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A model for the dynamics of nonisothermal eutectic growth is examined in the limit of a spatially uniform
but time dependent temperature field. The simpler case of nonisothermal growth is first considered, and
approximate solutions are obtained for the crystallization rate for the growth of a single crystallite and for
homogeneous nucleation. For eutectic transformation the latent heat generated during invasion of a eutectic
crystal into an amorphous background is shown to increase the lamella wavelength. For homogeneous eutectic
growth, the latent heat is shown to alter significantly the growth mechanisms observed under isothermal
conditions.[S1063-651X96)10408-9

PACS numbe(s): 64.70.Dv, 05.70.Ln, 82.20.M;j

I. INTRODUCTION solidification or crystallization can lead to interesting dy-
namical behavior. A classic example is the destabilization of
Eutectics are materials in which a liquid can coexist witha liquid-solid (L-S) front (i.e., the Mullins-Sekerk§2,3] in-
two crystal phases of different concentrations at a specifistability), that can lead to dendritic structures. In explosive
temperature Tg) and concentrationGg) that define the eu- crystallization[4,5] the production of latent heat can lead to
tectic point. The solidification of the liquid phase can be aoscillations in the amorphous-crystah{X) front velocity,
complex process involving both solidification dynamics andand in principle to a period doubling sequence to chaos. In
concentration phase separation. In many situations long-livedoth examples the interesting behavior is specifically related
“eutectic” structures form, i.e., morphologies containing al- to spatial gradients in the temperature fi¢ more pre-
ternating rods or lamella of the two crystal phases. The fin€isely the diffusion of the latent heat generated atAl¥ or
scale of these morphologidtypically much smaller than a L-S interface$. In eutectic crystallization, the lamella spac-
micron) gives them useful mechanical properties, and makeig is related to thé\-X velocity, which is in turn related to
them quite valuable in casting and welding processes. Tthe undercoolindor “overheating”). Thus, even though the
understand the complex morphologies that occur in eutectitemperature field in this work will be assumed to be uniform
solidification, it is imperative to understand the nonequilib-in space, its time dependence will lead to interesting compli-
rium dynamics used in their creation. In a previous pafér cations. At a minimum these nonisothermal conditions will
a phase field model was used to describe the dynamics of thestroy the lamellar growth reginta which crystal droplets
solidification of an undercooled liquid at the eutectic concen-grow in size by increasing the length and number, but not
tration under isothermal conditions. This work led to the pre-width, of lamella seen in the isothermal case.
diction of an interesting crossover scaling behavior, from To understand the extremely complex process of noniso-
diffusion-limited growth to lamellar growth to phase segre-thermal homogeneous eutectic nucleation of glassy metals,
gation, and is consistent with preliminary experiments on théwo simplified scenarios will first be considered. First, the
crystallization of amorphous Fe-B compounds. change in lamellar thickness with time will be isolated by
The purpose of this paper is examine the more generatonsidering the invasion of a one dimensional lamellar front
situation of nonisothermal crystallization. For simplicity an into a supercooled amorphous matrix in the absence of ther-
isolated sample with material properties and conditions thamal fluctuations. This analysis simplifies the dynamics by
lead to a uniform, but time dependent temperature field, willexcluding the competition and coalescence of neighboring
be considered. These conditions should be satisfied for thigonts that is common in nucleation. Second, the process of
crystallization of glassy or amorphous metals, most of whictnonisothermal crystallization via homogeneous nucleation
contain a eutectic point. Examples include Fe-B, Cu-Zr, andwill be considered in the absence of a eutectic reaction. In
Mg-Zn systems. In these metallic materials the thermal difthis manner, the dynamics of nonisothermal crystallization
fusivities should be large enough to relax “instantaneously”can be decoupled from the eutectic reactions and used as a
any spatial variations in temperature field created by latenteference point.
heat production at the amorphous-crystal fronts. This work The outline of this paper is as follows. In Sec. Il a general
will focus on the crystallization of such amorphous materi-dynamical model of nonisothermal eutectic crystallization
als. In Sec. Il a quantitative criteria for the applicability of will be presented. A limit will be derived for which this
this uniform temperature approximation will be presentedgeneral model reduces to one in which the temperature field
and discussed for the Fe-B system. is spatially uniform. This limit will provide a criteria for the
It is well known that the production of latent heat during applicability of this model in terms of nucleation rates, ther-
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mal diffusivities, and growth velocities. Section Il will fo- ; ————— 11
cus on simple nonisothermal nucleation in the absence of a
eutectic reaction. Expressions will be derived for the time 02 I L i
dependence of the crystal volume fraction for the two cases ,
considered in Sec. IV on eutectic crystallization, the first ] | \
being a one dimensional front and the second homogeneous I 3 AN 7
nucleation. Finally in Sec. V section some brief conclusions N ’ \ /

will be given.

