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We present a dynamic light scattering study on the sol-gel transition of a suspension of disk-shaped colloidal
particles in water. We obtain the static and fluctuating part of the scattered intensity, the fraction of frozen-in
density fluctuations, and the intermediate scattering function from a local time-averaged measurement of the
intensity correlation function and the scattered intensity. The sol-gel transition is marked by a drastic change in
the static part of the scattered intensity. The intermediate scattering function shows a stretching of the trans-
lational correlation time over more than five orders of magnitude. In the gel phase the function shows a
power-law decay, with a concentration dependent scaling exponent. Our results show strong similarities with
the scenarios given by the mode coupling theory of the structural glass transition.@S1063-651X~96!04212-2#

PACS number~s!: 82.70.Dd, 78.35.1c, 82.70.Gg, 64.70.Pf

I. INTRODUCTION

Structural relaxation in amorphous systems is an area of
much current interest. Many studies have been devoted to the
sol-gel transition in systems based on polymers@1–3#, natu-
ral gelatine@4#, and gels based on spherical colloids@5–7#.
Here we report on the sol-gel transition in a system of
chargeddiskswith an aspect ratio of 25, suspended in water.
In such systems the orientational degrees of freedom play a
crucial role not only in the dynamics but also in the static
structure of the gel. Molecular dynamics simulations on hard
disk systems reveal a rich phase diagram with nematic and
cubatic liquid crystalline phases@8#. However, before these
liquid crystalline phases can be formed the system enters a
glassy phase or gel. Current opinion favors the ‘‘house of
cards’’ structure for the gel@9#, which implies a random
structure with short range orientational order. On the average
the disks are oriented with their positively charged rim to-
wards the negatively charged base of their neighbor. Within
this view the orientational degrees of freedom will play a
crucial role in the formation of the gel.

Structure and dynamics in the neighborhood of the tran-
sition can be studied best by using the noninvasive technique
of light scattering, dynamic~DLS! and static. DLS probes
the density correlation function describing the time evolution
of the density fluctuations. The striking feature, largely
emerging from DLS measurements around the gel point
@4–6#, is the marked similarity of the behavior of the corre-
lation function with the scenarios given by the mode cou-
pling theory of Go¨tze for the structural glass transition in
molecular systems@10–13#. In the mode coupling scenarios
there are two characteristic algebraic relaxation processes: a
fasterb relaxation, followed by the slowera relaxation. The
relaxation processes are ‘‘stretched’’ towards longer and
longer time scales as the transition is approached. In the
glass or gel phase only theb relaxation remains, which is

observed as an algebraic decay towards a plateau value. This
plateau reflects the onset of structural arrest at the gel point,
which is observed as a pure elastic contribution to the scat-
tering, the equivalent of the Debye-Waller factor.

The relevant quantities to be measured are the two alge-
braic exponents governing thea and b relaxation, and the
fraction of frozen-in density fluctuations which is considered
the order parameter of the transition. However, an accurate
determination of these quantities by light scattering is far
from trivial @14#. One of the experimental difficulties en-
countered is elastic scattering in the gel phase. This static
scattering is observed as ‘‘speckle’’ and acts as a spatially
fluctuating intrinsic local oscillator. In the intensity correla-
tion function the temporal fluctuations beat to themselves
and to the intrinsic static scattering. The density correlation
function can be extracted from the intensity correlation func-
tion under several assumptions concerning the homogeneity
of the sample@15,16#. Secondly, correlation functions mea-
sured on gel-like systems exhibit a long-time tail. The inte-
gration time used in DLS must extend beyond the longest
relaxation time observed, but must be short with respect to
the gelation time.

For suspensions of disk-shaped particles called Laponite
@17# these conditions can be met and accurate correlation
functions can be measured over ten orders in time, as re-
ported here. After preparation the liquidlike suspension
evolves in time to form a space filling gel in about 50 h or
longer depending on the concentration. During that time we
performed DLS measurements and observed the behavior de-
scribed above, with time as control parameter instead of tem-
perature, density, or volume fraction. This is in contrast to
suspensions of spherical colloidal particles where the glass
transition was followed as a function of the volume fraction
@5,6#.

II. LAPONITE RD: PREPARATION
AND PARTICLE SIZING

Refined natural and synthetic hectorites and bentonites
find a wide industrial application as shear sensitive antiset-
tling agents in water based formulations. The synthetic hec-
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torite called Laponite@17# has a number of distinct advan-
tages over natural swelling clays in rheological applications.
It is a layered silicate which closely resembles the natural
clay mineral hectorite in both structure and composition. It
disperses much more easily in water to give colorless, trans-
parent, and highly thixotropic gels. Thixotropy is observed
as a fluidlike behavior of the gel when subjected to a shear
force above a threshold strength. Laponite is hydrothermally
synthesized from simple silicates and lithium and magne-
sium salts in the presence of mineralizing agents. It is then
filtered, washed, dried, and milled.

