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Origin of stick-slip motion in a driven two-wave potential
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A model is presented of a particle that interacts with two periodic potentials, representing two confining
plates, one of which is externally driven. The model leads to a spectrum of rich behaviors in the motion of the
top driven plate: a stick-slip, intermittent kinetic regime, characterized by force fluctuations, and two types of
sliding above a critical driving velocity. . Similar behaviors are typical of a broad range of systems including
thin sheared liquids. A detailed analysis of the different regimes displays an interesting transition range
between stick-slip and kinetic motiom, 2 power spectra of the force over a wide range of velocities below
v, and a decrease of the force fluctuations that follows—(v)Y? for v<v.. The velocity-dependent
Liapunov exponents demonstrate that stick-slip dynamics is characterized by chaotic behavior of the top plate
and the embedded particle. An equation is derived that provides a coarse-grained description of the plate
motion nearw. . [S1063-651X96)01511-5

PACS numbses): 68.15+e, 46.30.Pa, 05.45b, 05.40+]

[. INTRODUCTION externally driven{21]. This simple minimalistic model does
not show self-organized criticality or any phase transitions,
Stick-slip behavior has been observed in a variety ofbut still manifests typical features of dry and lubricated fric-
driven dissipative systems, such as charge- and spin-densitipnal dynamics. Unlike previous models such as the
waves[1], granular material§2], earthquake faultg3], and  Burridge-Knopoff model[3], train models[22], and the
systems of dnf4—7] and lubricated frictiof8—11]. Stick-  Frenkel-Kontorova-Tomlinson mod¢R0,23 in our model
slip behavior has been also obtained in direct molecularwe introduce a driving force on the top plate that mimics
dynamical simulations[12-14. Both experiments and experimental conditions. The use of a single-particle model
theory show that stick-slip motion is accompanied by phe-allows a detailed study of the system dynamics, which is
nomena such as intermittent stick-slip, sliding, and forcemore difficult within the frameworks of realistic models.
fluctuations. Sheared liquids confined between two atomi- The present paper is organized as follows. In Sec. Il we
cally smooth parallel solid surfaces provide a good examplgyefine the model and introduce the equations of motion. Sec-
where such a spectrum of behaviors can be observed in e%pp |1 presents results of numerical calculations. Different
perimentd8,9] and in computer simulatiorid2-14. Differ-  yunamical regimes are discussed and the transitions between
ent models have been proposed to account for this type Ghem are analyzed. In Sec. IV we introduce an approximate
;nnoé'cég;?ncgpg]yee? lr'ggt'%i'gill;d;nugbzﬁggfg(:k modés description of the system’s dynamics based on separation of
In spite of growing interest, there is s'EiII r.elatively little “slow” and “fast_” motions. Se_ctlon v summarlze our re-
y sults. In Appendix A we describe an algorithm for the cal-

understanding of the generic features of stick-slip dynamlcséulation of the Liapunov exponents. In Appendix B equa-

The origin of stick-slip motion and its related phenomena; i .
ons describing the motion of the top plate averaged over

remains therefore still under some debate. For example, ifl o . A
the case of molecularly thin liquid films, molecular- fast oscillations are derived and solved. Appendix C presents

dynamics simulationd12—14 suggest that a first-order @ Stability analysis of the regimes of motion.
phase transition between solidlike and liquidlike phases is

responsible for the stick-slip behavior. A phenomenological

model describing shear-induced melting during the transition Il. THE MODEL

from stick to slip has been considered recerjly,1§. In . . . . .
another example, of dry friction measuremefs$, erratic Consider a one-dimensional model that includes two rigid

stick-slip motion is claimed to be a manifestation of self- plates and a smgl_e particle of mamsembedded between
organized criticality[19], a concept that has been applied N€m- The interaction between the particle and each of the
recently in the context of frictioiisee[20] for review). plates is described by a periodic potentiflx). There is no

