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A model for the dynamics of nonisothermal eutectic growth is examined in the limit of a spatially uniform
but time dependent temperature field. The simpler case of nonisothermal growth is first considered, and
approximate solutions are obtained for the crystallization rate for the growth of a single crystallite and for
homogeneous nucleation. For eutectic transformation the latent heat generated during invasion of a eutectic
crystal into an amorphous background is shown to increase the lamella wavelength. For homogeneous eutectic
growth, the latent heat is shown to alter significantly the growth mechanisms observed under isothermal
conditions.@S1063-651X~96!10408-6#

PACS number~s!: 64.70.Dv, 05.70.Ln, 82.20.Mj

I. INTRODUCTION

Eutectics are materials in which a liquid can coexist with
two crystal phases of different concentrations at a specific
temperature (TE) and concentration (CE) that define the eu-
tectic point. The solidification of the liquid phase can be a
complex process involving both solidification dynamics and
concentration phase separation. In many situations long-lived
‘‘eutectic’’ structures form, i.e., morphologies containing al-
ternating rods or lamella of the two crystal phases. The fine
scale of these morphologies~typically much smaller than a
micron! gives them useful mechanical properties, and makes
them quite valuable in casting and welding processes. To
understand the complex morphologies that occur in eutectic
solidification, it is imperative to understand the nonequilib-
rium dynamics used in their creation. In a previous paper@1#
a phase field model was used to describe the dynamics of the
solidification of an undercooled liquid at the eutectic concen-
tration under isothermal conditions. This work led to the pre-
diction of an interesting crossover scaling behavior, from
diffusion-limited growth to lamellar growth to phase segre-
gation, and is consistent with preliminary experiments on the
crystallization of amorphous Fe-B compounds.

The purpose of this paper is examine the more general
situation of nonisothermal crystallization. For simplicity an
isolated sample with material properties and conditions that
lead to a uniform, but time dependent temperature field, will
be considered. These conditions should be satisfied for the
crystallization of glassy or amorphous metals, most of which
contain a eutectic point. Examples include Fe-B, Cu-Zr, and
Mg-Zn systems. In these metallic materials the thermal dif-
fusivities should be large enough to relax ‘‘instantaneously’’
any spatial variations in temperature field created by latent
heat production at the amorphous-crystal fronts. This work
will focus on the crystallization of such amorphous materi-
als. In Sec. II a quantitative criteria for the applicability of
this uniform temperature approximation will be presented
and discussed for the Fe-B system.

It is well known that the production of latent heat during

solidification or crystallization can lead to interesting dy-
namical behavior. A classic example is the destabilization of
a liquid-solid (L-S) front ~i.e., the Mullins-Sekerka@2,3# in-
stability!, that can lead to dendritic structures. In explosive
crystallization@4,5# the production of latent heat can lead to
oscillations in the amorphous-crystal (A-X) front velocity,
and in principle to a period doubling sequence to chaos. In
both examples the interesting behavior is specifically related
to spatial gradients in the temperature field~or more pre-
cisely the diffusion of the latent heat generated at theA-X or
L-S interfaces!. In eutectic crystallization, the lamella spac-
ing is related to theA-X velocity, which is in turn related to
the undercooling~or ‘‘overheating’’!. Thus, even though the
temperature field in this work will be assumed to be uniform
in space, its time dependence will lead to interesting compli-
cations. At a minimum these nonisothermal conditions will
destroy the lamellar growth regime~in which crystal droplets
grow in size by increasing the length and number, but not
width, of lamella! seen in the isothermal case.

To understand the extremely complex process of noniso-
thermal homogeneous eutectic nucleation of glassy metals,
two simplified scenarios will first be considered. First, the
change in lamellar thickness with time will be isolated by
considering the invasion of a one dimensional lamellar front
into a supercooled amorphous matrix in the absence of ther-
mal fluctuations. This analysis simplifies the dynamics by
excluding the competition and coalescence of neighboring
fronts that is common in nucleation. Second, the process of
nonisothermal crystallization via homogeneous nucleation
will be considered in the absence of a eutectic reaction. In
this manner, the dynamics of nonisothermal crystallization
can be decoupled from the eutectic reactions and used as a
reference point.

