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A model is presented of a particle that interacts with two periodic potentials, representing two confining
plates, one of which is externally driven. The model leads to a spectrum of rich behaviors in the motion of the
top driven plate: a stick-slip, intermittent kinetic regime, characterized by force fluctuations, and two types of
sliding above a critical driving velocityvc . Similar behaviors are typical of a broad range of systems including
thin sheared liquids. A detailed analysis of the different regimes displays an interesting transition range
between stick-slip and kinetic motion,v22 power spectra of the force over a wide range of velocities below
vc , and a decrease of the force fluctuations that follows (vc2v)1/2 for v,vc . The velocity-dependent
Liapunov exponents demonstrate that stick-slip dynamics is characterized by chaotic behavior of the top plate
and the embedded particle. An equation is derived that provides a coarse-grained description of the plate
motion nearvc . @S1063-651X~96!01511-5#

PACS number~s!: 68.15.1e, 46.30.Pa, 05.45.1b, 05.40.1j

I. INTRODUCTION

Stick-slip behavior has been observed in a variety of
driven dissipative systems, such as charge- and spin-density
waves@1#, granular materials@2#, earthquake faults@3#, and
systems of dry@4–7# and lubricated friction@8–11#. Stick-
slip behavior has been also obtained in direct molecular-
dynamical simulations@12–14#. Both experiments and
theory show that stick-slip motion is accompanied by phe-
nomena such as intermittent stick-slip, sliding, and force
fluctuations. Sheared liquids confined between two atomi-
cally smooth parallel solid surfaces provide a good example
where such a spectrum of behaviors can be observed in ex-
periments@8,9# and in computer simulations@12–14#. Differ-
ent models have been proposed to account for this type of
motion in confined liquids including spring-block models@3#
and chain or layer motion on a substrate@15,16#.

In spite of growing interest, there is still relatively little
understanding of the generic features of stick-slip dynamics.
The origin of stick-slip motion and its related phenomena
remains therefore still under some debate. For example, in
the case of molecularly thin liquid films, molecular-
dynamics simulations@12–14# suggest that a first-order
phase transition between solidlike and liquidlike phases is
responsible for the stick-slip behavior. A phenomenological
model describing shear-induced melting during the transition
from stick to slip has been considered recently@17,18#. In
another example, of dry friction measurements@5#, erratic
stick-slip motion is claimed to be a manifestation of self-
organized criticality@19#, a concept that has been applied
recently in the context of friction~see@20# for review!.

In this paper we investigate a model of a single particle
that interacts with two corrugated plates, one of which is

externally driven@21#. This simple minimalistic model does
not show self-organized criticality or any phase transitions,
but still manifests typical features of dry and lubricated fric-
tional dynamics. Unlike previous models such as the
Burridge-Knopoff model@3#, train models @22#, and the
Frenkel-Kontorova-Tomlinson model@20,23# in our model
we introduce a driving force on the top plate that mimics
experimental conditions. The use of a single-particle model
allows a detailed study of the system dynamics, which is
more difficult within the frameworks of realistic models.

The present paper is organized as follows. In Sec. II we
define the model and introduce the equations of motion. Sec-
tion III presents results of numerical calculations. Different
dynamical regimes are discussed and the transitions between
them are analyzed. In Sec. IV we introduce an approximate
description of the system’s dynamics based on separation of
‘‘slow’’ and ‘‘fast’’ motions. Section V summarize our re-
sults. In Appendix A we describe an algorithm for the cal-
culation of the Liapunov exponents. In Appendix B equa-
tions describing the motion of the top plate averaged over
fast oscillations are derived and solved. Appendix C presents
a stability analysis of the regimes of motion.

II. THE MODEL

Consider a one-dimensional model that includes two rigid
plates and a single particle of massm embedded between
them. The interaction between the particle and each of the
plates is described by a periodic potentialU(x). There is no
direct interaction between the plates. The top plate of mass
M is pulled by a linear spring with force constantK con-
nected to a stage that moves with a velocityv ~see Fig. 1 for
a sketch of the model!.