Il. DYNAMICAL MODEL

In order to describe a eutectic structure, at least two fields -2 - 7
must be introduced, oneyj to distinguish between the I 1
amorphous and crystal phases and another@—Cg, i.e.,
concentration deviation from the eutectic concentratimn
distinguish between the two crystal phases. In principle the .4 | .
order parameter describing the two crystal phases should not
be a simple scalar quantity; however, as was shown in a o !
previous papefrl], the model presented is consistent with the 08 B ch c
standard sharp interface models used by many offfersQ. . £
and recovers many well known results for directional eutec- FIG. 1. Phase diagram obtained by minimization of the eutectic

tic growth. The model can be represented by two dynamicallree energy presented in the text. The regime enclosing the letter

0.5

equations L corresponds to a liquid phase. The regimes enclosing the letters
- - Sp and Sy correspond to solid phases of different concentrations.
dclat=V-M:VFHc, g} sc+ . () The other enclosed regions correspond to the coexistence of phases.
and
AT(t)=AT(0)+ LV(1), 5)
z?zjf/&t=—M¢5f{c,zjf}/6¢+ Ny (2

whereV is the crystal volume fraction. To estimate the va-
lidity of this approximation it is useful to consider a single
droplet with an infinitely thin interface growing at constant
velocity (v), i.e.,

where F is the free energy functional, and can be approxi-
mated by

> Ky = Ke, =

Fie= [ ol fep+ SATpE+ SV @
AT/ gt=DV?AT+ Lv 8(r—[vt+Ry]), (6)

The bulk free energy f() can be written

f(c,p)=—r¢?2+ uy?la4+ (aAT— Bc?)y+bct4,  where
AT=(T-T,)/Tg, T,, being the melting temperature at
B=0, andT the temperature. All the parameters that ente
F will be considered to be independent of temperature. |
this formulation no distinction is made between an amor-
phous solid and a frozen liquid. The temperature dependen
of M; and M, will be incorporated at a later stage. The

phase diagram for Ed3) is shown in Fig. 1.

For nonisothermal conditions an equation of motion for
the temperature field must be specified. The dynamics of the

where R, is the initial droplet size and the temperature is
Iuniform att=0. For the uniform temperature approximation
o be valid, the temperature must relax before the interface
as moved a significant distance, i.e., of the order of a cor-
glation length. Thus it is required that the temperature re-
axes for timest~{,/v. Thus it is appropriate to consider
the sharp interface limibt~{,<R;. In this limit the solu-
tion to Eq.(6) in Fourier space is

temperature field are in general controlled by diffusion, R o~ Rgfl el7— g~ Ddt
Newtonian cooling, and latent heat production. Thus the AT(q,t)~e PIAT(q,00+ L K Oy D )
equation for the dimensionless undercoolidgr{ is yTha %)
AT , Ly
o ~H(ATe—AT)+DVAATH 5 —-, (4 where y=vqcos@), Q;=1, Q,=[%"ds, and

Q3=[gdof” d¢sin(f). The parametet is the ‘longest’
where u describes the coupling to a heat bath at an underlength scale in the problem. From a practical point of view
cooling ATy, D is the thermal diffusivity,L=H/(c,Tg), L can be interpreted as several times the average distance
H is the enthalpy of fusion, and, is the specific heat at between nucleation sites, or in the final crystallized sample
constant pressure angl=/||. For this work an isolated several times the average crystallite size. &§e10 the solu-
solid is consideredi.e., u=0). tion isT(0,t) =T(0,0)+ LV, which is consistent with Eq5).

If the latent heat liberated during the crystallizatio®.,  For q#0, the first term on the right-hand side of Hq) is
as ¢ evolves in timé can be ‘instantaneously’ distributed negligible if Dg?t>1. A very conservative estimate of this
throughout the sampl&\T is constant in space and equal to condition can be obtained by settiag=2#/L, i.e.,
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—— T T For conditions under which these assumptions are valid,
r 1° ] AT rises uniformly, and Eqg1) and (2) can be simplified
sinceM¢(T) andM ,(T) are now independent of position. It
is convenient to eliminaté ,(T) by rescaling time by the
following variable transformatiom= f},dt’ M (T(t"))r. Itis
also useful to transform to the following dimensionless vari-
ables =yl g, h=clcy, x=r/¢,, andT'=T/T,, where
o= (/)2 co=(2Be/0)Y2  {,=(xy/1)"%  and
To=orla~4Tg. These substitutions lead to