The outline of this paper is as follows. In Sec. II a general
dynamical model of nonisothermal eutectic crystallization
will be presented. A limit will be derived for which this
general model reduces to one in which the temperature field
is spatially uniform. This limit will provide a criteria for the
applicability of this model in terms of nucleation rates, ther-
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mal diffusivities, and growth velocities. Section III will fo-
cus on simple nonisothermal nucleation in the absence of a
eutectic reaction. Expressions will be derived for the time
dependence of the crystal volume fraction for the two cases
considered in Sec. IV on eutectic crystallization, the first
being a one dimensional front and the second homogeneous
nucleation. Finally in Sec. V section some brief conclusions
will be given.

II. DYNAMICAL MODEL

In order to describe a eutectic structure, at least two fields
must be introduced, one (c) to distinguish between the
amorphous and crystal phases and another (c[C2CE , i.e.,
concentration deviation from the eutectic concentration! to
distinguish between the two crystal phases. In principle the
order parameter describing the two crystal phases should not
be a simple scalar quantity; however, as was shown in a
previous paper@1#, the model presented is consistent with the
standard sharp interface models used by many others@7–10#.
and recovers many well known results for directional eutec-
tic growth. The model can be represented by two dynamical
equations

]c/]t5¹W •Mc¹W dF$c,c%/dc1hc ~1!

and

]c/]t52McdF$c,c%/dc1hc , ~2!

whereF is the free energy functional, and can be approxi-
mated by

F$c,c%5E drWS f ~c,c!1
kc

2
u¹W cu21

kc

2
u¹W cu2D . ~3!

The bulk free energy (f ) can be written
f (c,c)52rc2/21uc4/41(aDT2bc2)c1bc4/4, where
DT5(T2Tm)/TE , Tm being the melting temperature at
b50, andT the temperature. All the parameters that enter
F will be considered to be independent of temperature. In
this formulation no distinction is made between an amor-
phous solid and a frozen liquid. The temperature dependence
of Mc and Mc will be incorporated at a later stage. The
phase diagram for Eq.~3! is shown in Fig. 1.

For nonisothermal conditions an equation of motion for
the temperature field must be specified. The dynamics of the
temperature field are in general controlled by diffusion,
Newtonian cooling, and latent heat production. Thus the
equation for the dimensionless undercooling (DT) is

]DT

]t
5m~DT02DT!1D¹2DT1

L
2

]c̄

]t
, ~4!

wherem describes the coupling to a heat bath at an under-
cooling DT0 , D is the thermal diffusivity,L5H/(cpTE),
H is the enthalpy of fusion, andcp is the specific heat at
constant pressure andc̄5c/ucu. For this work an isolated
solid is considered~i.e.,m50).

If the latent heat liberated during the crystallization~i.e.,
as c evolves in time! can be ‘instantaneously’ distributed
throughout the sample,DT is constant in space and equal to

DT~ t !5DT~0!1LV~ t !, ~5!

whereV is the crystal volume fraction. To estimate the va-
lidity of this approximation it is useful to consider a single
droplet with an infinitely thin interface growing at constant
velocity (v), i.e.,

]DT/]t5D¹2DT1Lvd~r2@vt1R0# !, ~6!

whereRo is the initial droplet size and the temperature is
uniform att50. For the uniform temperature approximation
to be valid, the temperature must relax before the interface
has moved a significant distance, i.e., of the order of a cor-
relation length. Thus it is required that the temperature re-
laxes for timest'zc /v. Thus it is appropriate to consider
the sharp interface limitvt'zc!R0 . In this limit the solu-
tion to Eq.~6! in Fourier space is