The coupled equations of motion for the top plate and the
particle are
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MẌ1h~Ẋ2 ẋ!1K~X2Vt !1
]U~x2X!

]X
50, ~1a!

mẍ1h ẋ1h~ ẋ2Ẋ!1
]U~x!

]x
1

]U~x2X!

]x
50, ~1b!

wherex andX are the coordinates of particle and the top
plate, respectively. The second term in Eq.~1a! and the sec-
ond and the third terms in Eq.~1b! describe the dissipative
forces between the particle and the plates and are propor-
tional to their relative velocities. These terms account for
dissipation due to phonons and/or other excitations. The third
term in Eq.~1a! is the driving force due to the stage motion.
The remaining terms are due to the spatially periodic poten-
tial interaction between the particle and the plates.

Within our model the frictional force acting on the top
plate is determined by the particle-plate interaction and is
equal to

F52
]U~x2X!

]X
2h~Ẋ2 ẋ!. ~2!

The first term is the potential component of the frictional
force and the second one describes the dissipative contribu-
tion. We choose the potentialU(x) to be

U~x!52U0cosS 2p

b
xD . ~3!

When the top plate moves infinitely slowly, the particle fol-
lows adiabatically the motion of the plate. In this case the
resistance force isF5(2p/b)U0sin(2pf/b), where f is the
relative displacement of the periodic potentials that corre-
spond to the top and bottom plates. The maximum value of
this force can be interpreted as the static frictional force

Fs5
2pU0

b
. ~4!

This force is the smallest driving force for which no station-
ary states exist.

In the present paper we focus on the dynamical behavior
of the top plate and of the particle as the driving velocity of
the stage is varied. It is convenient to introduce dimension-
less space and time coordinatesy5x/b, Y5X/b, and
t5tv, whereb is the period of the corrugation represented
by the potentialU(x) and v5(2p/b)AU0 /m is the fre-
quency of the small oscillations of the particle in the minima
of potential. Equations~1! can be rewritten then in a dimen-
sionless form as

Ÿ1eg~Ẏ2 ẏ!1a2~Y2vt!2
e

2p
sin@2p~y2Y!#50,

~5a!

ÿ1g~2ẏ2Ẏ!1
1

2p
sin~2py!1

1

2p
sin@2p~y2Y!#50,

~5b!

where g5h/(mv) is a dimensionless friction constant,
e5m/M is the ratio of particle and plate masses,a5V/v is
the ratio of frequencies of the free oscillations of the top
plateV5AK/M and the particle, andv5V/(vb) is the di-
mensionless stage velocity. Here one distinguishes between
the underdamped and overdamped limits. We concentrate on
the underdamped case. Equations~5! relate to the problem of
friction in lubricating films @24,15,13# and in the limit
a→` reduce to the problems of a particle in a two-wave
potential @25,26# and of a parametric oscillator@27#, both
actively studied in the theory of nonlinear dynamical sys-
tems.

III. RESULTS OF SIMULATIONS

Our simulations demonstrate that, this model of a single
particle in a driven two-wave potential is rich in transitions
among different dynamical behaviors. We have observed
four different dynamical regimes@28#: ~a! at low velocities
we observe a stick-slip motion of the plate,~b! as the stage
velocity increases the motion of the top plate is characterized
by irregular stop events with time intervals between them
that increase rapidly withv and the stick-slip motion be-
comes more erratic and intermittent,~c! in the kinetic regime
the top plate never stops and the spring executes chaotic
oscillations, and~d! smooth sliding occurs when the stage
velocity is above the critical velocityvc . Figure 2 illustrates
the time dependence of the spring force2K(X2Vt) and of
the particle velocity in these typical regimes. Here we con-
centrate on the dynamics of the system under the condition
a5V/v!1. In the calculations reported below we use pa-
rameter values that belong to the underdamped case:
a50.02,g50.1, ande50.125, which lead to the following
regimes.

