cross correlation, and mutual pred'cbotassium acetate to suppress sodium’smké}s Figure 14
t'OT V\f[ﬁs pe”‘l’f”.‘ed f"vt';h Ma(th?bTT_e Mat_hv(;/orks, Ing. or ¢ tiIIustrates an example of simultaneously measured cord dor-
C. In the analysis of these dala, timé windows were set q,,, potential(CDP), intracellular excitatory postsynaptic
incorporate the positive deflection of the monosynaptic reﬂe)botential(EPSF) a single fiber unit respons@NIT), and
potential. The_se recordings were _made_ from c_rushe_d end monosynaptic refleXMSR). Shown in the figure is the time
ventral roots in order to remove biphasic and triphasic comy ;4 (dotted line$ defined by the MSR duration during

Qvhich the MSR is integrated and the unit responses corre-

synaptic reflex were subtr_acted to give the absolute Vonaggponding to that MSR are identified. Since the synaptic cur-
Cha!”ges recorded.at the t|m§ of the reflex,_ and the MONOSYRha s precede the MSR, the time windodotted line3
;Pt]l_c r2efln$sx deflections were integrated during a time wmdowShOWn for EPSP integration is different.
Fine filaments were teased from the ventral root showing
the largest monosynaptic reflex, and the filaments were sub-
divided until single motoneuroifunit) discharges to a se- Applying the mutual prediction technique to the data from
lected muscle nerve were detected. One to three such “singleur motoneuron experiments, we will illustrate the dynami-
fiber” filaments were placed on separate fine bipolar plati-cal relationship between single motoneurons and the mono-
num electrodes for simultaneous recording with the monosynaptic reflex amplitude. The reflex is stimulated periodi-
synaptic reflex from the bulk of the ventral root. A schematiccally, and recordings from single motoneuron axons from the

B. Experimental results
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FIG. 14. Sample of raw data recorded from an experiment. The E
cord dorsum potentialCDP, indicated by an asteriskeflects the vents
incoming afferent discharge and is recorded from the surface of the

spinal cord with a small platinum ball electrode. The stimulation ; .
artifact is indicatedA). The EPSP is recorded from an intracellular panel are integrated values of moposynaptlc refldMaSR), and
the lower panel reflects whether a single biNIT) fired (1) or not

electrode within a single motoneuron. The UNIT response is from : e )
dissected filament and reflects the action potential from a singl%g) du_rlng each MSR‘.Un't firings and_falll_Jres are frequent, and
ere is much overlap in the plotted points in the lower panel. The

t .Th tic refleMSR) is th - . .
motoneuron e monosynaptic reflMSR) is the compound ac abscissa records the number of events analyzed, and the 1000 points

tion potential of the single units, and the integrated MSR is propor-

tional to the number of units discharging in response to astimulusr.ecorOIe<j correspond to 500-s elapsed fiftie stimulation fre-

The dotted lines represent the windows of the monosynaptic refle guency is 2 Hy. The ordinate is in arbitrary units of voltage for
and are discussed further in the text. The calibration bars give the
scale of the ordinate and abscissa in mV and ms, respectively, for

each panel in the figure. correlation for either series, there is significant cross correla-
tion at a lag equal to 0.

| de simul | th th Figure 17 plots the nonlinear prediction and mutual pre-
same motoneuron pool are made simultaneously with thgjion of these two time series, plotted as open circles.

population discharge. Thus this experiment captures the ingpon are four plots illustrating the normalized prediction
stantaneous activity of a population of coupled neurons, angd, ors of the MSR as a function of the MSR MGFSR)
samples several of the individual neurons at the same time.