DT̂~qW ,t !'e2Dq2tDT̂~qW ,0!1LS vRo
d21

Ld
DVdS eig2e2Dq2t

ig1Dq2
D ,
~7!

where g5vq cos (u), V151, V25*0
2pdu, and

V35*0
pdu*2p

p df sin(u). The parameterL is the ‘longest’
length scale in the problem. From a practical point of view
L can be interpreted as several times the average distance
between nucleation sites, or in the final crystallized sample
several times the average crystallite size. Forq50 the solu-
tion is T̂(0,t)5T̂(0,0)1LV, which is consistent with Eq.~5!.
For qÞ0, the first term on the right-hand side of Eq.~7! is
negligible if Dq2t@1. A very conservative estimate of this
condition can be obtained by settingq52p/L, i.e.,

FIG. 1. Phase diagram obtained by minimization of the eutectic
free energy presented in the text. The regime enclosing the letter
L corresponds to a liquid phase. The regimes enclosing the letters
SA andSB correspond to solid phases of different concentrations.
The other enclosed regions correspond to the coexistence of phases.
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~2p!2D/~Lv !@L/zc . ~8!

For the second term to be negligible, it must also be small
compared to 1~in the dimensionless units used here!, which
implies (2p)2D/(Lv)@(Rc /L)

d21L. SinceRc@zc , andL
is of order 1, this condition is satisfied if Eq.~8! is satisfied.

As an example, consider an Fe-B system. At low tempera-
tures~i.e., 500 K,T,800 K! the droplet velocity is of the
order 1027,v,1022mm/s@6#, and the thermal diffusivity is
of the orderD'108mm2/s. Assuming the correlation length
is a few lattice spaces~i.e, z'1023mm! Eq. ~8! reduces to
L!104→106mm. For experiments in the temperature range
stated above, this limit should be satisfied.

For conditions under which these assumptions are valid,
DT rises uniformly, and Eqs.~1! and ~2! can be simplified
sinceMc(T) andMc(T) are now independent of position. It
is convenient to eliminateMc(T) by rescaling time by the
following variable transformationt5*0

t dt8Mc„T(t8)…r . It is
also useful to transform to the following dimensionless vari-
ablesf5c/c0 , h5c/c0 , xW5rW/zc , andT85T/T0 , where
c05(r /u)1/2, c05(2bc0 /b)

1/2, zc5(kc /r )
1/2, and

T05c0r /a'4TE . These substitutions lead to

]h/]t5Rt /RL
2¹2~h22f2RL

22¹2!h1nh , ~9!

]f/]t5~12f21¹2!f1b8h22DT81nf , ~10!

DT8~t!5DTo81L8V, ~11!

^nh~xW ,t!nh~xW8,t8!&52gef¹2d~t2t8!d~xW2xW8!, ~12!

and

^nf~xW ,t!nf~xW8,t8!&52efd~t2t8!d~xW2xW8!. ~13!

FIG. 2. Crystalization rate dependence on temperature in two
dimensions.

FIG. 3. Dynamics of volume fraction and undercooling. In~a!
the lines from top to bottom att5600 correspond toL50.015,
0.03, 0.045, 0.06, and 0.075. In~b! the lines from bottom to top
correspond toL50.015, 0.03, 0.045, 0.06, and 0.075.

FIG. 4. Time dependence of theA-X front. In this figure the
concentration field (h) is shown at a distance of three lattice sites
behind theA-X front as a function of time. In~a!, ~b!, ~c!, and~d!,
the front is shown forL50.0, 0.0075, 0.015, and 0.0225, respec-
tively. The total time evolved for each of these simulations was
3600, 4800, 12 500, and 25 000 forL50.0, 0.0075, 0.015, and
0.0225, respectively.
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The various dimensionless parameters in these equations
are ef5ukBc0zc

d /r , g5@br/(2b)2#@Rt /RL
2#, Rt5Gc /Gc ,

RL5zc /zc , zc5(kc/2bc0)
1/2, b852b2/br, L85L/T0 ,

Gc51/Mcr , andGc5zc
2/2Mcbc0 . For simplicity in the fol-

lowing pages the prime superscripts will be dropped, and
RT will be taken to be independent of temperature.