Iv®e

5x10-8 - -

ohlar=RIR?’V3(h*— ¢— R *V?)h+ vy, 9)
Ipldt=(1—p*+V?)p+ B h°—AT +v,, (10

AT (1)=AT,+ L'V, (11

-0.1 -0.05

i (Vh(X, D) vp(X', 7)) =27€,V28(7— 1) 8(x—x"), (12

FIG. 2. Crystalization rate dependence on temperature in tw@nd

dimensions.
(ve(X, TV v (X', 7)) =2€48(7— 7" ) S(X—X"). (13
(2m)?DI(Lv)>LI¢,. (8)
o o DR ©
For the second term to be negligible, it must also be smal
compared to 1in the dimensionless units used henhich
implies (2m)?D/(Lv)>(R./L) L. SinceR>{,, andL [ & 2 —
is of order 1, this condition is satisfied if E() is satisfied.

As an example, consider an Fe-B system. At low tempera
tures(i.e., 500 K<T<800 K) the droplet velocity is of the
order 10 '<v <10 2um/s[6], and the thermal diffusivity is
of the orderD~ 10 um?/s. Assuming the correlation length
is a few lattice space€.e, {~10 3um) Eq. (8) reduces to
L<10*—10°um. For experiments in the temperature rangels
stated above, this limit should be satisfied.
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o 200 200 500 200 1000 FIG. 4. Time dependence of th&-X front. In this figure the

T concentration field if) is shown at a distance of three lattice sites
behind theA-X front as a function of time. Iia), (b), (c), and(d),
FIG. 3. Dynamics of volume fraction and undercooling.(& the front is shown for£=0.0, 0.0075, 0.015, and 0.0225, respec-
the lines from top to bottom at=600 correspond taC=0.015, tively. The total time evolved for each of these simulations was
0.03, 0.045, 0.06, and 0.075. [b) the lines from bottom to top 3600, 4800, 12 500, and 25 000 fdr=0.0, 0.0075, 0.015, and
correspond ta=0.015, 0.03, 0.045, 0.06, and 0.075. 0.0225, respectively.
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FIG. 5. Dynamics of the volume fraction. The points correspond to the numerical results and the lines to fitd 6. Egom left to right
the lines correspond t6=0.0, 0.0075, 0.015, and 0.0225. In the inset an individual run is shows $@.0225.

The various dimensionless parameters in these equatiotisough an accurate calculation lofs a formidable task. For
are e¢=ukB¢/0§3/r, y=[br/(2,8)2][Rt/Rf], R=I,/T, the purposes of this paper the temperature dependenke of
R=Cylle, Le=(xd2Bv0)™ B'=2B%br, L'=LIT,, wil be simply taken from the approximate formula of
I',=1Mr, andT' .= {2/2M B4 . For simplicity in the fol- ~ Langer and Turskj12]. _ _

lowing pages the prime superscripts will be dropped, and To begin these calculations consider E#0) in the ab-

R will be taken to be independent of temperature. sence of concentration, i.e.,

The model is now complete, and can be used to describe
nonisothermal eutectic nucleation. Before considering these
complex dynamics the influence of nonisothermal conditions
will be considered in the absence of the eutectic interactior@nd Eg. (11). For a single spherical droplet it is quite
simple to calculateV(7). The rate of growth of this
droplet can be calculated by expanding around a planar
solution, i.e., (r,t)~@PP[r—R(7)], where ¢ satisfies

When an amorphous material is heated above the gladg?/dx?+1—¢?)¢$=0, and is given by#'d=tanh{/2).
transition, small crystallites nucleate in and grow into theThis gives the following equation for the radiiiR(7)] of
amorphous background. As latent heat is generated both tlige droplet:
nucleation ratel() and the droplet velocity) are altered.
For the dimensionless model presented hgre., where
M ,(AT) has been scaled intd the increase in temperature
will always decrease, but may increase or decredsesince

Il IT=(1—-p*+V?) p—AT+v,, (14)

