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A Monte Carlo simulation study of the phase diagram of an off-lattice molecular model of a fluid in a
disordered porous material is presented. The molecular model consists of a Lennard-Jones 12-6 fluid confined
in a rigid matrix of spheres with size parameters representative of methane in a silica xerogel. The matrix
spheres are arranged in a configuration from an equilibrium hard-sphere system, although in some cases a fcc
arrangement was considered in order to study the effect of translational order in the matrix. Various strengths
of attraction between the fluid molecules and matrix particles have been considered, including the case of
complete repulsion. The fluid-phase diagram shows effects of confinement, wetting, and matrix disorder. The
results of this study provide evidence for two fluid-phase transitions. One transition is analogous to the bulk
vapor-liquid transition, while the second is related to the wetting properties of the fluid in the more confined
regions of the matrix. A key feature of our results is the inhomogeneity and disorder of the equilibrium phases
in the system.@S1063-651X~96!05312-3#

PACS number~s!: 05.70.Fh, 64.70.Fx, 68.45.Gd

I. INTRODUCTION

The phase behavior of fluids and fluid mixtures in disor-
dered porous materials has been the subject of much recent
interest from both an experimental and a theoretical point of
view @1#, reflecting both its significant practical importance
and the interesting conceptual challenges it offers. The ob-
served behavior can be determined by a variety of effects
including confinement, wetting phenomena, and how these
are affected by the disordered microstructure. Experimental
studies of vapor-liquid and liquid-liquid phase separation
have been made in a variety of porous glasses and gels@2#.
These studies have shown that the phase diagram, as well as
the dynamics of phase separation, is dramatically altered by
the presence of the gel. Even extremely dilute porous mate-
rials such as aerogels can have profound effects on fluid
behavior, as illustrated by the case of4He in an aerogel@3#,
which exhibits an extremely narrow vapor-liquid coexistence
curve. Although work in this area has progressed for more
than a decade, a complete understanding of the experimental
phenomena has not yet been achieved.

Among the theoretical approaches that have been used in
understanding these systems the most popular has been the
random field Ising model@4# ~RFIM!. The random field de-
scribes the spatially varying preference of the disordered me-
dium for the different fluid phases. There is no effect of
confinement in the model and correlations between the ran-
dom fields that would model correlation effects of potential
importance in real systems are usually neglected. In addition,
the model does not provide a description of the role of wet-
ting. Nevertheless, the central idea of inhomogeneous and
disordered equilibrium phases that underlies the RFIM is a
key concept in understanding these kinds of systems. From a
somewhat different perspective, Liu and co-workers@5# have
suggested that the phase-separation dynamics for these sys-
tems may be determined by the geometry of the wetting
phases that can be modeled within a single-pore approach.
Another line of attack has been application of methods of
from liquid-state statistical mechanics to off-lattice molecu-

lar models of fluids in porous materials@6# and this approach
has recently been applied to the study of phase equilibrium
@7,8#.

The purpose of the present paper is to present a detailed
account of a Monte Carlo simulation study@9# of the phase
diagram of an off-lattice molecular model of a fluid confined
in a disordered material. The model provides a reasonably
realistic picture of the microstructure of a disordered porous
material, in this case a silica xerogel, while remaining com-
putationally tractable. It includes effects of confinement,
wetting, and matrix disorder on the fluid thermodynamics in
realistic way. The phase behavior determined in this work
shows several interesting effects. The critical temperature for
the vapor-liquid transition is lower than in the bulk, as would
be expected for a confined system@10#. The vapor-liquid
coexistence curve is much narrower than that in the bulk and
this appears to be a consequence of both the wetting behav-
ior of the fluid in the matrix and the disorder in the matrix.
The location of critical density relative to the bulk value is
determined by the strength of the interaction between the
fluid molecules and the porous matrix. In addition to a vapor-
liquid transition, analogous to capillary condensation, our re-
sults provide evidence for a second transition that is associ-
ated with the wetting behavior of the fluid in the more dense
regions of the matrix. A second transition with an apparently
similar origin was recently predicted using a lattice model of
a fluid in a porous material using the replica Ornstein-
Zernike equation in the mean-spherical approximation@11#.
A comparison with results for a translationally ordered ma-
trix as well as computer graphics visualizations of the phases
present reveal an important contribution to the behavior from
the matrix disorder.