In this paper we investigate a model of a single particled'reCt interaction between the plates. The top plate of mass

that interacts with two corrugated plates, one of which isM is pulled by a linear spring with force constalit con-
nected to a stage that moves with a velocitysee Fig. 1 for

a sketch of the modgl
“Permanent address: Institute of Physics, Riia 142, EE2400 Tartu, The coupled equations of motion for the top plate and the
Estonia. particle are

1063-651X/96/546)/648510)/$10.00 54 6485 © 1996 The American Physical Society



6486 M. G. ROZMAN, M. URBAKH, AND J. KLAFTER 54

y o1 1
| K d y+y(2y=Y)+ o_sin2my)+ o—sif 27 (y—Y)]=0,
- o = (5D

where y= n/(mw) is a dimensionless friction constant,
e=m/M is the ratio of particle and plate masses; )/ w is
the ratio of frequencies of the free oscillations of the top
M X + n(X—k)+K(X—Vt)+ IU(x—X) =0, (1a plate(_)= VK/M and the particle, and=]{/(@b) Iis the di-

X ' mensionless stage velocity. Here one distinguishes between
the underdamped and overdamped limits. We concentrate on
the underdamped case. Equati¢Bisrelate to the problem of
friction in lubricating films [24,15,13 and in the limit
a—o reduce to the problems of a particle in a two-wave
wherex and X are the coordinates of particle and the toppotential[25,26] and of a parametric oscillatd27], both
plate, respectively. The second term in Etg) and the sec- actively studied in the theory of nonlinear dynamical sys-
ond and the third terms in Eqlb) describe the dissipative tems.
forces between the particle and the plates and are propor-
tional to their relative velocities. These terms account for 1. RESULTS OF SIMULATIONS
dissipation due to phonons and/or other excitations. The third ] ] ) )
term in Eq.(1a is the driving force due to the stage motion. ~ OUr simulations demonstrate that, this model of a single
The remaining terms are due to the spatially periodic potenpartlcle in a driven two-wave potermal is rich in transitions
tial interaction between the particle and the plates. among different dynamical behaviors. We have observed

Within our model the frictional force acting on the top four different dynamical regimef28]: (a) at low velocities

plate is determined by the particle-plate interaction and isV® observe a stick-slip motion of the platé) as the stage
equal to velocity increases the motion of the top plate is characterized

by irregular stop events with time intervals between them
AU (x—X) L that increase rapidly witv and the stick-slip motion be-
=T Tx 7(X=X). (20 comes more erratic and intermitteftt) in the kinetic regime
the top plate never stops and the spring executes chaotic
The first term is the potential component of the frictional 0Scillations, andd) smooth sliding occurs when the stage
force and the second one describes the dissipative contribiy€locity is above the critical velocity. . Figure 2 illustrates

FIG. 1. Schematic sketch of a model geometry.

. . X JU(X) aU(x—X)_0 1b
mx+ nX+ n(x—X)+ P + pw =0, (1b)

tion. We choose the potentiél(x) to be the time dependence of the spring fored(X—Vt) and of
the particle velocity in these typical regimes. Here we con-
2 centrate on the dynamics of the system under the condition
U(x)= —UoCOS(?X)- (3 a=0Q/w<1. In the calculations reported below we use pa-

rameter values that belong to the underdamped case:
When the top plate moves infinitely slowly, the particle fol- @=0.02,y=0.1, ande=0.125, which lead to the following
lows adiabatically the motion of the plate. In this case the'€gimes.
resistance force i& = (27/b)Uysin(2xf/b), wheref is the
relative displacement of the periodic potentials that corre- A. Regimes of motion
spond to the top and bottom plates. The maximum value of