We examine the interactions not only of the individual motor
units with the population of the motoneurons from the pool,
but also study the interactions between individual units. For &  %°T S
some experiments, simultaneous sampling of the synapticc’J or o
currents(EPSP from individual motoneurons was also ob- 05
tained, and the degree of nonlinear coupling between the 1
EPSP’s and both the unit and population responses was de-g&= 5! ]
termined. % .......................
Figure 15 shows a pair of simultaneously measured time e
series of a MSR and a unit response. Each monosynaptic o 5 10 15 20 25
reflex value reflects integration over a 1-2-ms time window
(see Fig. 14 and these values are proportional to the number %
of neurons discharging within the motoneuron pool at one £
time [28]. The unit responsesia 1 or 0,depending on ©) ) ) ) ) )
whether the unit fired during the time window defined by the -20 -10 0 10 20
duration of the MSR. Firings and failures of the unit re- Lag

sponse are frequent, reflected in the overlapping of 1's and FIG. 16. Shown for the data in Fig. 15 are the autocorrelation of

0's in Fig. 15. the MSR and UNIT. One lag is equivalent to 500 ms. The dotted

Figure 16 _demonsj[rates the linear {:Orrelaﬂons fF’r th'siines represent 95% confidence intervals that the autocorrelations
MSR and a single unit response. The linear correlations 0% o gifferent from white noisésee Appendix B The lower panel

each time series are expressed as autocorrelation, and t§,ys the cross correlations for these time series. The dotted lines
dotted lines represent-2 standard deviations assuming a pere represent the 95% confidence intervals that these cross corre-
null hypothesis that no significant autocorrelation exis&®  |ations are produced at random for a given lag. Note that the axis of
Appendix B. The lowest tracing in the figure illustrates the the time lags are different—autocorrelations are presented as one-
linear cross correlation between these two time series, anglded functions for positive lags only, while cross correlations are
the dotted lines again represen? standard deviations. For shown for both positive and negative lags. Units of all ordinates are
these two time series, although there is no significant autodimensionless.

FIG. 15. Sample of two simultaneous time series. In the upper

1 T T T T

-1

Correlation
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MSR(MSR), D=4, NN=20 MSR(UNIT), D=1, NN=16 Figures 18A), 18B), 18(C), and 18D) illustrate the dy-
namical coupling between the MSR, units, and when avail-
able, intracellular data for all 69 pairings. On the left side of
these figures, the linear correlations are diagrammed, and on
the right side the nonlinear correlations are given in terms of
predictions that the linear correlations could not account for.
Symbols used are MSRi—e for UNIT’s, and IC for intra-
cellular responses. For each symbol, statistically significant
autocorrelation and nonlinear prediction are indicated by a
superscript+ (and lack of significance as a superscript -
linear cross correlation by a solid line, and mutual prediction
by a directional arrow. For pairs of data that showed no
mutual predictability atH>1, computations were reopti-

1.05

0 5 10

1.05

Normalized Prediction Error

5 5 o Yo 5 To mized for H=0, and significant mutual predictability at
. . H=0 only is indicated with dashed arrows. At the far right
Translation Horizon of these figures, the specific motoneuron pool under study is

indicated(MG, PBST, eto.

FIG. 17. Nonlinear prediction for the data shown in Figs. 15and  Each of these diagrams illustrate the flow of a given ex-
16. Shown are four plots illustrating the normalized prediction er-periment, from top to bottom. Each of the results, indicated
rors of the MSR as a function of the MSR, MB®RSR), MSR as a by the linkages of MSRa, b, ¢, d, e, and IC, are determined
function of the unit response, M$BNIT), the single unit as a from time series record,ed, a,t 2 Hz. In b,etween each 2-Hz
function of itself, UNIT(UNIT), and the unit as a function of the recording period, different experimental manipulations were

MSR, UNIT(MSR). The prediction errors are normalized so that a L . .
prediction error of 1 or greater is no better than guessing the meaRerformed, as indicated by dotted linés -) with embedded