In Sec. II we describe the molecular model as well as the
computer simulation techniques used in this work. We also
discuss briefly the thermodynamics used in our phase equi-
librium calculations. Section III presents our detailed results
including adsorption isotherms, phase diagrams, and some
computer graphics visualizations of the equilibrium phases in
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the system. A summary of our results and conclusions is
given in Sec. IV.

II. MOLECULAR MODEL AND MONTE CARLO
SIMULATIONS

The molecular model used in this work is based on one
used by Kaminsky and Monson@12# in studies of adsorption
of simple molecules in silica xerogel. The adsorbent matrix
is modeled via a configuration of hard spheres taken from an
equilibrium hard-sphere Monte Carlo simulation. In this
model the size ratio between the matrix spheres and fluid
molecules is 7.055:1 and the volume fractionh of the hard-
sphere system used to generate the matrix configuration is
0.386. The interaction between the fluid molecules and the
matrix particles has been modeled in two ways. In one case
the interaction was a purely repulsive hard-sphere interac-
tion. In other cases attractive forces between the matrix par-
ticles and fluid molecules were described by the composite
sphere potential in which each matrix sphere is treated as a
continuum of interaction centers@12#. The potential provides
a level of approximation similar to that given by the 9-3
potential@13# used for modeling interactions with plane sur-
faces and reduces to the 9-3 potential in the limit where the
matrix to fluid particle size ratio becomes very large. If each
matrix particle is modeled as a continuum of Lennard-Jones
12-6 interaction centers, the potential energy between a ma-
trix particle and a fluid molecule is given by
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whered is the distance from the center of the fluid molecule
to the center of the matrix particle,rs is the density of inter-
action sites in the matrix particles,R is the matrix particle
radius, andsgs and egs are the collision diameter and well
depth for the 12-6 potential between the fluid molecule and a
matrix particle interaction center. We use the values
sgs50.8646sgg andegs52.287egg , where the subscriptgg
denotes the fluid-fluid interaction parameters. In addition, we
haveR53.5275sgg andrss gg

3 52.447. These are the values
used by Kaminsky and Monson@12#. This potential can be
regarded as an approximation to a more detailed intermo-
lecular potential developed by MacElroy and Raghavan@14#
that incorporates the atomic structure of the silica particles
making up the matrix. For the interactions between the fluid
molecules a Lennard-Jones 12-6 potential truncated at 2.5
collision diameters was used.

In order to vary the strength of the attractive forces while
maintaining an approximately constant porosity for the ma-
trix we proceeded as follows. The composite sphere potential
for methane in silica gel was divided into attractive and re-
pulsive parts in the manner used in the Weeks-Chandler-
Andersen perturbation theory@15#. Systems with the similar
porosity but different attractive interaction strengths were
then obtained by progressive addition of the attractive part of
the potential to the repulsive reference potential. The result-
ing potential can be expressed as
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In this last equationa5egs/e gs
(0), wheree gs

(0) is the well depth
in the composite sphere potential used for methane in silica
gel,dc is the truncation in the adsorbent-adsorbate potential-
energy calculation, anddmin is the value ofd for which
ucs(d) is a minimum. In this work we chosedc57.055sgg .
Varying the strength of the fluid-matrix attractive forces has
allowed us to investigate the effects of wettability on the
phase diagram. This procedure produces a fluid-matrix po-
tential in which the repulsive part varies much less with the
value ofegs than does the repulsive part of the original com-
posite sphere potential.

The Monte Carlo simulations used in this work were car-
ried out in the grand canonical ensemble by the usual method
@16#. Thirty-two matrix particles were used in a cubic cell
with periodic boundaries. This leads to a simulation cell with
dimensions of about 25325325 fluid particle diameters. The
number of fluid molecules in the system ranged from just a
few at the lowest activities up to about 104 at the highest
activities considered. The simulation runs typically involved
~503106!–~1003106! configurations for equilibration of the
system from a given initial condition and an equal number
for obtaining the ensemble averages. A configuration con-
sisted of an attempted translation of a randomly chosen fluid
molecule followed by either an attempted addition or re-
moval of a fluid molecule. Cell lists were used to reduce the
computer time taken to sum the interactions in the system.
Most of our results are for a single configuration of the ma-
trix since this was dictated by computational limitations.
This might at first seem questionable since a 32-particle con-
figuration may not be sufficiently representative of the statis-
tical geometry of a hard-sphere system. However, in some
cases we carried out calculations for other matrix configura-
tions and the results were quite similar, as will be shown
shortly.