. ; s a) Stick-slip motionThe motion of the top plate in the
this force can be interpreted as the static frictional force (@) b PP

first regime[see Fig. 2a)] is typical of relaxation oscilla-
27U, tions. The top plate is initially at rest and the spring connect-
Fo= . (4) ing it to the stage stretches linearly in time. When the force
b on the plate exceeds the static frictional fored Eq. (4)] the
. : o : . top plate begins to slide. Since the frictional force in this
;P;Z{g{gg IeSX?S]te smallest driving force for which no station- kinetic state is less thaRg, the pIaFe accelerates. Owing to
In the present paper we focus on the dynamical behaviol’€ inertia, the velocity of the plate is initially lower than
of the top plate and of the particle as the driving velocity ofthe driving velocityv and the spring will continue to extend
the stage is varied. It is convenient to introduce dimensionuntil finally Y>v. The maximum spring force will therefore
less space and time coordinatgs=x/b, Y=X/b, and be greater tharFs. When the plate velocity i&>v the
7=tw, whereb is the period of the corrugation representedspring force decreases until it reaches some value where the
by the potentialU(x) and w=(2#/b)Uy/m is the fre- motion stops and then the process repeats. Stopping of the
guency of the small oscillations of the particle in the minimatop plate during every period of the spring force oscillations
of potential. Equation§l) can be rewritten then in a dimen- is the characteristic feature of the first regime. As a result,
sionless form as the plate motion is determined by the interplay between
static and kinetic friction.
v T 2 € _ It should be noted that the stick-slip motion is periodic
YHey(Y=y)+ai(Y-vr)—o—sif2m(y=Y)]=0, only for very low stage velocities<v, wherev ,=0.03 for
(58  the above values of the parameters, €. For higher veloci-
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ties, still within regime(a), weak fluctuations of the ampli- range of velocities the time-averaged velocity and the dis-
tude and of the period of the spring force oscillations haveplacement of the particle are much smaller than the average
been observed. Fer>uv the trajectories of the top plate and velocity and the displacement of the top plate.
the particle are sensitive to initial conditions, which is a (b) Intermittent stick-slip motiorfor higher stage veloc-
manifestation of the chaotic nature of the system. The tranity the top plate does not necessarily stop during the spring
sition from periodic to chaotic stick-slip motion occurs oscillations and the motion becomes more errfdiee Fig.
through a sequence of period-doubling bifurcations and cha2(b)]. These higher velocities correspond therefore to a tran-
otic windows and depends on the mass of the top plate ansition regime between the stick-slip and kinetic regimes. In
on the spring constant. order to define this transition quantitatively we introduce the
In order to provide a quantitative measure of the degree of
stochasticity of the motion we have calculated the velocity

dependence of the largest Liapunov exponent of the trajec- 0.12
tories (see Fig. 3 In regime (a) this exponent is negative = o1k
only for v <wvg, supporting the periodicity of the motion. In 2 ’
this range of velocities the systefthe particle and the top § 0.08 |
plate has time to relax to the ground state after sliding. For e

higher velocities the largest Liapunov exponent becomes 2 0.06 1
positive and increases slowly with the driving velocity. This § 0.04 +
points towards a rise in the dynamical chaos with the in- 35

crease of. It should be mentioned that Liapunov exponents g 0.02 f
can be extracted from experimental data of the time depen- g 0 Lo
dence of the spring force or the velocity of the top pl&@]. -

A method for calculating the Liapunov exponents is outlined -0.02

in Appendix A. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

We have also noticed that at low stage velocities the am- stage velocity
plitude of the spring force depends only slightly wand the
period of oscillations decreases with the increase. ¢ this FIG. 3. Velocity dependence of the largest Liapunov exponent.
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inset shows the largest Liapunov exponent in the same velocity
range. FIG. 6. Variance of the oscillation neag. The deviation of the

graph from the straight line in the nearest vicinityvgfis connected
with the divergence of the relaxation time asapproaches ., as

paramete’A =T./T, whereT, is the net time during which iscussed in the text.

