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Noise-induced transitions in human postural sway
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Correlation functions with multiple scaling regions occur in the description of the fluctuations in the center
of pressure during quiet standing. Postural sway is modeled as an inverted pendulum with a delayed feedback
constructed such that for deviations beyond a spatial threshold a constant restoring force is engaged. In the
absence of noise, two stable limit cycles coexist. The correlation function depends on the added noise intensity:
at intermediate noise levels three scaling regions appear whereas only two occur for high noise levels. Our
observations suggest that correlation functions with multiple scaling regions reflect noise-induced transitions in
bistable dynamical systemisS1063-651X96)00112-2

PACS numbdrs): 87.10+€, 05.40+j, 02.30.Ks

The human nervous system operates in a very noisy envidelayed by a time’' as a consequence of finite neural con-
ronment and hence noise-induced transitions are likely taluction and processing times and neuromuscular response
play a major role in shaping its dynami€$,2]. In multi-  times[12,16. Since postural sway control mechanisms are
stable dynamical systems noise can induce transitions b@verdamped for healthy subjects with eyes opé,17),
tween different attractorg2,3]. Multistability readily arises ¢>mR2¢ we can rewrite(1) for small displacements in
in mathematical models with time-delayed feedbpgk in-  the x direction as
cluding those which describe neural control mechani#hs
and has been observed experimentally in neural circuits con-
structed from invertebrate neurof8], in model electronic X=ax+ \/—g t)+f(x(t—17")), (2
circuits[7], and in optical dye laser experimen&. Here we
draw attention to the observation that noise-induced transi-
tions in multistable dynamical systems can lead to correlaWherea=mgRy>0 is a rate constank=R sin¢, andd,f
tion functions characterized by the presence of multiple scal-are the rescaled, f.
ing regions. During postural sway movement occurs primarily at the

To illustrate our findings we examine the fluctuations ankle joint. Information concerning joint position is detected
which occur in the center of pressuf€OP during quiet by threshold-type sensory neurons, i.e., the neurons only be-
standing[9—11]. These dynamics are not chaotic, but arecome activated once joint angle exceeds a certain \[dlgle
indistinguishable from correlated noise and can be modeledhus the postural sway feedbatloperates by allowing the
as bounded, correlated random wallk8,12. The two-point ~ System to drift for small displacementspen loop contrgl
correlation function measured in either the back to front owith stabilizing negative feedbadklosed loop contrglonly
side to side direction,x, K(At)=<[x(t)—x(t+At)]2>, becoming significant for sufficiently large displacements
where the brackets indicate a time average along a singldimes [9,10,12. A possible choice of which is consistent
trajectory andAt is the time increment9,13], typically con-  With these observations can be constructed from sigmoids of
tains three regiongFig. 1). Since for a correlated random the formf(x)=1/(1+e™#¥). Figure 2 plotsx versusx for
walk we have the scaling lawK(At))~At?", where
0<H<1 is a scaling exponeipi4], this observation suggests

the presence of multiple scaling regidrés-11]. 3 L’
We model human postural sway by the movement of an
inverted pendulum which is subjected to both noisy pertur- 2
bations and a time-delayed restoring fofdé], i.e., 2
. - 7!

MR+ yd—mgRsing=T(p(t—7'))+V2d&(1), (1) CH
wherem is the masgcenter of mass located at a distariRe -1
from the groungl g is the gravitational constanty is the :
damping coefficientg is the tilt angle(¢=0 corresponds to 3 2 -1 o0 1 2 3
the upright position, hence the—"" sign), and \/Eag(t) is In At
&correlated Gaussian noise of intensifgd. Once a dis- FIG. 1. Plot of the COP two-point correlation functi¢f(At)

placement occurs, the application of the restoring force igersus time intervaltt for a healthy 21 year old femaléheight
1.63 m, weight 63.5 Kg Vertical lines segmer (At) into differ-
ent scaling regionstfrom left to righy, H~0.86, H~0.29, H~0

* Author to whom correspondence should be addressed. [11].
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FIG. 2. Plot ofx versusx for (6) as a function of3 (proportional 0.0

to the gain in the feedback control described B8) (solid ling). A
piecewise linear approximation used (6) is represented by the

dotted line.c=2, §=1, £,=1, =5, f3=10. FIG. 3. Steady state behavior () in the absence of noise.