For our study we have used Laponite RD
~Si8@Mg5.5Li 0.4H4.0O24.0#

20.7Na0.7
0.7) of which the primary

particle is shown in Fig. 1~a! ~shape! and Fig. 1~b! ~struc-
ture!. Laponite and dust free demineralized water are slowly
mixed in a certain mass fraction (1.0–3.5 mass%! and
stirred for 2 h with a magnet stirrer. Laponite rapidly dis-
perses in water without heat or shear, which is observed by
the disappearance of turbidity. Surface attached ions dissolve
into the surrounding liquid. The resulting surface charge dis-
tribution remains fixed due to the particle crystal structure.
After 10 h the suspension is a charged-stabilized sol, where
the light scattering entity is a single Laponite particle@18#.
The suspension is filtered using 1mm filters ~Millipore!, and
poured in a quartz cuvette of 10 mm diameter. As time pro-
ceeds we observed the suspensions to show increased viscos-
ity when tumbling the original stock tubes. Finally the sus-
pension behaves as a macroscopically immobile space filling
structure which we call the gel. The gel does not flow or
adapt its shape when turned in the gravitational field. With
the concentrations used no phase separation is observed. The

suspensions remain colorless and transparent during gelation
and after.

We estimated the single particle dimensions by perform-
ing small angle x-ray scattering~SAXS! measurements at the
Daresbury Synchrotron Radiation Source on 1.0 mass % sus-
pensions of Laponite in water. These size estimates are ob-
tained by calculating the theoretical expression of the form
factor F(qW ,R,H) of a disk-shaped particle with diameter
2R and thickness 2H @19#.

In Fig. 2 we show a comparison ofF(qW ,R,H) with the
measured SAXS profile from which we estimate 2R525 nm
62.5 nm and 2H50.9 nm60.1 nm, with a polydispersity in
the diameter of 0.25. The deviation at small scattering vector
q is attributed to ordering effects because hereq21 is of the
same order of magnitude as the interparticle distance. These
observations confirm the estimates of Mourchidet al. @20#,
and the results of Avery and Ramsey@21#, who studied the
rheology of dilute Laponite suspensions.

III. EXPERIMENTAL SETUP

The light scattering setup is shown in Fig. 3. Our primary
light source is a cw Ar1 laser producing 25 mW at a wave-
lengthl5514.5 nm. The laser beam is focused in the sample
to a beam waist of 50mm. The scattered light is detected
with a photomultiplier under a fixed scattering angle of 90°
in VV polarization.~VV denotes detection of the scattered
light with the same polarization as the vertically polarized
incoming beam.! The coherence factorC50.98, measured
on a dilute sample of latex microspheres, whereC21 is the
number of speckle spots observed by the detector@22#. The
gelation is followed using a gated counter for time-resolved
measurements of the scattered intensity, and an ALV-5000
digital correlator@23# for DLS measurements. Each measure-
ment is performed at a randomly chosen position in the
sample. To obtain the sample scattered intensity distribution,
the sample is slowly~8 mm/s! translated vertically over a
distance of 5 mm through the laser beam with a motorized
setup, while measuring the scattered intensity.

The progress of the gelation is denoted by the timeT

FIG. 1. ~a! The disklike shape of the primary Laponite RD par-
ticle, and~b! the structure of the primary Laponite particle, as seen
from aside ~facing the rim!. The surface charge distribution as
shown in ~a! results from the dissolving of surface attached ions
~Na, Ca, Mg! into the surrounding liquid. The distribution is fixed
due to the crystalline structure of the particle. The legend on the
right in ~b! displays the elements present in this structure in a hori-
zontal fashion.

FIG. 2. Comparison of the theoretical form factorF(qW ,R,H)
~solid line! for a disk-shaped particle with the small angle x-ray
scattering profile as measured on a diluted (1.0 mass %! Laponite
suspension in water~diamonds!. From this comparison we estimate
the particle diameter and thickness to be 2R525 nm62.5 nm and
2H50.9 nm60.1 nm, respectively.
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whereT starts directly after sample preparation. The gelation
time Tg is typically of the order of 50 h. We uset and t to
denote time variables associated with the decay of density
fluctuations as observed in dynamical measurements. The in-
tegration over timet of the time-averaged quantities is con-
tinuously increased over the gelation process to efficiently
capture the complete spectrum~all time scales! of the fluc-
tuations, and is roughly adjusted to five times the longest
correlation time observed in the intensity correlation func-
tion. In the gel this is typically 2–4 h. The time scalet, the
time difference argument in the correlation functions, ranges
from 1026 to 1013 s.

IV. DYNAMIC LIGHT SCATTERING

In recent years DLS has been applied to systems like col-
loidal glasses, polymer gels, and clay suspensions. In these
systems the local time-averaged properties were observed
not to be equal to the sample-averaged properties. The par-
ticles in the gel structures are thought to be localized near a
fixed time-averaged position around which only small ampli-
tude motions can be executed@15#. The field amplitude
E(t) as scattered by the medium undergoing density fluctua-
tions can be written

E~ t !5Ef~ t !1Ec, ~1!

where the zero-mean complex variableEf(t) is due to the
remaining but restricted particle motion. The static partEc is
scattered off the frozen-in density fluctuations. In the sol
phase of the sample this part is absent because here the par-
ticle motion is diffusive.