the spring force oscillations are accompanied by stopping o
the top plate and is the total time of simulations. Namely, effective velocity-dependent friction force. As the stage ve-
A measures how much time the plate spends in stick-sliocity is varied within this regime, the trajectories of the
motion relative to the total time, which includes kinetic seg-particle show that the particle jumps between the two plates.
ments. Figure 4 presents as a function of the stage veloc- |t clings to each of them for times much longer than the
ity. The parametedd changes fromA=1 (complete stick- characteristic modulation time induced by the stage motion
slip motion to A=0 (kinetic motion within a narrow (natural periodl 1/v. In Fig. 5 we note that windows of slid-
velocity interval that separates the stick-slip and kinetic reing motion appear within the kinetic region. Here the spring
gimes. This velocity interval, where<OA<1, can be de- force is plotted versus a stage velocity that increases with a
fined naturally as an intermittent regime. The calculation ofsmall constant acceleration. The number and widths of the
the parameteA allows us to introduce a well-defined bound- windows depend on the mass of the top plate, the spring
ary atv=vy (where A=0), between the intermittent and constant, and friction constamt In these velocity windows
kinetic regimes. It should be noted that the value of the largthe largest Liapunov exponent is negati¥ég. 3), which is
est Liapunov exponent grows rapidly in this intermittent re-consistent with the nonchaotic character of smooth sliding.
gime (see inset to Fig. 4 showing an increase of the dy-  (d) Sliding regimeA sharp boundary at=uv, is observed
namical chaos in the system. between the kinetic and sliding regimes. When the velocity
(c) Kinetic regime.In the kinetic regime where the top approaches the critical velocity, from below, the root mean
plate never stopgFig. 2) the amplitude of the spring force square of the time oscillations of the spring force decreases
strongly depends on the stage veloaityHere the frictional  as\/u.—v and sliding sets in. Figure 6 displays the variance
force is less than the static friction for all times and theof the oscillation amplitude, which behaves ag—v for
time-averaged velocity and displacement of the particle arg <y .
close to half of those of the top plate. As we discuss be'OW, In the s||d|ng regime the Spring force performs “micro-
the nature of the motion in this regime is determined by arscopic” oscillations with a period of the ordervland with
amplitudes much smaller than in regimé&s and (b). The
time-averaged frictional force is proportional to the stage ve-
locity (the single-particle “analog” of a liquid phase be-
tween two plates
The velocity dependence of the Liapunov exponent gives
a clear manifestation of the transition to sliding. As the stage
velocity increases and approaches the largest Liapunov
exponent decreases steeply and becomes negative at
v=v., suggesting the disappearance of chaos in the transi-
tion. This concurs with the reduction in the amplitude of the
spring force oscillations.
Under the conditionQ<w assumed in this paper, we
have found a very weak dependence gbn the mass of the
01 0'2 0'3 04 top plateM and on the spring constakt For v .<v<vy,,
’ “stage velocity ' where vy,=1.3 for our choice of parameters, the particle
does not jump between the two plates but rather clings to one
FIG. 5. Time oscillations of the spring force for the stage mov-0f them and oscillates within one spatial period of the corru-
ing with a small constant acceleration. For convenience the staggated potential(x). At higher stage velocities >uvy,, the
velocity (instead of timg is indicated on the axis. character of sliding changes. The particle ceases to feel the

spring force
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FIG. 7. Power spectra of spring force fluctuatidits log-log scal¢ for different regimes of motion. The dotted line of slope is
provided for reference.

corrugation of the plates and moves with the velocit.  towardsv.. The noisyw ™2 behavior extends over a few
The frictional force becomes the same as for flat plates. Thisrders of magnitude i15(w) and . When sliding prevails
change of the sliding state is accompanied by the drop of ththe power spectra exhibit well defined dominating frequen-
frictional force and can be interpreted as the analog effect ofies that originate from the motion of the periodic potential

shear thinnind30,31. with velocity v (Fig. 7,v=0.4,1.6).
B. Power spectra C. Hysteresis
We have also calculated the power spe@(a) of the Another interesting property amenable to experimental