Oscillations of the type shown in Fig. 4 top occur for choice€of
f(x)=cl 1— 1 1 3) and 7 in the region labeled O1”; of the type in Fig. 4 middle in
1+e BX=0 14 BX+0) |1 the region labeled ©2,” and of the type shown in Fig. 4 bottom in
the region labeled ©3.” There are also different kinds of unstable
wherec,6 are constants for different values gf For small ~ solutions(the swayer fallswhich are designated dsin the bifur-
displacements from the vertical the restoring force is smalfation diagram and are not discussed further.
(“open loop control”), for larger displacements the restoring
force stabilizes the upright positidiclosed loop control’),  After rescalingx andt, (2) reduces to
and for sufficiently large displacements the restoring force is
incapable of stabilizing the upright position and the swayer
topples over.
Joint position receptors typically discharge maximally

X+ 2D +C if x(t—m1)<—1

within a very small range of angld49]. For large 8 we x=\ x+2D&(t) if __1$X(t_7')$l ®)
approximatef by the piecewise constant approximatigiot- X+y2D¢()—C if x(t—7)>1,
ted line in Fig. 2, i.e.,

(| O ifx=é @ wherer=a7', C=c/a 6, andD=d/a”6°.

—c if x>0. In the absence of nois® =0, the solution of(5) is

—C+[X(tg)+Clexpt—tgy) if x(t—7)<-1
x(t)=1 X(tg)expt—ty) if —lsx(t—7)<1 (6)
C+[x(tg) —Clexpt—ty) if x(t—7)>1.

The dynamics of5) can be readily determined fro6) with 1=x(s)=<C for se[ty— 7,tg]. Assume further that at time

the help of Fig. 2. In the following, we take initial conditions t,:=ty+7, —C<x=<-1. Then there exists a time

|x(s)|=<1, se[—7,0]. t* €[tg,t;] such that—1<x(s)<1 for se[ty,t*]. The re-
Figure 3 shows the bifurcation diagram @&). No stable  quirement thak(t)=— C at timet* + rleads to the condition

fixed point solutions can occyFig. 2). However, three dif-

ferent stable limit cycle solutions arise, denoted by 2C2

01,02,03 (Figs. 3, 4 [20]. Bounded solutions occur only r<74=In

for C=1; otherwise x>0 for x>0 andx<0 for x<0, which

results in an immediate escape for almost all initial condi-

tions. The region in the parameter space where bounded s¢see Fig. 3. Due to the symmetry of), the same conditions

lutions exist is specified by two conditions. First, ¥t,)=1  arise ifx(tg)=—1.

and Osx(s)=<1 for se[t,— 7,to]; then for a solution to have The stable limit cycleD1 (Fig. 4 top encircles+1 with

an upper boundary, we must haxeC att=r, i.e., x>0 for all time[21]. From(5) it can be seen th&1 occurs

whenC, 7 satisfy (Fig. 3

T<T7,(C)=In(C) (@)

(see Fig. 3. Second, in order to obtain a condition for the

solution to have a lower boundary, let(tp)=1 and 7<7a(C) and O<r<m,(C)=In

c-1r ©
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1 /\ /\ /\ /\ FIG. 5. Two-point correlation functions of the unscaled version
of (5) for different values of noise intensity. Topd=0.166
0 mm?sec %, middle: d=0.625 mnisec? bottom: d=1.020
\ / \ / \ / / mn? sec?. In all cases,a=0.60 sec?, =5.95 mm,c=19.67
1 - mm sec?, 7 =233 msec. Diamonds show experimental data taken
\/ \/ \/ \/02 from Fig. 1.
2
0 5 10 15 20 For intermediate noise level&(At) contains three regions
3 and is identical to that observed experimentally. From the
2 model we obtainr’ ~230 msec and~6 mm, which agree
remarkably well with those values observed experimentally,
<0 \ I \ ] \ [ \ I \ I respectively, 200—-300 ms¢t6] and 5-6 mn{18]. Finally,
\ I \ I \ / \ } \ ] as the noise intensity increases the three regions become less
-1 distinct and finally disappear at high noise levels.
2 We conjecture that there are two essential features to pro-
3 03 duce a correlation function with multiple scaling regiofis:
0 5 10 15 20 two or more coexisting limit cycle attractors in which tran-
t sitions between attractors occur only at certain phases of the