The observed quantity in our scattering experiment is the
intensity, defined asI (t)[E(t)*E(t). The static scattering
I c[(Ec)*Ec can be found from the time-averaged first and
second moment of the intensity distribution@24#. Using Eq.
~1! and assuming a Gaussian distribution forEf(t), one finds

^I ~ t !&5^I f~ t !&1I c, ~2!

^I ~ t !2&52^I ~ t !&22~ I c!2, ~3!

where^ & denotes an average over timet, typically during 2
h. The quantitŷ I f(t)&[^@Ef(t)#*Ef(t)& denotes the time-
averaged fluctuating intensity. For a ‘‘fluidlike’’ sample
where the static scattering is absent, one finds^I (t)&
5^I f(t)& and^I (t)2&52^I (t)&2. With Eq. ~2! and Eq.~3! we
can obtainI c and ^I f(t)& by

I c5@2^I ~ t !&22^I ~ t !2&#1/2, ~4!

^I f~ t !&5^I ~ t !&2I c. ~5!

A single DLS measurement provides an estimate of the
time-averaged intensity correlation functiong(t), defined as

g~t![^I ~ t !I ~ t1t!&/^I ~ t !&2. ~6!

For sufficiently long delay timest the system has evolved to
a state which is completely uncorrelated with its initial state
so thatg(t→`)51. At the shortest delay timesg(t↓0)
equals the normalized second moment of the scattered inten-
sity. With Ec acting as the intrinsic local oscillator one finds
@16#

g~t!511x2h~t!212x~12x!h~t!. ~7!

Herex[^I f(t)&/^I (t)&. The functionh(t) is the correlation
function associated with the fluctuating field component and
is defined as

h~t![^@Ef~ t !#*Ef~ t1t!&/^I f~ t !&. ~8!

Solving Eq.~7! for h(t) results in

h~t!511x21$@g~t!2g~0!11#1/221%. ~9!

In the next section we will experimentally show that the
local time-averaged quantities^I f(t)&, I c, andh(t) are the
relevant quantities with which to describe the sol-gel transi-
tion. We will also show that̂ I f(t)& and h(t) are equal to
their sample-averaged values. The experimental verification
of the homogeneity of the samples for the dynamic proper-
ties is an essential condition for both the method presented
here and the method presented in@15#.

V. RESULTS

A. Results for a 3.0 mass % sample

In Sec. V B we will discuss results obtained with several
concentrations ranging from 2.2 to 3.5 mass %. As an ex-
ample we will here limit the discussion to the results ob-
tained with the 3.0 mass % sample. In Fig. 4 we show the
normalized second moment^I (t)2&/^I (t)&2 of the scattered
intensity I (t) as a function of timeT after sample prepara-
tion. At early times the second moment is nearly equal to the
ideal value of 2 for a ‘‘fluidlike’’ sample, which shows that
the particles are performing ‘‘free’’ Brownian motion. Each
data point in Fig. 4 is measured at a different location in the
sample.

At a timeTg the smooth behavior changes abruptly into a
wide scatter of values. We take this point as the definition of
the gelation time. The wide scatter in values stems from the
appearance of a speckle pattern, which is the Fourier image
of the intrinsic structure of the illuminated sample. The

FIG. 3. Plot of the experimental setup. The electronic connec-
tions are drawn as curved lines. The optical setup contains several
diaphragms (D) defining the beam path, a focusing lens (L), a
polarizer (P) which defines the polarization of the incoming light
beam, a beam dump (B), and the sample container (S) which con-
tains the sample cuvette in a refractive-index matching bath. The
analyzing polarizer is mounted on the detector head~PMT!. The
sample cuvette~inner circle of S! can be translated vertically
through the laser beam with a motorized setup.
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speckle pattern will change when we illuminate the sample
under a different angle or at a different position, since the
coherence area is of the order of the width of a speckle spot.
The scatter in measured intensities will be of the same order
as its average.

BeyondTg we observe the second moment to be lower
than its value of 1.96 as observed in the sol phase. If we now
separate the fluctuating and static intensity according to Eq.
~4! and Eq.~5! this indicates the presence of a static intensity
I c. In Fig. 5 we show as a function of timeT, the static
intensity I c, and the time-averaged fluctuating intensity
^I f(t)& obtained with Eq.~4! and Eq. ~5!. The value of
C50.96 causes theI c to be nonzero in the sol phase. Beyond
the timeTg the smooth behavior ofI c changes to a wide
scatter of values, which explains the behavior of the second
moment as shown in Fig. 4. It also shows the position de-
pendence of the local oscillator. The results point to the ex-
istence of an immobile space filling structure beyond a now
well definedTg . The fast decrease of^I f(t)& just after prepa-
ration is assigned to a remnant of the dissolving process of
particle clusters into the homogeneous suspension@18#. By
eye it is observed as a fading of the initially opaque appear-

ance. Thê I f(t)& remains a smoothly decreasing function of
time T, although each data point reflects a measurement at a
different location in the sample.