spring force and of the velocities of the top plate and thetests is the hysteretic behavior of the spring force as the stage
particle for the whole range of the stage velocities. Here werelocity changes. In order to investigate this phenomenon we
discuss the power spectra of the spring force diffig. 7).  have carried out calculations for the case where the stage
The power spectr&(w») depend on the stage velocity and for moves with a small constant acceleration. Figure 8 shows the
v<uv. a power-law behavioB(w)~ w~? for frequenciesn  time dependence of the spring force for positive and negative
above some cutoff is observed. For small driving velocitiesaccelerations. For convenience the axis shows the veloc-
(v=0.01 on Fig. 7, when the motion of the top plate looks ity of the stage at timeé. The hysteresis shown in Fig. 8
like relaxation oscillations, this power law can be observedeflects the coexistence of two dynamical states in the vicin-
also in the low-frequency domain. The origin of 2 fre- ity of v.: one corresponds to a kinetic stick-slip motion and
guency dependence are abrupt drops of the spring force typanother corresponds to smooth sliding. The figure shows also
cal of relaxation oscillations. Power spectra with thé?  the envelope of the time dependence of the spring force
tails were observed in real systems that demonstrate sticfound within the analytical theory that is discussed in Sec. IV
slip motion[7,24]. and in Appendix B. The envelope has the square-root behav-
As discussed earlier, the time-dependent spring forcéor nearv. that concurs with the velocity dependence of the
evolves from periodic to erratic behavior as the stage veloctime-averaged amplitude of the spring force shown in Fig. 6.
ity v increases. This leaves the power law unchanged but should be mentioned that the transient time required to
introduces large fluctuations as we move from low velocitieseach the stationary state divergesvatv.. The approxi-
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b =
mate analytical solution discussed in Appendix B predicts °
that the transient time diverges asvlf v . The divergence
of the transient time at =v. leads to the deviation of the

envelope from the square-root law in the immediate vicinity 0.05 0.15 025 V' v, 045
of v., emphasizing that caution has to be taken when nu-

. . . . . . plate velocity
merical calculations are carried out in this region.

FIG. 9. Friction forces acting on the top plate as function of

IV. ADIABATIC APPROXIMATION plate velocity.(a) General view.(b) Small velocities. The lower
AND CRITICAL VELOCITY curve is the dissipative contribution; the upper curve is the net
force. The arrows indicate velocities of the plate corresponding to

It is possible to give an analytical description of the mo'garticle trajectories shown in Fig. 10.-

tion of the top plate connected to the spring that predicts th
transition atv.. We introduce two assumptions for the top
plate dynamics in the vicinity ob.: (a) the characteristic
frequency of the large-scale plate motion is much smaller 1

than both the characteristic frequency of the particle oscilla- F(r,Y,Y)= —s|r{27-r(y Y)]—y(Y-y) (8)
tions and the natural frequeney and (b) the mass of the
particle is smaller than the mass of the top plate, E&l]l.
Hence the top plate and the particle display “slow” and
“fast” motions and there is a separation of time scales;
namely, the adiabatic approximation prevails. Under thes
assumptions we solve Eq®). For Eq.(5b) we assume that

the plate moves with a constant velocity=V. For the par-
ticle motion we get

where the dimensionless particle-plate interaction force

contains fast-oscillating components. Averaging E@sand

.(8) over the fast oscillations, we obtain an equation for the
low oscillating component of the spring length
(nD=Y(n)—vr,

L—ed(L+0v)+a’L=0, )

) . 1 1 where the time-averaged fore®(Y)=(F(r,Y,Y)) depends

y+y(2y=V)+ 5—sin2my) + 5—sif 27 (y—V7)]=0. only on the velocity of the plate and presents the effective

(6) friction for the plate motion.
Before we solve Eq(9) we discuss the velocity depen-

Equation(6) has been used to describe a dissipative paradence of the time-averaged fordg(\'(), given by the aver-
metrically driven pendulum and a dissipative motion of aaged Eq(8), that contains two termsee also Eq(2)]. The
particle in two waves. In spite of its apparent simplicity, Eq. first one is the potential component of the frictional force and
(6) is not integrable and leads to a rich spectrum of phenomthe second one describes the dissipative contributime

ena(see[25-27 and references thergin Fig. 9). The structure in the velocity dependencegdty) in
The solutions of Eq(6), y(7,Y), depend parametrically the figure corresponds to different types of particle trajecto-
on Y. Substitutingy(7,Y) into Eq. (5a) we get ries(Fig. 10. We see that the motion of the particle has three