The model is now complete, and can be used to describe
nonisothermal eutectic nucleation. Before considering these
complex dynamics the influence of nonisothermal conditions
will be considered in the absence of the eutectic interaction.

III. NONISOTHERMAL CRYSTALLIZATION

When an amorphous material is heated above the glass
transition, small crystallites nucleate in and grow into the
amorphous background. As latent heat is generated both the
nucleation rate (I ) and the droplet velocity (v) are altered.
For the dimensionless model presented here@i.e., where
Mc(DT) has been scaled intot# the increase in temperature
will always decreasev, but may increase or decreaseI , since
I goes to zero atT50 and atT5Tm ~or T5TE for a eutec-
tic!, and has a peak somewhere in between. It should be
noted that when the velocity is transformed into physical
units@by the relationships given above Eq.~9!# it will also go
to zero at zero temperature. The basic functional depen-
dences ofI and v on T are captured by most theories, al-

though an accurate calculation ofI is a formidable task. For
the purposes of this paper the temperature dependence ofI
will be simply taken from the approximate formula of
Langer and Turski@12#.

To begin these calculations consider Eq.~10! in the ab-
sence of concentration, i.e.,

]f/]t5~12f21¹2!f2DT1nf , ~14!

and Eq. ~11!. For a single spherical droplet it is quite
simple to calculateV(t). The rate of growth of this
droplet can be calculated by expanding around a planar
solution, i.e.,f(rW,t)'f1D@r2R(t)#, where f1d satisfies
(]2/]x2112f2)f50, and is given byf1d5tanh(x/A2).
This gives the following equation for the radius@R(t)# of
the droplet:

]R/]t5v2~d21!/R, ~15!

wherev5DTDf/s, s5*dx(]fo /]x)
2 is the surface ten-

sion, andDf is the miscibility gap. The critical droplet size
for this model is defined by]R(t)/]t50 and is
Rc5(d21)s/DTDf. The undercooling can be introduced
through Eq.~11!, and the volume fraction is related to the
droplet radius by the relationshipV(t)5VdR

d/d. In one di-
mension the solution is

FIG. 5. Dynamics of the volume fraction. The points correspond to the numerical results and the lines to fits to Eq.~16!. From left to right
the lines correspond toL50.0, 0.0075, 0.015, and 0.0225. In the inset an individual run is shown forL50.0225.
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V1D~t!5
uDT~0!u
L 1S V1D~0!2

uDT~0!u
L De~2LuDfut/Ls!.

~16!

This solution can be compared with the growth of a one-
dimensional eutectic front presented in Sec. IV.

For nucleation phenomena the standard form for the vol-
ume fraction@13# is

V~t!512expS 2
Vd

d E
0

t

dt8I ~t8!Rd~t,t8! D , ~17!

whereI (t) is the nucleation rate, andR(t,t8) is the radius
of a droplet at timet that was nucleated at timet8. In order
to evaluateR(t,t8) it is standard to take the limitR@Rc

such thatR(t,t8)5*t8
t dt9v(t9). In all subsequent cal-

culations this limit will be assumed. Once a form forI (t)
is specified, Eq.~17! combined with Eqs.~15! and ~11!
form a closed set of equations. For example, for hetero-
geneous nucleation, whereI (t)5I 0d(t), the set of equa-
tions is simply V(t)512exp@2@Vd /d#I0R(t,0)

d# and
]R/]t5Df@DT01LV#/s.