A. Regimes of motion

(a) Stick-slip motion.The motion of the top plate in the
first regime @see Fig. 2~a!# is typical of relaxation oscilla-
tions. The top plate is initially at rest and the spring connect-
ing it to the stage stretches linearly in time. When the force
on the plate exceeds the static frictional forceFs @Eq. ~4!# the
top plate begins to slide. Since the frictional force in this
kinetic state is less thanFs , the plate accelerates. Owing to
the inertia, the velocity of the plateẎ is initially lower than
the driving velocityv and the spring will continue to extend
until finally Ẏ.v. The maximum spring force will therefore
be greater thanFs . When the plate velocity isẎ.v the
spring force decreases until it reaches some value where the
motion stops and then the process repeats. Stopping of the
top plate during every period of the spring force oscillations
is the characteristic feature of the first regime. As a result,
the plate motion is determined by the interplay between
static and kinetic friction.

It should be noted that the stick-slip motion is periodic
only for very low stage velocitiesv,v0, wherev050.03 for
the above values of the parametersa,g,e. For higher veloci-

FIG. 1. Schematic sketch of a model geometry.
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ties, still within regime~a!, weak fluctuations of the ampli-
tude and of the period of the spring force oscillations have
been observed. Forv.v0 the trajectories of the top plate and
the particle are sensitive to initial conditions, which is a
manifestation of the chaotic nature of the system. The tran-
sition from periodic to chaotic stick-slip motion occurs
through a sequence of period-doubling bifurcations and cha-
otic windows and depends on the mass of the top plate and
on the spring constant.

In order to provide a quantitative measure of the degree of
stochasticity of the motion we have calculated the velocity
dependence of the largest Liapunov exponent of the trajec-
tories ~see Fig. 3!. In regime ~a! this exponent is negative
only for v,v0, supporting the periodicity of the motion. In
this range of velocities the system~the particle and the top
plate! has time to relax to the ground state after sliding. For
higher velocities the largest Liapunov exponent becomes
positive and increases slowly with the driving velocity. This
points towards a rise in the dynamical chaos with the in-
crease ofv. It should be mentioned that Liapunov exponents
can be extracted from experimental data of the time depen-
dence of the spring force or the velocity of the top plate@29#.
A method for calculating the Liapunov exponents is outlined
in Appendix A.

We have also noticed that at low stage velocities the am-
plitude of the spring force depends only slightly onv and the
period of oscillations decreases with the increase ofv. In this

range of velocities the time-averaged velocity and the dis-
placement of the particle are much smaller than the average
velocity and the displacement of the top plate.

(b) Intermittent stick-slip motion.For higher stage veloc-
ity the top plate does not necessarily stop during the spring
oscillations and the motion becomes more erratic@see Fig.
2~b!#. These higher velocities correspond therefore to a tran-
sition regime between the stick-slip and kinetic regimes. In
order to define this transition quantitatively we introduce the

FIG. 2. Different regimes of
the particle and the plate motion.
Left column, the spring force ver-
sus time; right column, the par-
ticle velocities versus time. Stage
velocities are denoted on the
graphs.

FIG. 3. Velocity dependence of the largest Liapunov exponent.
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parameterD5Ts /T, whereTs is the net time during which
the spring force oscillations are accompanied by stopping of
the top plate andT is the total time of simulations. Namely,
D measures how much time the plate spends in stick-slip
motion relative to the total time, which includes kinetic seg-
ments. Figure 4 presentsD as a function of the stage veloc-
ity. The parameterD changes fromD51 ~complete stick-
slip motion! to D50 ~kinetic motion! within a narrow
velocity interval that separates the stick-slip and kinetic re-
gimes. This velocity interval, where 0,D,1, can be de-
fined naturally as an intermittent regime. The calculation of
the parameterD allows us to introduce a well-defined bound-
ary at v5vk ~whereD50), between the intermittent and
kinetic regimes. It should be noted that the value of the larg-
est Liapunov exponent grows rapidly in this intermittent re-
gime ~see inset to Fig. 4!, showing an increase of the dy-
namical chaos in the system.