value of the time series. Experimental values given by open circlegommemS: a perlod of higher-frequency St'mUIat(mﬁ.’ 50,
(0), and surrogate values given by thin black lines). As dis- and 100 H;, different motoneur_on axons were substituted on
cussed in the text, the MSR has nonlinear predictability,[N€ recording electrodes, a different peripheral nerve was
MSR(MSR), and mutual predictability through consideration of the USed for stimulatiorie.g., MG changed for PB3;Tor periph-
unit response, MS®INIT). This unit had no nonlinear predictabil- €ral nerve conditioning was turned on and[@®]. The long-
ity, UNIT(UNIT), and no mutual predictability UNKMSR). Adot-  €st dotted lines correspond to a transection of the spinal cord,
ted line (- - -) at 1 is shown in the upper panels, below which thus physically isolating the lumbar motoneuron po@isi-
predictability is significant. Abscissae are in units of the period ofnalization). Detailed descriptions of the physiology of condi-
stimulation, each translation horizon corresponding to 0.5 s. Orditioning and frequency changes on motoneuron physiology
nate units are dimensionless. can be found i20], and a detailed discussion of the dynam-
ics of MSR’s before and after sectioning the spinal cord can
MSR as a function of the unit response, MBRIIT), the  be found in[14].
single unit as a function of itself, UNIUNIT), and the unit In the decerebrate stdtepper portions of Figs. 18) and
as a function of the MSR, UNKMSR). Nineteen multivari- 18(B)], all but one of the MSR recordings demonstrated
ate surrogate data sets were generated for each pair of tinstrong linear correlation, and at times there was a strong
series, as described in Appendix A, and their surrogate reelement of nonlinear predictability in these decerebrate MSR
sults were plotted as solid lines without symbols. These surseries(as fully discussed if14]). These significant linear
rogate data sets preserve both the autocorrelation of eaemd nonlinear properties of the time series are indicated in
individual data set, and the cross correlation. The predictiotthe figure by superscripted plus sigidSR™).
errors for both the experimental and surrogate data are nor- The network diagrams in Fig. 18 demonstrate that nonlin-
malized so that if the prediction is no better than guessing thear coupling can frequently be observed in a neuronal en-
mean (or worse, the values will be=1. Only values less semble between units, between units and the population, and
than 1 and less than any of the surrogate values for a givelpetween units and the intracellular EPSP’s. Cross correla-
translation horizon are considered significant. For this MSRions are at times observed when no nonlinear coupling is
and the single unit, the MSR had nonlinear predictabilityseen, between units and the MSR, and between the EPSP’s
[MSR(MSR)], as well as mutual predictability and units or MSR. The converse of this, nonlinear correlation
[MSR(UNIT)]. The existence of mutual predictability indi- without linear cross correlation, is also observed between the
cates that the MSR could be predicted through knowledge dfinits and the population or the EPSP. One way mutual pre-
the unit firing, beyond the predictability inherent in their lin- diction is seen, between units and MSR or EPSP, and even
ear correlations. On the other hand, the unit demonstrated raetween units themselves. Bidirectional mutual prediction is
nonlinear predictabilityf UNIT(UNIT)] of its own, and no observed only between units and the populatilisR).
mutual predictability in that the unit could not be predicted Several specific examples are instructive. In the top row
through knowledge of the MSRIUNIT(MSR)]. Unlike cross  of Fig. 18A), note that the MSR has a significant linear
correlation, mutual prediction demonstrates directionality ofcorrelation(+), but the unita does not(-). Nevertheless,
coupling. there is a significant cross correlation between this MSR and
Similar computations were performed for each of 69 pairshe unit. Both the MSR and unit have no nonlinear predict-
of data from three experiments where the quality of the si-ability nor nonlinear correlation. Following exposure to
multaneous time series permitted this sort of comparison50-Hz stimulation, the system goes into the posttetanic state
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FIG. 18. Network figures for lineatautocorrelation and cross correlatioand nonlinear correlations for 69 pairs of time series
representing monosynaptic reflex@SR), single unit responses(b, c, d, ande), and, when available, intracellular EPSP da€). The