For homogeneous nucleation the situation is more com-
plicated, since the nucleation rate is a strong function of
temperature. To understand these dynamics the nucleation
rate will be taken to be@12# I5KV0exp(2DF/KbT), where
K is the dynamic prefactor,V0 is the statistical prefactor,
andDF is the free energy difference between the metastable
state and the saddle point configuration~i.e., a critical drop-
let!. In what follows, it will be assumed that the nucleation
rate depends on time only through the temperature field. It
should be noted that even under isothermal conditions, there
is a period of time needed for the nucleation rate to reach its
asymptotic value@14#. This effect is sometimes taken into
account by introducing an offset time.

Relying on the work of Langer and Turski@12# it is
straightforward to determine thatK5(d21)/Rc

2 , V0

5Ld@2Rc
2/(d21)#1/2@Sc

ds#d/2, and DF5VdRc
d21(2RcDT/

d1s), where Sc
d is the surface ‘‘area’’ of thed-

dimensional critical droplet, andL is the system size. For
isothermal conditionsV(t)512exp@2@Vd /d(d11)#Ivdtd11#.
The important factor determining the dynamics of theV is
the productIvd. This quantity has a peak somewhere be-
tweenT50 andT5Tm , which will be denotedDTp . A plot
of this quantity is shown in Fig. 2 for a two-dimensional
system. Using these approximationsV(t) can determined as
a function ofL by solving Eqs.~17!, ~15!, and ~11! self-
consistently in the limitR@Rc .

To illustrate the influence ofL on the crystallization dy-
namics,V(L,t) was determined for a number of values of
L, starting atDT slightly lower thanDTp @i.e., DT(0)
520.09#. In Fig. 3 the difference,DV(L,t)5V(L,t)
2V(0,t), is shown as a function of time andL. The basic
shape ofDV(L,t) can be easily inferred from the tempera-
ture dependence ofIv2 as shown in Fig. 2. ForL50.015, the
final undercooling is20.075 @i.e., DT(`)5DT(0)1L#
which is just slightly aboveDTp . Thus, for thisL, the
quantity Iv2 is always increasing and consequently
DV(0.015,t).0. For larger values ofL, the undercooling
becomes sufficiently larger thatDV(L,t) becomes negative
at later times. These analytic calculations will be compared
with the numerical simulations of eutectic nucleation and
growth. Although the process of eutectic nucleation is more
complicated, the simple nonisothermal effects included in
this section must be present. Eutectic nucleation is compli-
cated by the fact that the ‘‘temperature field’’ that enters Eq.
~14! is concentration dependent@see Eq.~10!#.

IV. NONISOTHERMAL LAMELLAR GROWTH

When an amorphous metal is heated above the glass tran-
sition and near the eutectic concentration, small crystallites
emerge and concentration segregation occurs. In concert with
these dynamics heat is generated and the nucleation and
crystallite growth rates change. These changes significantly
alter the subsequent crystallization~as was seen in Sec. III!
and phase segregation processes. To observe these effects,
the dynamical model described by Eqs.~9!–~13! was nu-
merically simulated on a two-dimensional discrete square
lattice. Details of the numerical procedures were given in a
previous paper@1#.

For simplicity, the influence of a changing growth rate
will be studied in the absence of nucleation by considering a
one-dimensional crystal front invading an amorphous back-
ground in the absence of thermal fluctuations~i.e, ef50).
For these simulations the parameter set was
(RL ,Rt ,b,DT(0),ef)5(1,1,0.015,20.03,0), and the mesh
size and time step wereDx51.3 andDt50.05 respectively.
These simulations were initialized such that forx,10Dx
(x.10Dx) f51 (f521) in a system of size
(Lx ,Ly)5(128Dx,1024Dx). The propagation of this front
was then examined for different values ofL. In these and all
subsequent simulations the temperature is evolved according
to Eq. ~11!, where the volume fraction is numerically evalu-
ated at each time step.

FIG. 6. Dynamics of the lamella wavelength. The points from
bottom to top correspond toL50.0075, 0.015, and 0.0225. The
dashed line has a slope of13.