cycle (e.g., minimum ofO1 in Fig. 4 top; and(2) noise of
FIG. 4. Three types of oscillations predicted (3. In all cases  gyfficient intensity to cause transitions between the attractors
7=0.6. Values forC are top,C=-2.1; middle,C=2.9; bottom,  at not too high a rate. The vertical line in Fig. 5 shows that
C=45. the break between the first two scaling regionsKifAt)
o . . , occurs just before the period of the oscillation for the noise-
This limit cycle coexists with another-O1) that encircles  |ggs case. FoAt shorter than one period of the limit cycle,
—1 with x<0 for all time. Thus we have bistability; the {ansitions occur only in one direction between basins of
solution which is observed depends on the choice of theraction, e.g., 4:2. These transitions are reflected by an
initial condition. o _ __increase irK (At). For At longer than the period of the limit
The system shows two more _qualltat|vely dn‘ferent limit cycle, transitions of the form-%2—1 begin to occur and
cycles, 02 and O3, each of which enclosetl (Figs. 4 K (At) increases less rapidly. Finally for lom, it becomes
middle and bottom The conditions fol02 andO3 to occur  gqually probable that the swayer is in either basin of attrac-
are, respectively, tion andK(At) reflects the mean displacement.
To test this hypothesis we studied the Mackey-Glass

7<7,(C) and 7,(C)<7<r(C)=In (10) equation[24] with an additive noise input

Cc-1

and . bx(t—17)
X=—ax+ —1+x(t—r)”+m§(t)’ (12
7(C)<7<714(C) (11

(Fig. 3. Bistability arises also in these cases. However, thevhere a,b,n are positive constants. Whanm is even and
coexisting orbitf —02 and—03) are identical in shape to, d=0, this equation is invariant under the transformation
respectively,02 andO3; they differ only by a phase shift. x(t)— —x(t) and hence there is bistabilify’]: if x(t) is a

We do not conside©2 andO3 further. By comparind7) limit cycle solution of (12) then so is—x(t). Numerical
and (8) to (9)—(11) it is clear that no other solutions, e.g., simulations indicate that the two-point correlation for this
chaotic trajectories, can arise (). system exhibits qualitatively the same behavior as our model

WhenC, 7 correspond to cases in which the limit cycles for postural swaydata not shown
01 and—01 coexist, noise can induce transitions between Experimentally the situation with three scaling regions is
two qualitatively different attractors. Figure 5 shows the two-most often seef9-11]; however, for some subjects three
point correlation functiorK(At) as a function of the noise regions are less apparent and for others oscillations occur
intensity D. For low noise levelsK(At) shows oscillations. [12]. Here we have shown that the shapekgfAt) depends
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on three parameters: the time delaythe strength of the is possible thaK(At) can have a shape which is more com-
feedbackC, and the noise intensitlp [22]. From Fig. 3itis plex than we have considered here. Our results should alert
clear that it should be possible to change the shag&(aft)  the experimentalist to the possible connection between a cor-
by altering these parameters, e.g., drinking alcohol to alter relation function with multiple scaling regions to an under-

[23]; holding a weight over the head to raise the center ofying multistable dynamical system in which noise-induced
gravity to altera and hencer,C,D; adding noisy perturba-  transitions are occurring.
tions to the pressure platform to alter.

The study of noise-induced transitions in stochastic delay We thank J. Collins, R. E. Jaeger, M. C. Mackey, and T.
differential equations has only begun to receive atter[tBdn  Ohira for useful discussions. C.W.E. was supported by
A variety of routes and mechanisms for noise-induced tranBASF. Research was supported by grants from the National
sitions can occur. Moreover, transitions can involve newlnstitutes of Mental Health and the Brain Research Founda-
states created by the addition of noise to the sy$@&8h i.e., tion. Experimental data for Fig. 1 were supplied by and pub-
states which were not present in the absence of noise. Thuslished with the permission of J. Collins.
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