(c) Kinetic regime.In the kinetic regime where the top
plate never stops~Fig. 2! the amplitude of the spring force
strongly depends on the stage velocityv. Here the frictional
force is less than the static friction for all times and the
time-averaged velocity and displacement of the particle are
close to half of those of the top plate. As we discuss below,
the nature of the motion in this regime is determined by an

effective velocity-dependent friction force. As the stage ve-
locity is varied within this regime, the trajectories of the
particle show that the particle jumps between the two plates.
It clings to each of them for times much longer than the
characteristic modulation time induced by the stage motion
~natural period! 1/v. In Fig. 5 we note that windows of slid-
ing motion appear within the kinetic region. Here the spring
force is plotted versus a stage velocity that increases with a
small constant acceleration. The number and widths of the
windows depend on the mass of the top plate, the spring
constant, and friction constanth. In these velocity windows
the largest Liapunov exponent is negative~Fig. 3!, which is
consistent with the nonchaotic character of smooth sliding.

(d) Sliding regime.A sharp boundary atv5vc is observed
between the kinetic and sliding regimes. When the velocity
approaches the critical velocityvc from below, the root mean
square of the time oscillations of the spring force decreases
asAvc2v and sliding sets in. Figure 6 displays the variance
of the oscillation amplitude, which behaves asvc2v for
v,vc .

In the sliding regime the spring force performs ‘‘micro-
scopic’’ oscillations with a period of the order 1/v and with
amplitudes much smaller than in regimes~a! and ~b!. The
time-averaged frictional force is proportional to the stage ve-
locity ~the single-particle ‘‘analog’’ of a liquid phase be-
tween two plates!.

The velocity dependence of the Liapunov exponent gives
a clear manifestation of the transition to sliding. As the stage
velocity increases and approachesvc , the largest Liapunov
exponent decreases steeply and becomes negative at
v5vc , suggesting the disappearance of chaos in the transi-
tion. This concurs with the reduction in the amplitude of the
spring force oscillations.

Under the conditionV!v assumed in this paper, we
have found a very weak dependence ofvc on the mass of the
top plateM and on the spring constantK. For vc,v,v th ,
where v th51.3 for our choice of parameters, the particle
does not jump between the two plates but rather clings to one
of them and oscillates within one spatial period of the corru-
gated potentialU(x). At higher stage velocitiesv.v th , the
character of sliding changes. The particle ceases to feel the

FIG. 5. Time oscillations of the spring force for the stage mov-
ing with a small constant acceleration. For convenience the stage
velocity ~instead of time! is indicated on the axis.

FIG. 4. D versus stage velocity in the intermittent regime. The
inset shows the largest Liapunov exponent in the same velocity
range. FIG. 6. Variance of the oscillation nearvc . The deviation of the

graph from the straight line in the nearest vicinity ofvc is connected
with the divergence of the relaxation time asv approachesvc, as
discussed in the text.
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corrugation of the plates and moves with the velocityv/2.
The frictional force becomes the same as for flat plates. This
change of the sliding state is accompanied by the drop of the
frictional force and can be interpreted as the analog effect of
shear thinning@30,31#.

B. Power spectra

We have also calculated the power spectraS(v) of the
spring force and of the velocities of the top plate and the
particle for the whole range of the stage velocities. Here we
discuss the power spectra of the spring force only~Fig. 7!.
The power spectraS(v) depend on the stage velocity and for
v,vc a power-law behaviorS(v);v22 for frequenciesv
above some cutoff is observed. For small driving velocities
(v50.01 on Fig. 7!, when the motion of the top plate looks
like relaxation oscillations, this power law can be observed
also in the low-frequency domain. The origin ofv22 fre-
quency dependence are abrupt drops of the spring force typi-
cal of relaxation oscillations. Power spectra with thev22

tails were observed in real systems that demonstrate stick-
slip motion @7,24#.

As discussed earlier, the time-dependent spring force
evolves from periodic to erratic behavior as the stage veloc-
ity v increases. This leaves the power law unchanged but
introduces large fluctuations as we move from low velocities

towardsvc . The noisyv22 behavior extends over a few
orders of magnitude inS(v) andv. When sliding prevails
the power spectra exhibit well defined dominating frequen-
cies that originate from the motion of the periodic potential
with velocity v ~Fig. 7, v50.4,1.6).