) . characteristic behaviors: at low velociti®s<V*, the aver-
Y—eF(7,Y,Y)+a?(Y—v7)=0, (7) age velocity of the particle predominantly is equal 34,
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At higher plate velocitiey/ >v, the character of the par-
ticle motion changes again and the trajectory 3Vt be-
() comes stabldcurve 5 in Fig. 10. Here the characteristic
1 frequency of the particle motion is smaller than the modula-
tion frequency induced by the plate motigmand the particle
cannot respond to the variation of the plate-particle interac-
tion. The frictional force that iV for v . <V<uvy, changes
to »V/2 for V>uvy,. The latter behavior corresponds to ef-
fectively flat plates.

We now return to the discussion of the solution of E).
in the vicinity of the critical velocityv.. The important fea-
. . . ture of the frictional forcep(v) in Eg.(9), is the presence of
150 250 350 450 a single minimum in the considered velocity rangee Fig.
9). For stage velocities<v. Eg. (9) has solutions that cor-
respond to an oscillating spring forodimit cycle). For
. . . v>v, it has a static solutioffixed poin) that describes the
veloF(I:ﬁiéle' Particle trajectories for selected values of the platesliding regime. An analytical solution of E¢9), asymptotic

' in the small parameter, can be obtained using Bogoliubov-

Krylov technique[32] (see Appendix B One obtains that
except for short windows where the particle is trapped bythe critical velocity coincides with the position of the mini-
one of the plates; foW* <V<uy, the particle always clings mum of the effective friction force. The value of the critical
to one of the plates; and faf>uv, the particle motion with  velocity found from the adiabatic approximation E)
the velocityV/2 becomes stable. This is illustrated clearly by agrees well with the results of the numerical analysis of Egs.
the dissipative component of the frictional force presented if5). For velocities slightly less than, the amplitude of the
Fig. 9. force oscillations really scale &s~+v.—v, as observed nu-

There are three types of the particle trajectories formerically (Fig. 6). _ o
V<V*: (i) the particle jumps between two plates being The above considerations demonstrate that the adiabatic
trapped by each of them for the time much longer tharAPProach describes reasonably well the dynamics of the top
V™1 (curve 2 in Fig. 10; (i) the particle undergoes fast p!ate when the driving velocn_y is close tq.. Within th|_s _
oscillations with the period/ ™%, around the trajectorx= picture the presen.ce.of veloplty mteryal§ where_the fr|c_t|pn
1Vt (curve 3 in Fig. 10; and(iii) the particle clings to one force decreases with increasing velocity is a crucial condition

of the platesicurve 4 in Fig. 9. In the first two cases the fpr the existence of force fluctuations. It shou'ld be men-
time-averaged velocity of the particle is equalié and in tioned tha'_[ Eq(9) does not account for the cha_otlc character

. . T 2 of the motion, but correctly describes the amplitudes of force
the third case it equal or 0. The dissipative component of

- I oscillations.
the friction (lower curve in Fig. 9 reflects clearly these fea-
tures of the motion. The local minima and maxima in the
velocity dependence of the net frictional force shown in Fig. V. DISCUSSION