In these systems the conditions for equilibrium between
two phases at fixed temperature are the equalities of the
chemical potentials and grand potential densities in the two
phases. To determine the grand potential densities we have
used thermodynamic integration methods. The grand poten-
tial density can be determined from a Monte Carlo simula-
tion isotherm of fluid density versus chemical potential by
integration of the Gibbs adsorption isotherm, i.e.,

df52rdm, ~3!

wheref5V/V is the grand potential density,m is the chemi-
cal potential, andr is the fluid density. For low-density states
up to any phase transition this integration can be performed
by starting in the Henry law limit where the fluid behaves as
an ideal gas in an external field. For the dense phase it is
necessary to determine the grand potential density at some
reference state and then integrate the Gibbs adsorption iso-
therm starting from that state. To determine this reference
state value we first determined an isotherm of the grand po-
tential density at a temperature above the bulk critical tem-
perature. The grand potential at lower temperatures for dense
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states could then determined by integration over temperature
of the grand canonical Gibbs-Helmholtz equation

S ]~f/T!

]T D
z
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T2
, ~4!

whereT is the temperature,Uc is the configurational energy
per molecule, andz is the configurational activity or fugacity
~which is equal toemc /kT, wheremc is the configurational
chemical potential!. In the cases at lower temperatures
where, as we shall see, there are apparently two phase tran-
sitions on an isotherm, we have not used this procedure for
the secondary transition but have simply used the step in the
adsorption isotherms to estimate the location of the transi-
tions.

III. RESULTS

We begin by considering the case of a completely repul-
sive hard-sphere interaction between the matrix and the fluid.
Figure 1 shows an adsorption isotherm for a temperature
well below the bulk critical temperature. This isotherm ex-
hibits hysteresis between adsorption and desorption with a
transition between fluid states of low and medium density.
We have interpreted this transition as the analog of the
vapor-liquid transition in the bulk. The value of the chemical
potential at bulk saturation is marked on the graph and we
see that the transition in the pore occurs at a higher chemical
potential than that in the bulk, as should be expected for a
system with repulsive fluid-matrix interactions@10,17#. A
perhaps striking feature of this isotherm is the rather low
value of the condensed phase density. We will return to this
point shortly. First, however, we show some further results at
the same temperature for three other realizations of the ma-
trix. These adsorption isotherms are shown together with the
first one in Fig. 2. We also compare the coexistence tie line
obtained from an isotherm averaged over four matrix realiza-
tions with that shown in Fig. 1. This is shown in Fig. 3.

These comparisons show that, although we can expect some
quantitative differences by averaging over larger numbers of
matrix realizations, the qualitative picture should not change
significantly.

In Figs. 2 and 3 of Ref.@9# we presented computer graph-
ics visualizations of configurations from the Monte Carlo
simulations for liquid and vapor states close to coexistence at
one temperature. In both cases the spatial distribution of the
molecules was seen to be highly inhomogeneous and disor-
dered. This is the kind of picture that would be anticipated
on the basis of the random field Ising model. What is par-
ticularly striking is that for the liquid phase there are exten-
sive regions of the matrix that have very low fluid density.

FIG. 1. Adsorption isotherm at the temperaturekT/egg50.75
for the 12-6 fluid in a hard-sphere matrix. The solid line is our
estimate of the vapor-liquid tie line and the dashed line marks the
saturation chemical potential for the bulk 12-6 fluid.

FIG. 2. Adsorption isotherms at the temperaturekT/egg50.75
for the 12-6 fluid in four different configurations of the hard-sphere
matrix.

FIG. 3. Adsorption isotherm at the temperaturekT/egg50.75
for a 12-6 fluid in a hard-sphere matrix. The points are averages
over the results in Fig. 2, the solid line is the calculated vapor-liquid
equilibrium phase transition for the averaged isotherm, and the solid
squares are the saturated vapor and liquid densities calculated for
the isotherm in Fig. 1.
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These are the regions where the matrix density is highest and
where the repulsive fluid-matrix interaction favors low fluid
density.

To investigate further the role of the disorder we have for
one of the temperatures studied a system in which the matrix
spheres are arranged in a fcc structure. At the same tempera-
ture this system exhibits a much larger density change during
the vapor-liquid transition than for the disordered system, as
shown in Fig. 4. Moreover, density distributions of the fluid
for both liquid and vapor phases in this system are periodic.
This can be seen in Fig. 5, where we show a configuration of
this system from a state close to the saturated liquid.