In Fig. 6 we show the distribution of the scattered inten-
sity measured early in the gelation process with a gate time
of 10ms. The initial upsurge of the distribution and the small
horizontal offset are caused by integration over the fastest
fluctuations during the gate time. As is clearly seen, we ob-
serve a single exponential distribution which is fully attrib-
uted to the fluctuating intensity only, because here the sec-
ond moment is nearly equal to 2. These observations confirm
the Gaussian and position independent character ofEf(t),
which is assumed to be the case when deriving Eq.~3!. The
spatial fluctuations in the static intensity~speckle! are uncor-
related with the temporal fluctuations. This observation pro-
vides the experimental evidence for the homogeneity of the
gel samples for the dynamical properties.

Formally the fraction of frozen-in density fluctuations
f (`) is defined as the spatially or sample-averaged static
intensity normalized to the sample-averaged intensity,

f ~`![^I c&s /Š^I ~ t !&‹s . ~10!

It is equivalent to the well known Debye-Waller factor,
which is considered as the order parameter of the sol-gel
transition followed. The^&s denotes an average over the
sample. Here we only obtainŠ^I (t)&‹s by slow vertical trans-
lation of the sample while measuring the scattered intensity
with the gated counter. The numerator of Eq.~10! can be
rewritten using the observed position independent character
of the time-averaged and locally measured^I f(t)&. Taking
^I f(t)&5Š^I f(t)&‹s , as shown in Fig. 5, we find

f ~`!512^I f~ t !&/Š^I ~ t !&‹s . ~11!

In Fig. 7 we showf (`) andŠ^I (t)&‹s versus the timeT after
preparation. Each data point results from an average over the
sample. Comparing Fig. 7 with Fig. 5 we observeŠ^I (t)&‹s
and^I f(t)& to show the same dependence on timeT at early
times. The fast decrease ofŠ^I (t)&‹s just after preparation is
again assigned to a remnant of the dissolving process. Be-
yondTg the Š^I (t)&‹s shows minor fluctuations between suc-

FIG. 4. The time-averaged normalized second moment
^I (t)2&/^I (t)&2 of the scattered intensityI (t) as a function of time
T after sample preparation. Each point represents an average taken
at a different location in the sample. Beyond the dashed line we
observe the second moment to abruptly change to a wide scatter of
values. This defines the gel pointTg5100 h for this sample.

FIG. 5. The fluctuating intensitŷI f(t)& ~squares! and the static
intensityI c ~circles!, versus the timeT after sample preparation for
the 3.0 mass % sample. Note the abrupt change inI c at the gel point
Tg . In this paper we express intensities in terms of the detector
count rate~in kHz!.

FIG. 6. DistributionP(I ) ~dots! of the scattered intensityI (t)
measured early in the gelation process (T/Tg50.1) in the 3.0
mass % sample with a gate time of 10ms. The dashed line repre-
sents a single exponential fit to the distribution given by
Aexp(2I/^I&) whereA53049, and^I &511.03. It fully represents
the fluctuating intensity distribution.
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cessive measurements. Here the^I f(t)& and f (`) show the
same, though mirrored dependence on the timeT, which is
explained by Eq.~11!. In these soft solids it is questionable
whether the structure will ever come to full arrest. On time
scales an order of magnitude longer than the gelation time,
^I f(t)& and f (`) have changed minute amounts. They seem
to approach values different from 0 and 1, respectively. Just
as for glasses, on realistic time scales the gel is considered
locally in equilibrium. The remaining temporal fluctuations
then originate from intrinsic, collective fluctuations of the gel
network.

In Fig. 8 we show an example of the spatial fluctuations in
the scattered intensity measured as a function ofz, the rela-
tive position in the sample, at a timeT early~a! and well into
the gel phase~b!. The counter is gated with a 1 ms integra-
tion time. A large part of the temporal fluctuations are inte-
grated over, which results in the offset of the trace in Fig.
8~a!. In the gel phase the scattered intensity is dominated by
the static partI c. The scattered intensity pattern as shown in
Fig. 8~b! is almost fixed and reproducible. On the walls sur-
rounding the setup it is observed as ‘‘speckle.’’ In Fig. 9 we
show the distribution of the scattered intensity as shown in
Fig. 8, early~a! and well into the gel phase~b!. The distri-
bution is a single exponential function during the entire ge-
lation process, which shows that a sufficient amount of inde-
pendent scattering volume locations have been visited.

In Fig. 10 we show a typical series of correlation func-
tions h(t) as extracted with Eq.~9! from g(t) measured at
different locations in the sample during the gelation process.
Theh(t) as obtained from measurements on dilute Laponite
suspensions consist of a translational and one rotational ex-
ponential, because of the disklike shape and cylinder sym-
metry of the primary particles@22#. For the longest relax-
ation time we observed aq2 dependence, whereq is the
scattering vector, and is thus designated as translational dif-
fusion. The faster relaxation time showed noq2 dependence
and is designated as rotational diffusion. This was verified by
measurements on dilute suspensions underVV andVH po-
larization as a function of the scattering angle. At early times
T the intensity scattered on the suspension consists predomi-
nantly of a fluctuating term as shown in Fig. 5. Then the ratio
x51 and Eq.~7! reduces to the Siegert relation@22#. As the

gelation proceeds we observe the short-time behavior of
h(t), designated as the rotational diffusion, to be unchanged
as verified with cumulant analysis. Apparently the particles
in the network formed are allowed to perform free rotational
motion around at least one axis. The translational exponen-
tial ~long-time behavior! shows a stretching over more than
five orders in time as the gelation proceeds, until finally the
h(t) shows a power-law decayt2a. BeyondTg we hardly
observe changes inh(t), although the Laponite system is
known to show aging effects@21#. In Fig. 11 we show
h(t) measured atT/Tg51.7. Preceded by the unaltered ro-
tational component, we observe a pronounced power-law de-
cay over more than five orders in timet with a scaling ex-
ponent ofa50.1460.03.