C. Hysteresis

Another interesting property amenable to experimental
tests is the hysteretic behavior of the spring force as the stage
velocity changes. In order to investigate this phenomenon we
have carried out calculations for the case where the stage
moves with a small constant acceleration. Figure 8 shows the
time dependence of the spring force for positive and negative
accelerationsa. For convenience thex axis shows the veloc-
ity of the stage at timet. The hysteresis shown in Fig. 8
reflects the coexistence of two dynamical states in the vicin-
ity of vc : one corresponds to a kinetic stick-slip motion and
another corresponds to smooth sliding. The figure shows also
the envelope of the time dependence of the spring force
found within the analytical theory that is discussed in Sec. IV
and in Appendix B. The envelope has the square-root behav-
ior nearvc that concurs with the velocity dependence of the
time-averaged amplitude of the spring force shown in Fig. 6.
It should be mentioned that the transient time required to
reach the stationary state diverges atv5vc . The approxi-

FIG. 7. Power spectra of spring force fluctuations~in log-log scale! for different regimes of motion. The dotted line of slope22 is
provided for reference.
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mate analytical solution discussed in Appendix B predicts
that the transient time diverges as 1/uv2vcu. The divergence
of the transient time atv5vc leads to the deviation of the
envelope from the square-root law in the immediate vicinity
of vc , emphasizing that caution has to be taken when nu-
merical calculations are carried out in this region.

IV. ADIABATIC APPROXIMATION
AND CRITICAL VELOCITY

It is possible to give an analytical description of the mo-
tion of the top plate connected to the spring that predicts the
transition atvc . We introduce two assumptions for the top
plate dynamics in the vicinity ofvc : ~a! the characteristic
frequency of the large-scale plate motion is much smaller
than both the characteristic frequency of the particle oscilla-
tions and the natural frequencyv and ~b! the mass of the
particle is smaller than the mass of the top plate, i.e.,e,1.
Hence the top plate and the particle display ‘‘slow’’ and
‘‘fast’’ motions and there is a separation of time scales;
namely, the adiabatic approximation prevails. Under these
assumptions we solve Eqs.~5!. For Eq.~5b! we assume that
the plate moves with a constant velocityẎ5V. For the par-
ticle motion we get

ÿ1g~2ẏ2V!1
1

2p
sin~2py!1

1

2p
sin@2p~y2Vt!#50.

~6!

Equation~6! has been used to describe a dissipative para-
metrically driven pendulum and a dissipative motion of a
particle in two waves. In spite of its apparent simplicity, Eq.
~6! is not integrable and leads to a rich spectrum of phenom-
ena~see@25–27# and references therein!.

The solutions of Eq.~6!, y(t,Ẏ), depend parametrically
on Ẏ. Substitutingy(t,Ẏ) into Eq. ~5a! we get

Ÿ2eF~t,Y,Ẏ!1a2~Y2vt!50, ~7!

where the dimensionless particle-plate interaction force

F~t,Y,Ẏ!5
1

2p
sin@2p~y2Y!#2g~Ẏ2 ẏ! ~8!

contains fast-oscillating components. Averaging Eqs.~7! and
~8! over the fast oscillations, we obtain an equation for the
slow oscillating component of the spring length
L(t)5Y(t)2vt,

L̈2ef~ L̇1v !1a2L50, ~9!

where the time-averaged forcef(Ẏ)5^F(t,Y,Ẏ)& depends
only on the velocity of the plate and presents the effective
friction for the plate motion.

Before we solve Eq.~9! we discuss the velocity depen-
dence of the time-averaged forcef(Ẏ), given by the aver-
aged Eq.~8!, that contains two terms@see also Eq.~2!#. The
first one is the potential component of the frictional force and
the second one describes the dissipative contribution~see
Fig. 9!. The structure in the velocity dependence off(Ẏ) in
the figure corresponds to different types of particle trajecto-
ries~Fig. 10!. We see that the motion of the particle has three
characteristic behaviors: at low velocitiesV,V* , the aver-
age velocity of the particle predominantly is equal to12V,

FIG. 8. Hysteretic behavior of spring force nearvc . The top
figure corresponds to the motion of the driving stage with a small
negative accelerationa,0, the bottom figure corresponds to a posi-
tive accelerationa.0.