left hand columns indicate the results of the linear analysis, and the right columns the nonlinear analysis. The muscle nerve @thdulated
therefore the particular motoneuron pool under sjudyindicated at the far right of each par®G, LG, and PBST — see Sec. IVA
Statistically significant autocorrelation, or significant nonlinear prediction not accounted for by the autocorrelation, is indicated by a
superscripted plus sign, and the absence of such correlation by a superscripted minus sign. Statistically significant cross correlation is
indicated by a solid lind—), and significant mutual nonlinear prediction by a directional arrew) ( For data where mutual prediction is
only seen foH=0, the directional arrow is dashed. The time series were collected before and after various experimental manipulations, and
these events are commented upon in between (ome proceeds downward in these figyreslthough various stimulation frequencies as
indicated were applied in between collecting the time series under study, all the time series analyzed here were collected at ZBjz. Panel
represents an experimental sequence where theayrittsandc were the same throughout the experimental manipulations. Fanshows
data from the same experiment in pafi), but the units are different.
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(an increased amplitude of EPSP’s with an increased probzord and from the brain stem. Following spinalization, both
ability of unit responses, and an increase in MSR amplitud@utocorrelation and nonlinear prediction were almost entirely
following high frequency stimulation Although the linear lost (as previously reported ifil4]), but many of the cross
properties are unchanged, there now appears to be nonlinezwrrelations were preserved. The two dashed arrows in the
predictability in the MSR, but not in the unit. Nonlinear mu- fourth row of this figure indicate that prediction was seen
tual prediction of the MSR also appears through a knowledgenly for H=0 for these elementdMSR predicting unitsa
of the unit. The converse is not true—the MSR does noand b only). Although nonlinear coupling appeared weak
nonlinearly predict the unit. This mutual prediction reveals afollowing spinalization, strongd>0 mutual prediction re-
functional coupling that is fleeting; following a period of turned following high frequencyl00 H2 stimulation, again
10-Hz stimulation, the nonlinear coupling is no longer apparduring posttetanic potentiation. In the third row from the
ent. bottom of Fig. 18B), there is no nonlinear predictability
Now look at the fourth row of Fig. 1), recorded after petween the unitsh( andc) and the intracellular EPSP am-
new units were placed on the recording electrodes and whilgjitude (IC). Following 100-Hz stimulation, there emerges
PBST conditioning was turned on. Here a MSR and tWoeyidence of nonlinear coupling in that the units now predict
units b and c demonstrated no linear properties. Neverthe+he intracellular response, even though the units themselves
less, there exists significant nonlinear predictability of unithaye no nonlinear predictability and there is no linear cross
b (+), and furthermore, there is mutual nonlinear predict-correlation between the units and the intracellular response.
ability of unit b through knowledge of the MSR. Note fur- | the bottom row of Fig. 16B), following a period of 10-Hz
ther that the MSR has no detectable linear or nonlineagtimylation, the nonlinear relationships again change. Al-
predictability—it is stochasticThus this MSR and the unit though the units no longer nonlinearly predict the intracellu-
demonstrate a nonlinear functional relationship that would|ar responsdunit a was los}, unit ¢ now mutually predicts
have remained undetected with traditional linear methods. Inpe MSR, even though both unit and the MSR have no
addition, this MSR and unit demonstrate what appears to b@onjinear predictability themselves. The results in the lower
an example of mutual prediction resulting from stochasticyart of Fig. 18B) correspond to the same experimental data
driving of a deterministic system at moderate levels of couns detailed in the raster plots in Fig. 7 frg@0].
pling, as predicted in Sec. 1B~ . . In Fig. 18C), the top row suggests that for this unit and
The fifth row in Fig. 18A), following 50-Hz stimulation,  the MSR, there was significant cross correlation without au-
again shows changes in the posttetanic state. Theéousiio  tocorrelation, and evidence of unidirectional nonlinear pre-
longer detectable. Linear cross correlation now emerges, afiction for H=0. Note that after 50-Hz stimulation, the non-