9 correspond to the trajectories of the tyg@s and (4). It 14 symmarize, a single-particle model has been proposed
should be stressed that for all trajectories in the regionnat displays the dynamical features resembling experimental
V<V* (except forV=0.23, which corresponds to a stable and simulation results obtained for nanoscale liquid films
motion of the particle with the velocityV) the fluctuations  under shear. The model leads to stick-slip motion, the kinetic
of the particle velocity are of the order of, or even largerregime, and the transition to sliding at a critical velocity
than, the velocity of the top plate. Curve 1 in Fig. 10 de-y.. For a wide range of system parameters we find that the
scribes the case>V*. motion is chaotic, as supported by calculated Liapunov ex-
The velocity-dependent features described above are simponents. Our calculations suggest that the information ob-
lar to those discussed within our original model. Note thattained following the macroscopic motion of a plate does not
the transition velocityV* found in the reduced model is allow one to draw an unambiguous conclusion on the dy-
somewhat smaller than the previously determined critical venamical structure of a molecular system embedded between
locity v.. However, motion with small fluctuations in the the plates.
particle velocity occurs only foW>uv.. In spite of the par- It should be emphasized that characteristic to our model is
ticle being trapped by one of the plates in the regionone frequency, which is related to the particle-plate inter-
V* <V <u,, the fluctuations of the velocity are large, being action. This of course determines the different transition fre-
of the order ofV. The fluctuations decrease when we ap-quencies we obtain; for instance, the transition to sliding
proachv . from below. The decay of the potential componentoccurs av .~ wb. Adding more interacting particles towards
of the frictional force in the regio’V* <V<uwv., which is  a bulk liquid description will introduce other characteristic
proportional to the square of the amplitude of the velocityfrequencies that will compete witlk. This will be investi-
fluctuations, manifests the transition from erratic to smoothgated in our future work, where we consider a chain embed-
sliding. The sharp decrease of the potential component of thded between the two plates.
effective friction corresponds to the disappearance of global We believe that although the model is only a single-
chaos in the dynamics of the particle. particle picture, some of the predictions may hold for larger

500

400 r

300 r

200 r

100 F

normalized particle displacement (y/v)

time
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The calculated Liapunov spectrum and the control $if)

061? are presented in Fig. 11.
g 0.0g I APPENDIX B: ANALYTICAL SOLUTIONS
F 0.05 | In this appendix we present the asymptdiit the small
2 041 parametere) solution of Eq.(9) in the vicinity of v,. The
g 015 | solution of Eq.(9) for e=0 is
Q
& 02 ¢ E
5 L=rcosy/,
~ 025t} / WL |/ : S'/,

03 5 1 with a constant amplitude and a uniformly rotating phase

-0.35 e angley,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045
stage velocity r=0, y=o.

FIG. 11. Liapunov spectrum. Curves 1—4 show the dependencE®" €70 the nonlinear term results in the appearance of
of Liapunov exponents on the stage velocity. Line 5 shows thehigher harmonics. We seek therefore the solution of (Bj.
control sum(Al). of the form[32]

systems and are amenable to experimental verification: the L=rcosy+ >, €'u(r,). (B1)
power spectra of the force fluctuations in the different re- n

gions, the decrease of the force amplitude fluctuations in the o )
vicinity of v, which in our model follows ¢.—v)"2 hys- Hereu,(r,) are 2r-periodic functions of the anglé¢ and

teretic behavior, and an analysis of the time dependence &ft) and(t) are functions of time. In order to define these
the force in terms of Liapunov exponents. The chaotic befunctions uniquely we assume that they do not include the
havior observed suggests that the use of recently proposddndamental harmonic, i.er, is the net amplitude of the

chaos-controlling approaches is possible in order to conveftindamental harmonic of the oscillations. -
chaos into periodic motion. Under the conditiore<1 the terme¢(v) is a small per-

turbation to the linear oscillator. To second ordeeiwe get
for the amplitude of the stick-slip motion
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Foundation under Grant No. 350. Let us consider the case where the effective friction force

#(v) has a single minimum ata=v,,, i.e.,

APPENDIX A: NUMERICAL EVALUATION ad(v)
OF LIAPUNOV EXPONENTS £ =0, (B3)
Liapunov exponents are the averaged exponential rates of oom
divergence or convergence of nearby orbits in phase spacg,ch that
Any system with at least one positive exponent is defined to
be chaotic[33,34. The magnitude of the exponent reflects Pp(v)
the time scale over which the system dynamics becomes un- 03 >0. (B4)

V=V

predictable and provides a quantitative measure of the degree

of stochasticity of a trajectory of the system. ) o )
A technique for numerical determination of a completeWe also assume that the effective friction for¢gv) is

Liapunov spectrum from a set of differential equations hasmooth enough so that higher derivatives are much smaller

been developed ifi35,36. (See alsd34] for a review) In  than(B4) and can be dropped in E¢B2) (this approxima-

order to achieve a reasonable precision in the calculation dfon does not describe hystergsis .

the exponents, one needs to perform a long-time averaging We note that the simplest functional form ¢{v) satis-

along a trajectory. In our calculations the following property f¥ing Egs.(B3) and(B4) is a cubic polynomial

of the Liapunov spectrum of the systdB) has been used for

— 2 3
the control of convergence: $(v)=a+bv+co+dv”.