FIG. 9. Friction forces acting on the top plate as function of
plate velocity.~a! General view.~b! Small velocities. The lower
curve is the dissipative contribution; the upper curve is the net
force. The arrows indicate velocities of the plate corresponding to
particle trajectories shown in Fig. 10.-
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except for short windows where the particle is trapped by
one of the plates; forV*,V,v th the particle always clings
to one of the plates; and forV.v th the particle motion with
the velocityV/2 becomes stable. This is illustrated clearly by
the dissipative component of the frictional force presented in
Fig. 9.

There are three types of the particle trajectories for
V,V* : ~i! the particle jumps between two plates being
trapped by each of them for the time much longer than
V21 ~curve 2 in Fig. 10!; ~ii ! the particle undergoes fast
oscillations with the periodV21, around the trajectoryx5
1
2 Vt ~curve 3 in Fig. 10!; and ~iii ! the particle clings to one
of the plates~curve 4 in Fig. 9!. In the first two cases the
time-averaged velocity of the particle is equal to12V and in
the third case it equalsV or 0. The dissipative component of
the friction ~lower curve in Fig. 9! reflects clearly these fea-
tures of the motion. The local minima and maxima in the
velocity dependence of the net frictional force shown in Fig.
9 correspond to the trajectories of the types~3! and ~4!. It
should be stressed that for all trajectories in the region
V,V* ~except forV50.23, which corresponds to a stable
motion of the particle with the velocity12V) the fluctuations
of the particle velocity are of the order of, or even larger
than, the velocity of the top plate. Curve 1 in Fig. 10 de-
scribes the caseV.V* .

The velocity-dependent features described above are simi-
lar to those discussed within our original model. Note that
the transition velocityV* found in the reduced model is
somewhat smaller than the previously determined critical ve-
locity vc . However, motion with small fluctuations in the
particle velocity occurs only forV.vc . In spite of the par-
ticle being trapped by one of the plates in the region
V*,V,vc , the fluctuations of the velocity are large, being
of the order ofV. The fluctuations decrease when we ap-
proachvc from below. The decay of the potential component
of the frictional force in the regionV*,V,vc , which is
proportional to the square of the amplitude of the velocity
fluctuations, manifests the transition from erratic to smooth
sliding. The sharp decrease of the potential component of the
effective friction corresponds to the disappearance of global
chaos in the dynamics of the particle.

At higher plate velocitiesV.v th the character of the par-
ticle motion changes again and the trajectoryx5 1

2Vt be-
comes stable~curve 5 in Fig. 10!. Here the characteristic
frequency of the particle motion is smaller than the modula-
tion frequency induced by the plate motionV and the particle
cannot respond to the variation of the plate-particle interac-
tion. The frictional force that ishV for vc,V,v th changes
to hV/2 for V.v th . The latter behavior corresponds to ef-
fectively flat plates.

We now return to the discussion of the solution of Eq.~9!
in the vicinity of the critical velocityvc . The important fea-
ture of the frictional forcef(v) in Eq. ~9!, is the presence of
a single minimum in the considered velocity range~see Fig.
9!. For stage velocitiesv,vc Eq. ~9! has solutions that cor-
respond to an oscillating spring force~limit cycle!. For
v.vc it has a static solution~fixed point! that describes the
sliding regime. An analytical solution of Eq.~9!, asymptotic
in the small parametere, can be obtained using Bogoliubov-
Krylov technique@32# ~see Appendix B!. One obtains that
the critical velocity coincides with the position of the mini-
mum of the effective friction force. The value of the critical
velocity found from the adiabatic approximation Eq.~9!
agrees well with the results of the numerical analysis of Eqs.
~5!. For velocities slightly less thanvc the amplitude of the
force oscillations really scale asL;Avc2v, as observed nu-
merically ~Fig. 6!.