does nonlinear correlation, between unitand the MSR. |inear prediction is converted to bidirectional, again highly
Th|S functlonal Coup|lng W0u|d therefore haVe been detecte@uggestive that genera"zed Synchrony is induced

by linear analysis, but the nonlinear component of the cou-
pling would not have been appreciated.

Although bidirectionally coupled systems may exhibit
generalized synchrony, as discussed above, we have no These results demonstrate that there is a wide variety of
straightforward way of identifying such synchrony from de- linear and nonlinear coupling among the network of moto-
lay variables at present. The complexity of the spinal motoneurons generating a monosynaptic reflex. The coupling is
neuron pool dictates that we cannot be sure that we know thguite fluid as a function of time, and changes in experimental
direction of couplinga priori. Nevertheless, we can search conditions. Although some of these couplings would be de-
for evidence of unidirectional coupling through unidirec- tected with linear cross correlation, others would not. Since
tional mutual prediction, and then see if a perturbation of theneurons are floridly nonlinear in their action potential gen-
system introduces bidirectional mutual predictability. Exami-eration and synaptic transmission, we are not surprised to
nation of the network figures in Fig. 18 shows examplesidentify nonlinear coupling between neurons. The important
where unidirectional mutual prediction from MSR to units point is whether such couplings can predict or confirm func-
was converted to bidirectional mutual prediction following ational relations between neurons that previous tools could
perturbation, generally following high frequency stimulation, not. Our data suggest that this is so, and methods such as
and our interpretation of this is that we may indeed be obpresented here offer a broader understanding of dynamical
serving the conversion of unidirectionally coupled systems tanterdependence in a neuronal network than previously pos-
generalized synchrony in these cases. In FigBL8in the  sible.
decerebrate state in the first row, note that there is unidirec- Although several recent studies suggested both geometri-
tional nonlinear coupling evident in the prediction of the unit cal [4] and statistica]6] approaches to the detection of gen-
behaviors 4, b, andc) from the MSR. Following 10-Hz eralized synchrony, we focused on mutual prediction for
stimulation, note the conversion of the nonlinear predictionneural data. We set up our prediction approach so that the
to bidirectional between these same elemehiés may rep- choice of drive and response system need not be krewn
resent an example of the induction of generalized synchrongriori, and that knowledge of coupling strength and informa-
as the effective coupling strength of these elements was ition flow in a system may be inferred from the results. In
creased in the posttetanic state addition, our method permits the use of prediction without

Between the third and fourth rows in Fig. (B3, section- time lag H=0), and this can significantly improve the iden-
ing the spinal cord(spinalization was performed without tification of coupling in our data.
losing the unit recordings. This isolated the motoneuron pool Although our findings are highly suggestive, we lack the
under study, removing the influence from higher in the spinahbility to prove the existence of generalized synchrony in

V. DISCUSSION
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networks such as these where the coupling may be bidirednstitutes of Mental Health Grant No. 1-R29-MH50006-04
tional. Our best examples are those that started out with evand the Children’s Research Institute, and S.J.S. and P.S.
dence of unidirectional mutual prediction only, and changedeceived support from United States Office of Naval Re-
to bidirectional prediction following an increase in apparentsearch Grant No. N00014-95-1-0138. We gratefully ac-
coupling strength after high frequency stimulatitiuring  knowledge the support of the Keck Foundation for comput-
posttetanic potentiation One possibility in these experi- jng facilities, the granting of a perpetual site license from the

ments is that following high frequency stimulation there \jathworks, Inc., and the contribution of software from
emerged true bidirectional coupling. For bidirectionally Manugistics, Inc.

coupled systems, using delay coordinate embeddings, non-
linear coupling but not generalized synchrony is proven by
mutual prediction. Future work to develop our theoretical
tools to handle synchrony in bidirectionally coupled experi-  syrrogate data are models of experimental data based on
mental systems would be of significant value. the null hypothesis we wish to rejet.g., that the data are
The numerical simulations presented in Sec. IllB pre-gypained by a linear stochastic model with linear coupling

dicted that driving a nonlinear system with a stochastic sigyye draw upon the work of21] to construct multivariate
nal might reveal mutual prediction, if the coupling levels

: i > .~ surrogate data for our experimental data. In this method, lin-
were moderately strong. This type of coupling was |dent|f|edS g P

within the motoneuron pool in Sec. IV B. Stochastic driving early StOChaSt".: time Series pqlx$ anﬂd yi are ge_nerated
A{rom the experimental time series paxsandy;, with the

of a deterministic system is poorly categorized by presen : o . )
concepts of generalized synchrony, and further theoretical"&a" correlations within each component time series and the

work in this area would be useful. Nevertheless, these findcross correlation between them preserved. Such surrogate
ings provide further evidence that neurons are deterministiflata have no nonlinear properties.
nonlinear elements, and perhaps in some sense we may view The cross correlation,,(7) of x; andy; is
neurons as nonlinear equations wrapped in protoplasm. N
Stochastic resonance was recently experimentally demon- Fey(7)=(Xi¥i47)-

strated in neural networks from mammalian bré29]. In If F(%) and F(J,) represent the Fourier transforms of