Beyond the timeTg defined as the transition point, the
shape ofg(t) shows a strong dependence on the position of
measurement in the sample, which is explained by the pres-
ence of the position dependent static scattering and described
by Eq. ~3! and Eq.~7!. The locally obtainedh(t) show ab-
solutely no position dependence, which is explained by the
position independent character ofEf(t). Hence the locally
obtained and time-averagedh(t) represents the sample-
averaged valuêh(t)&s . Under these conditions Pusey and
van Megen@15# already pointed out that one can express the
locally obtained and time-averagedh(t) in terms of the
~sample-averaged! intermediate scattering functionf (t). The
latter is defined as

FIG. 7. The sample-averaged intensityŠ^I (t)&‹s ~squares! and
the fraction of frozen-in density fluctuationsf (`) ~circles! versus
the time T. The dashed line represents the functionf (`)

5 f c(qW )1A@(T2Tg)/Tg#
w where f c(qW )50.15, A50.55, and

w50.18 ~see Sec. VI for explanation!.

FIG. 8. The scattered intensityI (z) measured as a function of
the positionz of the scattering volumev in the 3.0 mass % sample
early in the gelation@~a! T/Tg50.1# and far beyondTg @~b!
T/Tg51.8#. The speckle pattern in~b! is accurately and reproduc-
ibly resolved because of the slow scanning speed of 8mm/s and 1
ms gate time.
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f ~t![Š^E~ t !E~ t1t!&‹s /Š^I ~ t !&‹s . ~12!

Application of Eq.~1! to Eq. ~12! with Eq. ~8! yields

h~t!5
y

x
@ f ~t!2 f ~`!#. ~13!

Here y[Š^I (t)&‹s /^I (t)& compares the local scattering
strength to the sample-averaged scattering strength. With
these definitionsx5@12 f (`)#y.

A scaling observed inh(t) as extracted from a local ob-
servation ofg(t) will also be observed inf (t)2 f (`). In
order to accurately determine the scaling exponent one has to
estimate the valuef (`) with an accuracy of at least 1022.
Otherwise,f (t)2 f (`) can take any desired shape to match
to theoretical predictions. In Fig. 12 we showf (t)2 f (`) as
extracted from severalg(t) measured at different locations
z in the 2.2 mass % gel with Eq.~9! and Eq.~13!. The local
oscillator strength is expressed in terms ofy. To bring the
five depicted functions to overlap over the entire time win-
dow, the value off (`) has to be manipulated over more than
3%, which due the double logarithmic scale implies no over-
lap at all when a fixed estimate off (`) is used.

The accuracy of the sample averaging is hampered by the
available spatial range and the finite-time window of averag-
ing against the stability of the setup. Gel-like systems show
fluctuations on all time scales and therefore require local
averaging times of hours. Approaching the gel point, the
intrinsic nonstationarity of the continuously evolving particle
system limits the available averaging time to the integration

FIG. 9. DistributionP(I ) ~dots! of the scattered intensityI (z) as
shown in Fig. 8. The dashed lines represent a single exponential fit
Aexp(2I/^I&) with ~a! A53760 and̂ I &58.80, and~b! A54870 and
^I &59.89. The observation of a single exponential distribution en-
sured a sufficient sampling of independent scattering volume loca-
tions.

FIG. 10. Typical series of the correlation functionh(t) as cal-
culated from the measured time-averaged intensity correlation func-
tion g(t) during the gelation of the 3.0 mass % sample. The legend
shows the symbols relating the timeT to the measured functions.

FIG. 11. The correlation functionh(t) as calculated from
g(t) measured atT/Tg51.7 in the 3.0 mass % sample. Preceded by
the unaltered rotational component, theh(t) shows a pronounced
power-law decayt2a over more than five orders in timet with a
scaling exponent ofa50.1460.03.

FIG. 12. The sample-averaged intermediate scattering function
f (t) minus the fraction of frozen-in density fluctuationsf (`), as
extracted from severalg(t) measured at different locationsz in the
2.2 mass % gel atT/Tg52.4. Note that there area five functions
brought to overlap over the entire time window, where the inaccu-
racy in f (`) allows adjustment to obtain optimal overlap. The
variation of the local oscillator strength with positionz is expressed
in term of y.
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time used when evaluating local time-averaged properties.
Estimating sample-averaged properties with the required ac-
curacy on slowly evolving particle systems is therefore dif-
ficult. The method we used here requires no such sample
averaging. Apart from the accuracy in the measuredg(t),
the accuracy in determiningh(t) from g(t) is given only by
the accuracy in the ratiox. This actually is the precision in
the measurement of the second moment^I (t)2&/^I (t)&2 from
which the ratiox is calculated. Because the second moment
is integrated simultaneously withg(t) over at least multiples
of the typical correlation time, it will be as accurate as pos-
sible to provide us withx.