The above considerations demonstrate that the adiabatic
approach describes reasonably well the dynamics of the top
plate when the driving velocity is close tovc . Within this
picture the presence of velocity intervals where the friction
force decreases with increasing velocity is a crucial condition
for the existence of force fluctuations. It should be men-
tioned that Eq.~9! does not account for the chaotic character
of the motion, but correctly describes the amplitudes of force
oscillations.

V. DISCUSSION

To summarize, a single-particle model has been proposed
that displays the dynamical features resembling experimental
and simulation results obtained for nanoscale liquid films
under shear. The model leads to stick-slip motion, the kinetic
regime, and the transition to sliding at a critical velocity
vc . For a wide range of system parameters we find that the
motion is chaotic, as supported by calculated Liapunov ex-
ponents. Our calculations suggest that the information ob-
tained following the macroscopic motion of a plate does not
allow one to draw an unambiguous conclusion on the dy-
namical structure of a molecular system embedded between
the plates.

It should be emphasized that characteristic to our model is
one frequencyv, which is related to the particle-plate inter-
action. This of course determines the different transition fre-
quencies we obtain; for instance, the transition to sliding
occurs atvc;vb. Adding more interacting particles towards
a bulk liquid description will introduce other characteristic
frequencies that will compete withv. This will be investi-
gated in our future work, where we consider a chain embed-
ded between the two plates.

We believe that although the model is only a single-
particle picture, some of the predictions may hold for larger

FIG. 10. Particle trajectories for selected values of the plate
velocities.
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systems and are amenable to experimental verification: the
power spectra of the force fluctuations in the different re-
gions, the decrease of the force amplitude fluctuations in the
vicinity of vc , which in our model follows (vc2v)1/2, hys-
teretic behavior, and an analysis of the time dependence of
the force in terms of Liapunov exponents. The chaotic be-
havior observed suggests that the use of recently proposed
chaos-controlling approaches is possible in order to convert
chaos into periodic motion.
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APPENDIX A: NUMERICAL EVALUATION
OF LIAPUNOV EXPONENTS

Liapunov exponents are the averaged exponential rates of
divergence or convergence of nearby orbits in phase space.
Any system with at least one positive exponent is defined to
be chaotic@33,34#. The magnitude of the exponent reflects
the time scale over which the system dynamics becomes un-
predictable and provides a quantitative measure of the degree
of stochasticity of a trajectory of the system.

A technique for numerical determination of a complete
Liapunov spectrum from a set of differential equations has
been developed in@35,36#. ~See also@34# for a review.! In
order to achieve a reasonable precision in the calculation of
the exponents, one needs to perform a long-time averaging
along a trajectory. In our calculations the following property
of the Liapunov spectrum of the system~5! has been used for
the control of convergence:

(
i51

4

l i52g~21e!. ~A1!

The calculated Liapunov spectrum and the control sum~10!
are presented in Fig. 11.

APPENDIX B: ANALYTICAL SOLUTIONS

In this appendix we present the asymptotic~in the small
parametere) solution of Eq.~9! in the vicinity of vc . The
solution of Eq.~9! for e50 is

L5rcosc,

with a constant amplituder and a uniformly rotating phase
anglec,

ṙ50, ċ5v.

For eÞ0 the nonlinear term results in the appearance of
higher harmonics. We seek therefore the solution of Eq.~9!
of the form @32#

L5rcosc1(
n

enun~r ,c!. ~B1!

Hereun(r ,c) are 2p-periodic functions of the anglec and
r (t) andc(t) are functions of time. In order to define these
functions uniquely we assume that they do not include the
fundamental harmonic, i.e.,r is the net amplitude of the
fundamental harmonic of the oscillations.

Under the conditione!1 the termef(v) is a small per-
turbation to the linear oscillator. To second order ine we get
for the amplitude of the stick-slip motion

ṙ5
e

2
r S ]f

]v
1
1

8
a2r 2

]3f

]v3
1••• D , ~B2!

where terms containing higher even-order powers ofr and
higher odd-order derivatives off with respect to parameter
v are neglected.

Let us consider the case where the effective friction force
f(v) has a single minimum at av5vm , i.e.,

]f~v !

]v U
v5vm

50, ~B3!

such that

]3f~v !