recen_t_numerlcal work, aperiodic S.tOChaSt'C resonance Waﬁﬁ andy;, then their cross spectrum, which is the Fourier
guantified in a neuronal model using a measure of I|nea{ransform of (), is
Xy '

correlation[30]. Nonlinear methods such as mutual predic-

tion may form a more powerful approach to answer the ques- F(f(i)F*(9i):AX(f)Ay(f)ein(f)*(ﬁy(f)]_

tion of whether an arbitrary input signal is reflected in the

output of a nonlinear system, and could be applied to stoHereA, ,(f) and ¢, ,(f), respectively, are the Fourier coef-

chastic resonance data. Whether generalized synchrony méigient amplitudes and phase angleskqk;) andF(y;). As

exist in the context of stochastic resonance is an open quesuggested by21], adding the same random phase sequence

tion for now. o(f) to the phase angles of the Fourier transfornmxaind
Much interest has been generated in recent years concemp-will preserve both the autocorrelations of each time series

ing the so-called 40-Hz oscillations in the brg®]. Of major  and the cross correlation upon transform inversion. The sur-

interest is how such oscillations may synchronize neurons teogate data pairg{ andy; will therefore be

accomplish an information processing task. Nonlinear mu- _

tual prediction and generalized synchrony allow one to take a x| =F YA (f)ellex(DTeOl}

much broader view of synchrony than simple phase locking.

The methods presented here, which are not restricted to mé&nd

toneurons, open up widely the question of where in the ner- T ELA (felldy(DTe(]

vous system identifying nonlinear dynamical interdepen- i {Ay(fle -

dence or even generalized synchrony could identify new prq; each pair of experimental data sktandy; , at least

funguonal relatlonts among}. nc_—:‘tuijorgs. traints | db 19 separate surrogate data paifsandy; are generated, to
ur expenments were fimited by constraints impose Zpermit a one-tailed nonparametric test of significance ca-

';Ihe study cif bmot?ng_urgn mpnos;ynatptlci re}‘let_xes. Sulch rlf)able of rejecting the null hypothesis that these data are lin-
exes must be studied as input-output relations only, a'early synchronized at the 0.05 leviel].

though the simplicity of this neuronal network lent itself well
to establishing the existence of neural nonlinear coupling and
probably generalized synchrony. We are keen to study con-
tinuous time data from autonomously firing neuronal en-  Gijven a time serieg; , the degree of correlation in time is
sembles and their single units systems such as used in given by the autocorrelation. For a given time lag

[15,16)). Indeed, we anticipate that the methods presentef=0,1,2, ... , and time series length the autocorrelation
here can be readily extended to large scale study of the cg:(k) was estimated from

rebral cortex, using either traditional electrode or newer op-

APPENDIX A: MULTIVARIATE SURROGATE DATA

APPENDIX B: CORRELATION STATISTICS

tical techniques. N—k o o
> (z-D(z4—2)
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wherez is the mean ofz;. The variance of the estimated APPENDIX C: CALCULATING THE LARGEST
autocorrelations at lagg beyond which the autocorrelation SUB-LYAPUNOV EXPONENT
function is not significantly different from zero [81] FROM A DRIVE-RESPONSE SYSTEM

In this section, we briefly describe an algorithm for com-

a puting the largest sub-Lyapunov exponent from a unidirec-
1422 r(k)z), tionally coupled drive-response system. As a generalization
k=1 of the unidirectionally coupled H®n system in Sec. Il A,

we represent a general drive-response system in discrete time

and the square root of this function is taken as the standardy the following pair of map$:R™—R™ andg:R"*™—R",

deviation. When the estimated autocorrelation is less than

twice this standard deviation, the result is not significantly Xi+1= (%),

different from the value generated by white noise. In prac- Yi+1=9(Yi %, C), (Cy

tice, all time series were detrended prior to estimation of the

autocorrelation, with zero order detrending for unit response¥herex is anm dimensional state vector in the driving sys-