The method we used here assures the highest accuracy
possible in the relevant quantities describing the sol-gel tran-
sition.

B. Results for various concentrations

We have also followed the gelation of Laponite suspen-
sions in water at different concentrations or mass fractions
rm . Beforehand it was observed that suspensions with a
higher mass fraction showed solidification much more rap-
idly, and one could wonder whether the development of the
gelation as set out in Sec. V depends on the specific mass
fraction used. The limiting factor in obtaining samples at
high concentrations is the inability to fully suspend all clus-
ters of particles before the system shows the phenomenologi-
cal observation of gelation. The remaining clusters cannot be
broken down by forceful stirring. Samples with a concentra-
tion lower than 2.0 mass % show a gelation timeTg larger
than 2000 h. We therefore limited the study to concentrations
in between 2.2 and 3.5 mass %.

The observed behavior ofh(t), the fluctuating intensity
^I f(t)&, and the static intensityI c over the gelation at several
concentrations are not different from the results as shown in
Fig. 5 and Fig. 10. In all concentrations the^I f(t)& shows a
smooth decrease whereas theI c shows a transition to a wide
scatter of values beyond a certain timeTg . TheTg shows a
nearly exponential dependence on the concentrationrm , as
shown in Fig. 13.

This would suggest that the Laponite system does not
have a critical concentrationrc below which gelation would
no longer occur, as argumented by Mourchidet al. @20#. Fur-

thermore, a stock suspension of 1.0 mass % showed a gel
structure after standing alone for at least a year, while no
indication for phase separation or density gradients could be
found. Therefore therc is assumed to be small, at least
smaller than 0.5 mass %. The scaling exponent ofh(t) as
measured well in the gel phase reveals a surprising and
nearly linear dependence on the concentration, as shown in
Fig. 14. At higher concentrations the average interparticle
distance decreases, thus the interaction strength between par-
ticles increases and the gel structure formed is observed to be
more rigid. A fluctuating mode is less subject to disturbing
thermal fluctuations and shows a less rapid decay of the scal-
ing time correlation.

VI. PREDICTIONS OF MODE COUPLING THEORY

In the past decade the mode coupling theory~MCT! has
developed several scenarios for the glass transition. Master
curves for thef (qW ,t) have been derived, and have been self-
consistently calculated for a system of hard spheres@10#. The
theory identifies two relaxation processes for glassy systems
beyond the region of microscopic motion:a and b relax-
ation. Close to the glass transition these relaxations span
over ten orders in time with well separated time scalesta
and tb . The scaling of these time scales with the control
parametere is different for the two processes, yet intercon-
nected in the theory. The control parametere that records the
distance to the transition point is defined ase5(x2xg)/xg
wherex is taken as the density, temperature, or volume frac-
tion andxg its value at the transition. If we take forx the
timeT, the experimental results show strong similarities with
the structural glass transition.

Prior to the glass transition the master curve forf (qW ,t)
shows a two step decay. First an algebraic decay towards a
plateau,b relaxation, followed by the slowera relaxation.
Approaching the transition the time window widens until it is
stretched to infinity at the transition. After the transition in
the gel or glass phase only theb relaxation remains. The
f (qW ,t) function decays to a plateau, whose value is given by
the structure factor at the relevant wave vector and increases
as the square root of the distance from the transition point
@5,10#. The plateau value is also referred to as the nonergod-

FIG. 13. The gelation timeTg as a function of the mass
fraction rm of Laponite in the suspensions investigated. The
dashed line represents a single exponential fit according toTg
;exp(22.83rm).

FIG. 14. The scaling exponenta of h(t) as a function of the
mass fractionrm of Laponite in the suspensions investigated. The
scaling exponents and error margins are extracted from a power-law
fit to h(t);t2a in the gel phase of each sample. The exponenta
shows a nearly linear relation withrm .
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icity parameter or Debye-Waller factor, and is considered as
the order parameter for the transition. Close to the transition
the mode coupling theory gives the explicit form off (qW ,t)
and its scaling behavior. The prevailing scenario for the glass
transition gives the following form for the master curve, the
relevant algebraic exponents, and their relations:

f ~qW ,t!5 f ~qW ,`!1s~qW !ceg6~t/te!, ~14!

where f (qW ,`) represents the fraction of the structure that is
arrested at the transition point (e50). The amplitude of the
b process iss(qW )ce , with ce5ueu1/2, and c0 is a material
dependent constant. The scaling timete diverges with a
power of ueu depending on the process. For theb relaxation
the scaling goes astb5t0ueu21/2a. For thea process the
characteristic time goes as ta5t0ueu2g where
g51/2a11/2b. Theg6 function is the master function de-
pending on the rescaled timet/te only. The subscript6
indicates the sign of the control parametere. The explicit
expressions are

g2~t!5~1/ta!2A1t
a1A2t

3a1•••, ta@t@t0

g2~t!52Btb1~B1 /B!/tb1•••, ta@t@tb ~15!

whereB.0. The nonuniversal exponentsa and b, whose
values lie in the range of 0,a,1/2 and 0,b,1, are speci-
fied by the exponent parameterl @10#. The exponents are
related by the following transcendental equation:

G2~11b!/G~112b!5l5G2~12a!/G~122a!. ~16!