6480 54K. R. ELDER, J. D. GUNTON, AND MARTIN GRANT



ForL50, theA-X interface moves at a constant velocity
and the lamella wavelength is quickly selected. ForL.0 the
velocity of the interface slows down and gradually the wave-
length increases as smaller lamella are eliminated. These dy-
namics are shown in Fig. 4 forL50.0, 0.0075, 0.015, and
0.0225. In this figure the dark and light stripes correspond to
the two different solid phases, and the gray region to the

amorphous solid. The elimination of the lamella can be eas-
ily seen for the largest value ofL. Various statistics were
averaged over at least ten independent runs, and are shown in
Figs. 5 and 6. The dynamics ofV ~see Fig. 5! are consistent
with the form given in Eq.~16! ~i.e., A2Be2Ct), but the
specific values ofA, B, andC are not consistent with the
parameters of the simulations. In essence the value ofL

FIG. 7. Time and spatial dependence of the concentration field.~a!–~d! correspond toL50.015 for timest5125, 250, 375, and 500.~e!
and ~f! and ~i!–~l! correspond toL50.045 and 0.075, respectively, for the same times in~a!–~d!.
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seems to be much too large in the fits, implying that the
fronts will die out before the sample temperature reaches
TE . This is most apparent at the largest value ofL, in which
the form breaks down neart5500. The averaged quantities
shown is this figure tend to obscure an interesting feature. At
L50.002 25, fort.500, the interface seems to move in a
‘‘jerky’’ motion. An example of this motion is shown for an
individual run in the inset of Fig. 5. This motion is due to the
elimination of lamella, which occur at discrete intervals.

In Fig. 6 the time dependence of the average lamella
wavelength (l) is displayed on a logarithmic scale. This
figure clearly shows thatl increases with time, implying that
l increases with decreasing velocity~similar to directional
eutectic growth@1,7,11#!. The growth ofl must be consis-
tent with known growth laws for conserved fields~since the
concentration is a conserved field!. For conserved fields,
typical length scales grow at a rate oft1/3; thus l should
grow at this rate in the asymptotic limit. While this limit was
not examined in this paper, the results are consistent with a
t1/3 growth at the latest times observed.

V. NONISOTHERMAL EUTECTIC NUCLEATION

The basic result of these calculations is that, as the front
heats up, the interface slows down and the lamella spacing
increases. This should also play an important role in the ho-
mogeneous nucleation of the amorphous metal. For these
simulations the system was initialized in an amorphous state
with random fluctuations inc with the parameter set
(RL ,Rt ,b,DT(0),g,efT̂)5(1.2, 1, 0.0055,20.06, 0.01,
2/3!, whereT̂5(11DT/0.15) ~so that ‘‘zero’’ temperature
is atDT520.15). ForL50.0, 0.015, 0.03, 0.045, 0.06, and
0.075, a system of size 2563256 mesh points was simulated,
and statistics were averaged over 15 runs.

A qualitative assessment of the influence ofL can be

obtained by a visual examination of the time dependence of
the concentration field. In Fig. 7 the concentration field is
displayed at several different times and values ofL. In this
figure the gray matrix corresponds to the metastable amor-
phous phase and the drops contain the two solid phases. For
a more quantitative picture of the crystallization process, the
volume fraction is shown in Fig. 8 forL50.0 and 0.045. The
isothermal case can be fit to the form
V512exp$2@p/3#Iv2(t2t0)

3%, where Iv2'1.331028

andt0'49. The fact that an offset time is needed to fit the
data implies that the thermal fluctuations did not immedi-
ately relax to their equilibrium value.

For a closer examination ofV the deviations from the
isothermal limit are shown in Fig. 9~a!. In Fig. 9~b! the
undercooling is shown as a function of time for all values
of L. These figures can be compared with the calculations
for noneutectic crystallization shown in Fig. 3. Clearly the
general trends for eutectic crystallization are quite similar
to noneutectic crystallization. Nevertheless differences be-
tween the two cases exist. For example atL50.015,DV
decreases, which contradicts the smallL behavior seen in
Fig. 3. This effect can probably be attributed to the time
needed for the fluctuations to relax as the temperature rises.
If T is fixed andDT is increasing, the quantityIv2 always
decreases. Thus if the ‘‘temperature’’ that enters the Boltz-
mann factor inI ~i.e., e2DF/kBT) lags the ‘‘true’’ tempera-
ture, the volume fraction will slow down in comparison to
the isothermal case.