We have studied adsorption isotherms at several other
temperatures for the disordered matrix and this has allowed

us to construct the phase diagram for the fluid. The adsorp-
tion isotherms are shown as ar vs m plot in Fig. 6 with the
correspondingf vs r plot in Fig. 7. TheT vs r phase coex-
istence plot is shown in Fig. 8. In this figure the bulk vapor-
liquid coexistence curve is also shown as calculated from the
accurate equation of state of Johnson, Zollweg, and Gubbins
@18#, corrected for the effect of truncating the potential. The
results, as well as those in Figs. 6 and 7, indicate the pres-
ence of two transitions between fluid phases in the system.
We associate the larger coexistence region with the vapor-
liquid transition. Evidently, the vapor-liquid coexistence re-

FIG. 4. Adsorption isotherm at the temperaturekT/egg50.75
for a 12-6 fluid in a fcc hard-sphere matrix. The solid line is the
calculated vapor-liquid equilibrium phase transition and the dashed
line marks the saturation chemical potential for the bulk 12-6 fluid.

FIG. 5. Computer graphics visualization of a configuration of
the 12-6 fluid in a fcc hard-sphere matrix near the saturated liquid
state at a temperaturekT/egg50.75.

FIG. 6. Adsorption isotherms for the 12-6 fluid in a hard-sphere
matrix. The isotherms from left to right correspond, respectively, to
the temperatureskT/egg50.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95,
and 1.0. The solid lines are calculated tie lines for the vapor-liquid
transitions.

FIG. 7. Grand potential density isotherms calculated via thermo-
dynamic integration for the 12-6 fluid in a hard-sphere matrix. The
isotherms from left to right correspond, respectively, to the tem-
peratureskT/egg50.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0.
The points are our calculated values and the lines are drawn as a
guide to the eye.
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gion appears at lower temperatures than for the bulk, as
would be expected for such a confined system. Also the con-
densed phase densities are lower than those in the bulk and
the coexistence curve is substantially narrower. The shift in
the coexistence curve and its narrowness are to a significant
extent associated with the repulsive interaction between the
fluid and the matrix, which promotes a low fluid density in
the neighborhood of the matrix particles and acts to lower
the density of condensed phases in the system. But, as we
have already seen, the matrix disorder also plays a role.
Some care should be taken in making comparisons of coex-
istence densities between the bulk and confined fluids for
systems like the present one since the volume fraction of the
solid in matrix needs to be accounted for and the finite size
of the fluid molecules prevents the void space from being
uniformally accessible. Nevertheless, in view of the magni-
tude of the effects seen here it is reasonable to divide the
fluid density by the void fraction 1-h of the hard-sphere ma-
trix ~the void fraction is understood to be unity for the bulk
case! to make an approximate comparison with the bulk co-
existence curve as is done in Fig. 8.

We turn now to the second coexistence region that occurs
at low temperature on the high-density side of the vapor-
liquid coexistence region. This transition is associated with
the change in the fluid density in the high-density regions of
the matrix. The physics involves a competition between the
repulsive fluid-matrix interactions, which favor a lower fluid
density in the confined regions of the matrix, and the attrac-
tive forces between the fluid molecules, which tend to stabi-
lize a high-density phase~where high density permeates a
much wider region of the matrix than seen in Fig. 2 of Ref.
@9#!. The analogy with a predrying transition for a liquid in
contact with a plane surface is a tempting one, although the
drying transition is thought to be either second order or
weakly first order@19#, making the possibility of observing a
predrying transition for a plane surface unlikely. Our esti-
mates of the phase coexistence for the second transition are

not as precise as for the high-temperature vapor-liquid tran-
sition since they are based only on steps observed in the
adsorption isotherms. As a measure of the uncertainty we
note that the isotherm in Fig. 1 shows a small step at high
density and we have used this as our estimate of the coexist-
ence points atkT/egg50.75 in Fig. 8. The uncertainty in the
estimate at this temperature is exacerbated by its proximity
to the critical temperature of the second transition and the
sensitivity of the results to the matrix configuration. On the
other hand, we did check that the second transition was
clearly visible for a second matrix configuration at
kT/egg50.7.