The plateau value to which the correlation function decays in
the gel phase and which gives the fraction of frozen-in den-
sity fluctuationsf e(e,qW ) is predicted to obey@13#

f e~e,qW !5 f c~qW !1H h~qW !Ae1O~e!, e.0

O~e!, e,0.
~17!

On the macroscopic time scalet.ta the dynamics on the
fluid side of the transition are governed by thea process. In
the glass phase thea process is completely arrested but the
b process persists and saturates at long times.

The master functiong6 is a function of the rescaled time
t/te wherete diverges with a power ofe depending on the
process. As the gelation proceeds towards the gel pointTg ,
i.e., e approaches zero, the master function preserves its
mathematical shape as described by Eq.~15!. A practical
approach to study the scaling divergence of the slowera
relaxation is to follow a certain correlation level ofh(t) as
the gelation proceeds. Basically we draw a horizontal line in
Fig. 10 and follow the interception timet inter of this level
with h(t). In Fig. 15 we plott inter versus2e. Clearly a
scalingt inter;ueuj is present at the chosen correlation levels
although the scaling exponentj ranges fromj524.6 for the
level h(t)50.3, to j526.3 for the interception with
h(t)50.03.

A second practical approach which is widely used to de-
scribe the development ofh(t) is the empirical Kohlrausch
function or stretched exponentialF(t) @5,25#,

F~t!5Aexp@2~t/tz!
n#. ~18!

For certain values of the exponentsa andb it is stated that
this function accurately describes the master function for the
a process. For the hard sphere system the master functions
have been calculated numerically@26# and it was found that
they could be well parametrized by the Kohlrausch function.
In Fig. 10 we showed a typical series of correlation functions
h(t) as measured during the gelation of the 3.0 mass %
sample. As it turned out we were able to match these func-
tions to the empirical Kohlrausch function at timesT prior to
the gel pointTg , as we show in Fig. 16. The short-time
decay ofh(t) is excluded from the fitting procedure since
this part is attributed to the particle rotation. In Fig. 17 we
show the typical relaxation timetz and scaling parametern
versus2e. Thetz reveals a scaling relation with2e, accord-
ing to tz5ueu24.05. However, then parameter could not be
held constant and must be continuously and significantly al-
tered in the vicinity of the gel pointTg . The amplitudeA of
the Kohlrausch function shows a wide scatter of values
which is completely uncorrelated withT or e. Therefore we
doubt the applicability of the Kohlrausch function to our
data.

FIG. 15. The interception timet inter of h(t) with severallevels
of correlation, as a function of (Tg2T)/Tg , whereTg5100 h. The
legend shows the correlationlevel at which the interception was
followed. The straight lines drawn are power-law fits to the data of
which the scaling exponent ranges from24.6 @solid line,
h(t)50.3# to 26.3 @dashed line,h(t)50.03#.

FIG. 16. Matching the empirical Kohlrausch function to the
h(t) functions as shown in Fig. 10. The solid lines are the fits. The
legend shows the symbols related to the timeT. Note the scatter of
amplitudes at short timest.
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In the gel phase the MCT master function given by Eq.
~15! is easily matched to theh(t) function when we only
take into account the first term of the series expansion. The
scaling exponenta of h(t) then equalsa50.14060.03, and
we find a valuel50.96060.002 andb50.17660.005. For
the scaling exponent of theb anda relaxation we then find
1/2a53.5860.07, andg51/2a11/2b56.4260.16, re-
spectively. Evaluation oft inter at the higher correlation levels
is dominated by the presence of theb relaxation process,
while lower levels are likely to be influenced by stability and
accuracy. The scaling exponent oftz as used in the Kohl-
rausch function approaches the prediction for theb relax-
ation time scale best although this estimate is strongly inter-
connected with the continuously adjustedn parameter. We
therefore conclude that neither practical approach is rigorous
in predicting the correct scaling behavior of the diverging
time scales.

Finally we tried to match the prediction of MCT on the
behavior of the fraction of frozen-in density fluctuations with
f (`) as presented in Fig. 7. As it turned out we were not
able to matchf (`) with the prediction in the form of Eq.
~17!. From a power-law fit tof (`)2 f c(qW ) versuse we ob-
served an exponent ranging from 0.12 to 0.19 for values of
f c(qW ) ranging from 0.1 to 0.2. The dashed line in Fig. 7
represents the functionf (`)5 f c(qW )1A@(T2Tg)/Tg#

w

whereA50.55, f c(qW )50.15, andw50.15. The smearing of
the cusp in the actual measured value off (`) is a discrep-
ancy between theory and the experiment, already pointed out
by Li et al. @13# and by Go¨tze in@27#. We therefore conclude
that our observations are not quantitatively described by the
MCT in its idealized form. Theh(t) functions as measured
in the ‘‘fluid’’ region only show qualitative agreement with
the predicted behavior.