(all ones and zeros corresponding to whether the unit fired dem, y is ann dimensional state vector in the response sys-

not), and first order detrending for all other data to removetem, andC is a scalar parameter in the response sysgem

both the mean and any simple linear drift from the timedescribing the strength of the coupling. Notice that the cou-

series. pling (information flow is one directional from the drive to
Given two time serieg/; and z;, the degree of linear the response, i.e., the dimensional mag(x) is a function

correlation between the two is measured by the cross corrgf the driver's state vectax only.

lation. The cross correlatian,(k) can be estimated fromthe ~ The asymptotic stability of the response system is deter-
cross covariance,(k), mined by its largest sub-Lyapunov exponantThe largest

sub-Lyapunov exponent gives the average exponential rate
of divergence of two infinitesimally close by points,

1
vafr(a)]=

N

|
=~

1 — — (Xg,Yo) and (gq,yo+dy) in the response system. If we de-
N & Y=Yz, k=012, note the initial deviation of two nearby points by
CyAK)=1 Nk
1 — — €=(Xo,Yo+dy) —(Xo0.Yo).
Ni; (zZ—2)(yi—y), k=-1,-2,...,

then the magnitude of their deviation aftetime steps in the
future can be approximated by

wherey andz are the means of the time series. The cross _ Nt
correlationr (k) is recovered by normalizing, (k) &/~ exprt)[eg]-

A negative\ signifies that any infinitesimally small errors
Cyo(K) between two different initial points in the response system
will asymptotically converge to zero dsincreases. Math-
ematically,\ is defined as the following limit:

ryz( k)=

N-k N—k

NV @222 (imy)?
i= i= ~
. 1 |0ygt(y01X01C)%|
A= Ilmfln 2
The variance of the estimated cross correlation at tags o %
beyond which the cross correlation function is not signifi-yyhereg, is the projection of, onto then dimensional sub-
Jacobian matrix representing the derivativesgbfwith re-

: (C2

1 spect to the variablg only, andg' is thetth iterated map of
vafry,(q)]=——r E Fyy(K)T2AK) g (see Refs.[33,34 for more detailed descriptions of
N—kk==q Lyapunov exponenjs Here \ is assumed to be evaluated

along a typical trajectory Xg.Yo), - .- 4 (X, Vi)

— (ft t H
and the square root of this function is taken as the standara(f (X0),9'(Yo,%0,C))} of the drive-response system, Egs.

deviation. When the estimated cross correlation is less than”: i , ) )

twice this standard deviation, it is not significantly different USing the tchaln rule, the Jacobian matrix of thle iter-

from two independent white noise processes. ated map4,g'(Yo,%,C), in Eq. (C2) can be rewritten as a
Artifacts from significant autocorrelation in individual Preduct oft terms,

time series can create spurious cross correlation. These arti- ¢ _

facts can be eliminated Ey filtering the data to “prewhiten” 39 (Yo, %0,C) = y8(Yt-1,%-1,C) - 348(¥1.%1,C)

i; prior to cross corre_latior_1 es'gimatitim]. We tested_ all p(_)si- X 3,9(Y0.%0.C), (C3)

tive results suggesting significant cross correlation with the

algorithm of Ljung and Glad32], applying the same linear whered,g(y; ,X;,C), Osi<t—1 is the Jacobian martrix of

filter to both time series prior to cross correlation. Resultsthe mapg with respect toy only, evaluated at thigh iterate

that appeared spurious were rejected. of the orbit (;,y;).
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The calculation ofA using Egs.(C2) and (C3) can be Here the scalara; is the magnitude of the vector
numerically implemented in the following recursive proce- dyg(y;—1,%—1,C)&_1, and serves to renormalizefor each
dure (see Ref[35] for a detailed description of methods to successive time step. Using Eq.(C3), it is easy to see that
compute all Lyapunov exponents of an arbitrary chaotic sys-

tem).

To begin, we start with a random initial point4,yy) on
the attractor of the drive-response system and a random
dimensional unit vectog,. Then we recursively define and
calculate the following quantities fae=1,

&yg(yi—laxi—lvc)é—l

@i

a;=3,9(Yi-1.%-1,.C)&_41], &=

13,9 (Yo.%0,.C)&p| =y . . . af&|=ary ...

L Oy,

and by Eq.(C2), A can be approximated by the following
finite time average:

A~

—| =

t
2 Inai.
i=1
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