Next we consider the case of attractive fluid-matrix inter-
actions. We have studied various strengths of the fluid-
matrix attractive interaction strength at a single temperature
and have calculated the phase coexistence and the entire fluid
phase diagram for one value ofa. Figures 9–12 show ad-
sorption isotherms for four increasing values ofa starting
with a50. The isotherm fora50 in Fig. 9, where there is
only a soft repulsive matrix-fluid interaction, is very similar
to that shown in Fig. 1 for the hard-sphere matrix-fluid in-
teraction, as should be expected. Notice the changes in the
isotherm in passing froma50 in Fig. 9 toa50.25 in Fig.
10, where we see that liquid phase has a much higher den-
sity. This is because the attractive fluid-matrix interactions
allow the high-density fluid to permeate the dense regions of
the matrix. There is slight evidence on this isotherm for the
second transition in the high-density region that was seen for
the hard-sphere matrix-fluid interaction at lower temperature.
As we increase the strength of the attractive interaction still
further toa50.375 ~Fig. 11! we see that the density of the
liquid phase is increased further and now there is new be-
havior on the low-density branch of the isotherm with a sec-
ond phase transition from low density to moderate density in
the vapor phase. This transition is again associated with the
wetting behavior of the fluid in the more dense regions of the
matrix and again involves high-density fluid permeating the
more confined regions of the matrix. There is some resem-

FIG. 8. Phase diagram for a Lennard-Jones 12-6 fluid in a hard-
sphere matrix. The solid circles are the saturated vapor and liquid
densities and the solid squares represent the coexistence densities at
the second transition. The solid line is the coexistence curve for the
bulk fluid.

FIG. 9. Adsorption isotherm at the temperaturekT/egg50.7 and
a50.0 for the 12-6 fluid in a composite sphere matrix. The dotted
lines mark the limits of the hysteresis behavior and the dashed line
marks the saturation chemical potential for the bulk 12-6 fluid.
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blance between this transition and the prewetting transition
for a plane surface and indeed the adsorption isotherms are
quite similar to those seen for a planar fluid-solid system
exhibiting prewetting@20#.

By increasing the strength of the attractive matrix-fluid
still further to a50.5 we obtain the isotherm shown in Fig.
12. We see that the second transition has disappeared except
for a slight shoulder in the isotherm~as we shall see, the
second transition appears at lower temperature for this sys-
tem! and the vapor-liquid transition is narrowed and shifted
to high density. We note that, as expected, the vapor-liquid
transition region moves to a lower value of the chemical

potential as we increasea at fixed temperature@10,17#.
Figures 13 and 14 show snapshots from our Monte Carlo

simulations for liquid and vapor states from the isotherm in
Fig. 12, respectively, close to coexistence. We again see that
the phases are inhomogeneous and disordered. In this case
the matrix-fluid interaction acts to create a high-density dis-
ordered vapor state in contrast to the low-density disordered
liquid state created by the repulsive matrix-fluid interaction
as shown in Fig. 2 of Ref.@9#.

Adsorption isotherms for a range of temperatures are
shown in Fig. 15 fora50.5 and Fig. 16 shows theT vs r
phase diagram we have determined. Once again we see evi-

FIG. 10. Adsorption isotherm at the temperaturekT/egg50.7
anda50.25 for the 12-6 fluid in a composite sphere matrix. The
dotted lines mark the limits of the hysteresis behavior and the
dashed line marks the saturation chemical potential for the bulk
12-6 fluid.

FIG. 11. Adsorption isotherm at the temperaturekT/egg50.7
anda50.375 for the 12-6 fluid in a composite sphere matrix. The
dotted lines mark the limits of the hysteresis behavior and the
dashed line marks the saturation chemical potential for the bulk
12-6 fluid.

FIG. 12. Adsorption isotherm at the temperaturekT/egg50.7
and a50.5 for the 12-6 fluid in a composite sphere matrix. The
solid line gives the calculated vapor-liquid equilibrium tie line and
the dashed line marks the saturation chemical potential for the bulk
12-6 fluid.

FIG. 13. Computer graphics visualization of a configuration of
the fluid in the composite sphere matrix witha50.5 near the satu-
rated liquid state at a temperaturekT/egg50.7.
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dence for two phase transitions. As before we associate the
larger coexistence region with the vapor-liquid transition.
Consistent with the behavior seen in the adsorption iso-
therms, this coexistence region is now shifted to higher den-
sity than for the bulk and is quite narrow. The shift of the
coexistence curve and its narrowness are again strongly as-
sociated with the attractive interaction between the fluid and
the matrix, which promotes a high fluid density in the neigh-
borhood of the matrix particles and increases the density of
the vapor phase in the system. However, comparisons we
have made with results for a fcc matrix again reveal a sub-
stantial role for the disorder. We again emphasize the signifi-

cantly more uncertainty in our estimate of the second transi-
tion than for the vapor-liquid transition.