4 Upon substituting this “minimal” form into Eq(9) we get

__ the Rayleigh equation.
A= 2+€). Al
21 =2t (A1) Steady-state solutions of E€B2) are
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r=0, (B5) stability of the solution(C1) we study the general solution of
Eqg. (6) written as a sum of Eq(C1) and a small deviation
d¢ d® w(7):
r= —8d—¢/d—¢;. (B6) ()
v v y=Ys(7) +W(7). (C3)

The nontrivial solution of Eq(B6) exists only for velocities
smaller than the critical one,, becausel ¢/dv <0 only for
v<uvp. The trivial solution Eq(B5) that corresponds to the
sliding-type motion of the plate exists for all velocities, but is 1 4y 4
stable only for velocities larger thar, . z=zvr, 7=_—- 4= 23 (C4
We conclude that the critical velocity., which corre-

sponds to the minimum of the effective frictional force, is we get
v.=vn. For velocities slightly less than the critical one the

Substituting Eq(C3) into Eq.(6), linearizing with respect to
w, and introducing the notations

: ol - - d’w  dw
amplitude of the stick-slip motion calculated according to + 77— +2gcog22)Ww=0 c5
Eq. (B6) scales as dZ a7 A €22) ' €9
r~\v.—v, (87)  Equation(C5) is the canonical forn{37] of the Mathieu
equation with an additional friction term.
in agreement with the numerical simulations. The sliding solutionC1) is the stable solution of Eqb)

In order to consider transient regimes for v, it is nec-  if the solution of Mathieu equatioC5) w is bounded. The
essary to linearize EqB2) nearv.. The solution of the issue of the stability of sliding is therefore related to general
linearized equation shows that the time required to achieveesults available on the Mathieu equatiee[37] and ref-

the steady-state solutions diverges@as v.| ! asv—uve. erences therejnWe finally conclude the following.
(a) For small and intermediate values of driving veloci-
APPENDIX C: STABILITY OF SLIDING ties, such thagj>1, there are only exponentially narrow ve-

locity ranges where the sliding solutig@l) is stable. The

In this appendix we present the results of a linear stabilityjeep minimum of the effective frictional force at=0.23

analysis of the sliding in the adiabatic approximation. We[see Fig. )] is the manifestation of this kind of motion.
give an explanation of some features that appear in the fric- () For large values of the stage velocity, i.e., for suffi-

tion force as presented on Fig. 9, namely, the deep narrowiently small values of the parametgrin (C5), q<1, the

minimum aty = 0.23[Fig. Ab)] and the abrupt drop accom- sjiding regime is always stable. The particle in this regime
panied by a change of the friction law asymptotics frommgyes with the constant velocity/2.

$=yv o ¢=1v/2[Fig. Aa)]. _ The above analysis does not describe all possible types of
Equations(6) and (9) have an exact solution stable sliding. In particular, for driving velocities slightly
1 abovev the particle gets stuck to one of the plates and its
yo(7)= SuT, (cy  motion therefore is not of typeCl), but rathery=vr or

y=const. However, with the increase of stage velocity, the
i particle must abruptly change its velocity fromor 0 to
L=0, (C2)  y/2. This drop in the particle drift velocity is accompanied
: by a corresponding drop in the effective frictional fofsee
describing the sliding rr_10tion of the top platé=v and  Fig. 9a)] and by a change of friction law fronp=yv to
steady drift of the particlg=uv/2. In order to investigate the ¢=yv/2.
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