VII. DISCUSSION

In our study we followed the transition of disklike colloi-
dal system from a well defined ‘‘liquid’’ state~sol! to a
‘‘glassy’’ or gel state. No phase separation is observed to
occur for the concentrations considered. A space filling gel

network is formed. The gelation times varied between 50 h
to well over a few weeks depending on the concentration.
These times are long enough to measure accurate correlation
functions during the gelation process, which reveal the me-
soscopic dynamics of the system at that specific time point in
the gelation process. The correlation functions measured just
after the dissolution of Laponite is complete reveal a double
exponential shape. These measurements show single Lapo-
nite particles undergoing rotational and translational diffu-
sion in a viscous liquid. The moment analysis of the spatial
and temporal intensity distributions indicates that this sol
evolves into a homogeneous gel. We do not observe the pres-
ence of any clusters of particles larger than the single scat-
tering entity.

When the gelation proceeds the faster rotational part re-
mains invariant, while the translational part slows down and
becomes independent of the wave vector. Then at least a part
of the rotational degrees of freedom is preserved to the single
particles even in the gel network. This remaining degree of
freedom allows the particles to reorder continuously, and the
system to evolve into a more glassy state. Even after the gel
has formed the process may continue, albeit at a very much
slower pace. Experimentally this is observed in the slow de-
crease of the algebraic exponent after the gelation timeTg .
Thus prior to the sol-gel transition the Laponite system can
always be found in some sort of quasiequilibrium state where
no frustration is present and then it evolves into the glassy
phase.

The physical picture emerging from the correlation func-
tions is a fast local rearrangement of particles followed by
the slower collective rearrangement over larger and larger
distances. This physical picture and the qualitative features
of the correlation functions match rather well with the pre-
dictions of mode coupling theory. However, a quantitative
description or even a qualitative test of the theory remains
out of reach. The difficulty encountered in comparing corre-
lation functions with the predictions of mode coupling theory
is the number of free parameters involved in the fitting pro-
cedure. For example, it is not possible to test the intercon-
nection of thea andb relaxation. We used mode coupling
theory in a pragmatic way as the best phenomenological
theory at present in which to present the results. Martin and
Wilcoxon @7# proposed a model for the gelation of a polymer
gel, which basically considers the gelation as a diffusion lim-
ited aggregation process. The stretched exponential function
which is then used just does not match our data properly. If
one considers an approximate fit enough, the exponents are
not constant or relaxation times and amplitudes behave un-
physically and inconsistently with the moment analysis. The
outcome of the process we sketched is a very fragile glass,
where orientational order and/or disorder plays an important
part. Preliminary depolarized light scattering and SAXS
measurements point that way. There is also evidence from
molecular dynamics and Monte Carlo simulations. The tran-
sition from an isotropic to a nematic phase is not far off.

Recently an extensive numerical study on a model de-
scribing the formation of gels by the Laponite system has
been published by Dijkstraet al. @28#. When Laponite par-
ticles are suspended in water they obtain a negative surface
charge and a positive rim charge due to the dissolving of
charge balancing ions from the surface of the particles. The

FIG. 17. The time parametertz ~circles! and scaling parameter
n ~squares! of the empirical Kohlrausch function as a function of
the reduced time (Tg2T)/Tg , for the functions shown as solid
lines in Fig. 16. The dashed curve represents a power-law fit totz
according totz5Ku(Tg2T)/Tgu2f with f54.05,K5631024 s,
whereTg5100 h.
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particle interaction is modeled by assigning a quadrupole
moment to each of the particles and calculating the orienta-
tion dependent interaction. Their results showed a strong de-
pendence on the strength parameter. The symmetry of the
interaction used showed a preference for the final structure of
the system of many particles to be built up of cubic and
triangular building blocks. Although an interesting view on
the Laponite particles is presented, the interaction used does
not cover the possible complexity of the interaction when the
orientation of neighboring particles affects their surface
charge distribution or ion cloud structure.

VIII. CONCLUSIONS

We have presented a dynamic light scattering study on the
sol-gel transition of a suspension of disk-shaped colloidal
particles in water. The measurement of the static part of the
scattering combined with the DLS results shows the slowing
down of the dynamics of a homogeneous sol untilTg , when
a slowly, collectively relaxing network gives rise to the ob-
served speckle pattern. BeyondTg the sample becomes a
space filling macroscopically immobile structure. Provided
the gelation process is slow and the dynamics independent of

position in the sample we can derive the true intermediate
scattering function from the DLS measurements. From the
analysis of the static scattering and the dynamic light scat-
tering results we qualitatively observe many of the charac-
teristics of the glass transition; an algebraic decay in the gel
phase, a stretching of the long-time cutoff, and a smeared
cusp in f (`). Of course, all these quantities make up form
and behavior of the intermediate scattering function during
the gelation process. However, in the framework of the mode
coupling theory we need a multiparameter master function to
derive the desired parameters quantitatively. Choice of this
function and value of the parameters derived necessarily
carry the bias of the user. Even then the results cannot decide
between pureb relaxation or the combineda-b relaxation
scenario of Go¨tze.
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