IV. SUMMARY AND CONCLUSIONS

We have presented results from a Monte Carlo simulation
study of phase transitions in an off-lattice model of a fluid in
a disordered porous material. The primary conclusions from
this work can be summarized as follows:~i! the fluid phase
diagram is substantially modified in the porous material;~ii !
the critical temperature is lower than that in the bulk;~iii ! the
critical density and width of the vapor-liquid coexistence re-
gion depends upon the relative strength of fluid-solid and
fluid-fluid attractive interactions, but is also influenced by the
matrix disorder;~iv! the coexisting phases in the system ex-
hibit a high degree of spatial inhomogeneity and disorder;
and~v! there is evidence of an additional phase transition at
lower temperature associated with wetting or drying behav-
ior of the fluid in the more confined regions of the matrix.

Our results indicate that effects of confinement, wetting,
and matrix disorder are all important in the system. A suc-
cessful theoretical treatment must incorporate all these ef-
fects. We should note that the simple mean-field theory that
has recently been presented@7# predicts only the suppression
of the critical temperature and the lowering of the critical
density. The effects of wetting or drying and the second
phase transition are not predicted.

The picture of the coexisting phases in these systems as
inhomogeneous and disordered fluid states is quite different
from that associated with the traditional treatment of capil-
lary condensation. The wetting or drying effects are coupled
to the matrix disorder in a way that we do not believe can be
accounted for based on a pore size distribution model.

Although the present study has involved a large number
of Monte Carlo simulations for a quite large system~at least
in terms of the number of fluid particles!, our study is far
from exhaustive. There remain several questions for future

FIG. 14. Computer graphics visualization of a configuration of
the fluid in the composite sphere matrix witha50.5 near the satu-
rated vapor state at a temperaturekT/egg50.7.

FIG. 15. Adsorption isotherms for 12-6 fluid in a composite
sphere matrix witha50.5. The isotherms from left to right corre-
spond, respectively, to the temperatureskT/egg50.6, 0.65, 0.7, 0.8,
0.9, and 1.0. The solid lines are the calculated vapor-liquid equilib-
rium tie lines.

FIG. 16. Phase diagram for the 12-6 fluid in a composite sphere
matrix with a50.5. The solid circles are the saturated vapor and
liquid densities and the solid squares represent the coexistence den-
sities at the second transition. The solid line is the coexistence curve
for the bulk 12-6 fluid.
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work. Certainly it would be useful to investigate averages
over larger numbers of matrix configurations to see how sen-
sitive the phase diagram, especially with respect to the sec-
ond transition, would be to such averaging, even though at
this point we do not anticipate qualitative changes. Increas-
ing the number of matrix particles would also be of interest,
as well as varying the porosity and perhaps the connectivity
of the matrix.

Our system is not directly comparable to any of the sys-
tems where phase transitions of fluids in disordered materials
have been studied experimentally@2#. The closest experi-
mental system to that studied here would be adsorption of
methane in a silica xerogel@12#. However, the attractive
matrix-fluid interactions we have used in our calculations are
considerably weaker than for methane in silica xerogel. In
fact, calculations we have done for a system more closely
representative of methane in silica gel indicate that the at-
tractive matrix-fluid interactions create a field sufficiently
strong as to suppress all fluid phase transitions. Nevertheless,
we believe there is a case to be made for further studies of
fluids in xerogels at temperatures where phase transitions
might occur. Indeed there are already experimental data for

xenon in silica gel@21# that show the presence of hysteresis
loops in the adsorption isotherms indicative of capillary con-
densation. These hysteresis loops are similar to those ob-
served for xenon in porous glasses@22#. In the latter case the
hysteresis loops have been analyzed@22# using density-
functional theory for single pores together with models of the
microstructure that treat the system either as a distribution of
independent pores or as an interconnected network of pores.
Studies of molecular models like the present one may also
help clarify the hysteresis behavior in such systems.

Finally, the molecular models used here can also be stud-
ied using theories based on approximate closures to the rep-
lica Ornstein-Zernike equations@6,8,11#. It will be of consid-
erable interest to use our results to test the theoretical
predictions in the region of the phase transitions.
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