In Fig. 10 the dynamics of the average concentration
spacing@R(L,t)# is shown, whereR is defined to be the
first zero of the pair correlation function@G(r ,t)
[*du^h(rW8,t)h(rW1rW8,t)&#. For clarity each curve has been
offset, except in the inset, where a direct comparison be-

FIG. 8. Time dependence of the volume fraction. The open
circles correspond toL50.0 and the open triangles toL50.3. The
solid line is a fit to the formV512exp@2pIv2(t2t0)

3#, where
Iv254.3431029 and t0548.74.

FIG. 9. Dynamics of the volume fraction and undercooling. In
~a! the dynamics ofV(L,t)2V(0,t) is shown while in~b! the dy-
namics of the undercooling is displayed. In both figures the open
circles, and solid circles, open squares, solid squares, open tri-
angles, and solid triangles correspond toL50.0, 0.015, 0.03, 0.045,
0.06, and 0.075, respectively.
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tweenR(0.0,t) andR(0.075,t) is shown. To interpret these
results it is instructive to recapitulate the results discussed in
@1# for L50. For this case there is an initial period of diffu-
sive growth as the small nucleated drops attempt to grow to
the lamella wavelength by absorbing atoms from the sur-
rounding amorphous background. This regime leads toR
}t1/2. WhenR reaches the lamella wavelength~dictated by
the A-X velocity!, R should become fixed in time~i.e., the
‘‘lamellar’’ growth regime!, except for small corrections due
to additional droplets nucleating and growing. This regime is
difficult to distinguish in the present simulations, since the
droplets begin to coalesce shortly after the diffusive regime.
There is, however, a small regime~between 25% and 50%
crystallization! in which R slows considerably. Finally once
the system is crystallized, spinodal decomposition occurs for
which R}t1/3.

For L50.03, this pattern is roughly repeated, but asL
approaches 0.075 there is no evidence of diffusive or lamel-
lar growth regimes. Since the lamella wavelength increases
as the temperature increases, there can be no regime in which
R is constant. This is especially apparent forL50.075,
which shows that asR(0,t) begins to slow down
R(0.075,t) continues increasing, so that when the spinodal
decomposition regime is entered the value ofR(0.075,t) is
larger thanR(0,t).

In general there are many factors influencing the dy-
namics ofR. In particular as the undercooling goes to zero
both the critical droplet size and lamellar wavelength di-
verge. In addition, the nucleation rate changes drastically.

Thus it is extremely difficult, and probably unrealistic, to
identify different growth regimes, the exception being the
final regime in which spinodal decomposition dominates.
Asymptotically, it should be expected thatR}t1/3 for all
L,DTE2DT(0).

VI. CONCLUSION

The dynamics of nonisothermal homogeneous eutectic
nucleation is a complex process involving many different
growth processes. It seems unlikely that generic scaling ar-
guments, used in many domain growth phenomena@15#,
will be applicable to this phenomena. Nevertheless many
of the observations described in this work should be ex-
perimentally accessible in the crystallization of metallic
glasses.
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FIG. 10. Time dependence of
the average domain size. For conve-
nience the values of ln(R) have
been separated by 0.025 for each
value of L. The symbols are the
same as in Fig. 8. The lines denoted
t1/4, t1/2, andt3/4 correspond to the
times needed to crystallize 25%,
50%, and 75% of the sample, re-
spectively. In the inset a direct com-
parison betweenL50.0 and50.075
is shown. The dashed lines corre-
spond to slopes of12 ~upper line! and
1
3 ~lower line!.
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