]v3 U
v5vm

.0. ~B4!

We also assume that the effective friction forcef(v) is
smooth enough so that higher derivatives are much smaller
than ~B4! and can be dropped in Eq.~B2! ~this approxima-
tion does not describe hysteresis!.

We note that the simplest functional form off(v) satis-
fying Eqs.~B3! and ~B4! is a cubic polynomial

f~v !5a1bv1cv21dv3.

Upon substituting this ‘‘minimal’’ form into Eq.~9! we get
the Rayleigh equation.

Steady-state solutions of Eq.~B2! are

FIG. 11. Liapunov spectrum. Curves 1–4 show the dependence
of Liapunov exponents on the stage velocity. Line 5 shows the
control sum~A1!.
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r50, ~B5!

r 2528
df

dv
/
d3f

dv3
. ~B6!

The nontrivial solution of Eq.~B6! exists only for velocities
smaller than the critical onevm becausedf/dv,0 only for
v,vm . The trivial solution Eq.~B5! that corresponds to the
sliding-type motion of the plate exists for all velocities, but is
stable only for velocities larger thanvm .

We conclude that the critical velocityvc , which corre-
sponds to the minimum of the effective frictional force, is
vc[vm . For velocities slightly less than the critical one the
amplitude of the stick-slip motion calculated according to
Eq. ~B6! scales as

r;Avc2v, ~B7!

in agreement with the numerical simulations.
In order to consider transient regimes forv;vc it is nec-

essary to linearize Eq.~B2! near vc . The solution of the
linearized equation shows that the time required to achieve
the steady-state solutions diverges asuv2vcu21 asv→vc .

APPENDIX C: STABILITY OF SLIDING

In this appendix we present the results of a linear stability
analysis of the sliding in the adiabatic approximation. We
give an explanation of some features that appear in the fric-
tion force as presented on Fig. 9, namely, the deep narrow
minimum atv50.23 @Fig. 9~b!# and the abrupt drop accom-
panied by a change of the friction law asymptotics from
f5gv to f5gv/2 @Fig. 9~a!#.

Equations~6! and ~9! have an exact solution

ys~t!5
1

2
vt, ~C1!

L̇50, ~C2!

describing the sliding motion of the top plateẎ5v and
steady drift of the particleẏ5v/2. In order to investigate the

stability of the solution~C1! we study the general solution of
Eq. ~6! written as a sum of Eq.~C1! and a small deviation
w(t):

y5ys~t!1w~t!. ~C3!

Substituting Eq.~C3! into Eq.~6!, linearizing with respect to
w, and introducing the notations

z5
1

2
vt, h5

4g

pv
, q5

4

p2v2
. ~C4!

we get

d2w

dz2
1h

dw

dz
12qcos~2z!w50. ~C5!

Equation ~C5! is the canonical form@37# of the Mathieu
equation with an additional friction term.

The sliding solution~C1! is the stable solution of Eq.~6!
if the solution of Mathieu equation~C5! w is bounded. The
issue of the stability of sliding is therefore related to general
results available on the Mathieu equation~see@37# and ref-
erences therein!. We finally conclude the following.

~a! For small and intermediate values of driving veloci-
ties, such thatq@1, there are only exponentially narrow ve-
locity ranges where the sliding solution~C1! is stable. The
deep minimum of the effective frictional force atv50.23
@see Fig. 9~b!# is the manifestation of this kind of motion.

~b! For large values of the stage velocity, i.e., for suffi-
ciently small values of the parameterq in ~C5!, q!1, the
sliding regime is always stable. The particle in this regime
moves with the constant velocityv/2.

The above analysis does not describe all possible types of
stable sliding. In particular, for driving velocities slightly
abovevc the particle gets stuck to one of the plates and its
motion therefore is not of type~C1!, but rathery5vt or
y5const. However, with the increase of stage velocity, the
particle must abruptly change its velocity fromv or 0 to
v/2. This drop in the particle drift velocity is accompanied
by a corresponding drop in the effective frictional force@see
Fig. 9~a!# and by a change of friction law fromf5gv to
f5gv/2.
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