IIl. NONISOTHERMAL CRYSTALLIZATION

IRIdT=v—(d—1)/R, (15
wherev=ATA ¢/ o, o= [dx(d¢,/9x)? is the surface ten-

| goes to zero al=0 and atT=T,, (or T=Tg for a eutec- sion, andA ¢ is the miscibility gap. The critical droplet size
tic), and has a peak somewhere in between. It should bfor this model is defined bydR(7)/dr=0 and is
noted that when the velocity is transformed into physicalR,=(d—1)c/ATA¢. The undercooling can be introduced
units[by the relationships given above E§)] it will also go  through Eq.(11), and the volume fraction is related to the
to zero at zero temperature. The basic functional deperdroplet radius by the relationshig( )= Q4R%d. In one di-
dences ofl andv on T are captured by most theories, al- mension the solution is
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155 ———————————————) Relying on the work of Langer and TursklL2] it is
i £ straightforward to determine thak=(d—1)/R?, Q,
] =L92R%/(d—1)]¥4 S92, and AF=Q4RI I} (2RAT/
d+o), where S! is the surface “area” of thed-
dimensional critical droplet, ant is the system size. For
isothermal conditiong/(t) =1—exd —[Qq/d(d+1)]lv%1].
] The important factor determining the dynamics of thés
. the productlv?. This quantity has a peak somewhere be-
] tweenT=0 andT=T,,, which will be denoted\ T, . A plot
of this quantity is shown in Fig. 2 for a two-dimensional
system. Using these approximatioyi@) can determined as
a function of £ by solving Egs.(17), (15), and (11) self-
consistently in the limiR>R...
1 To illustrate the influence of on the crystallization dy-
J namics,V(£,t) was determined for a number of values of
1 L, starting atAT slightly lower thanAT, [i.e., AT(0)
=-0.09. In Fig. 3 the difference,AV(L,t)=V(L,1)
—V(0}), is shown as a function of time and. The basic
shape ofAV(L,t) can be easily inferred from the tempera-
ture dependence 62 as shown in Fig. 2. Fa£=0.015, the
final undercooling is—0.075 [i.e., AT(»)=AT(0)+ L]
FIG. 6. Dynamics of the lamella wavelength. The points fromwhich is just slightly aboveAT,. Thus, for thisZ, the
bottom to top correspond t&=0.0075, 0.015, and 0.0225. The quantity lv? is always increasing and consequently
dashed line has a slope &f AV(0.0151)>0. For larger values oL, the undercooling
becomes sufficiently larger that)(L£,t) becomes negative
|AT(0)| |[AT(0)| (- LlAdlriLo) at later times. These analytic calculations will be compared
T +| V1p(0) — T e : with the numerical simulations of eutectic nucleation and
(16) growth. Although the process of eutectic nucleation is more
complicated, the simple nonisothermal effects included in
This solution can be compared with the growth of a onethis section must be present. Eutectic nucleation is compli-
dimensional eutectic front presented in Sec. IV. cated by the fact that the “temperature field” that enters Eq.
For nucleation phenomena the standard form for the vol{14) is concentration dependejsee Eq.(10)].
ume fraction[13] is

log,o(T)

Vip(7)=

IV. NONISOTHERMAL LAMELLAR GROWTH

0

V(T)=1—exp<—%j dT’|(T')Rd(T,T')), (17)
When an amorphous metal is heated above the glass tran-
. . ) ) sition and near the eutectic concentration, small crystallites
wherel(7) is the nucleation rate, arfd(7,7') is the radius  emerge and concentration segregation occurs. In concert with
of a droplet at timer that was nucleated at time. In order  these dynamics heat is generated and the nucleation and
to evaluateR(7,7') it is standard to take the limiR>R.  crystallite growth rates change. These changes significantly
such thatR(7,7")=/7d7"v(7"). In all subsequent cal- alter the subsequent crystallizati¢as was seen in Sec. )l|
culations this limit will be assumed. Once a form fdrr) and phase segregation processes. To observe these effects,
is specified, Eq.(17) combined with Egs.(15) and (11) the dynamical model described by Ed9)—(13) was nu-
form a closed set of equations. For example, for heteromerically simulated on a two-dimensional discrete square
geneous nucleation, whelér)=1,8(7), the set of equa- lattice. Details of the numerical procedures were given in a
tions is simply V(7)=1-—exgd—[Qq4/d]I;R(,0)9] and previous papefl].
IRIGT=AP[ATy+ LV]/ 0. For simplicity, the influence of a changing growth rate
For homogeneous nucleation the situation is more comwill be studied in the absence of nucleation by considering a
plicated, since the nucleation rate is a strong function ofPne-dimensional crystal front invading an amorphous back-
temperature. To understand these dynamics the nucleatiground in the absence of thermal fluctuatidns, €,=0).
rate will be taken to b§12] | =KQqexp(—AF/K,T), where For these simulations the parameter set was
K is the dynamic prefactor), is the statistical prefactor, (R_,R;,8,AT(0),es)=(1,1,0.015;-0.03,0), and the mesh
andAF is the free energy difference between the metastablsize and time step werkx= 1.3 andA 7=0.05 respectively.
state and the saddle point configurati@e., a critical drop- These simulations were initialized such that fox10Ax
let). In what follows, it will be assumed that the nucleation (x>10Ax) ¢=1 (¢é=-1) in a system of size
rate depends on time only through the temperature field. IfL,,L,)=(128A%,1024Ax). The propagation of this front
should be noted that even under isothermal conditions, thengas then examined for different values©fIn these and all
is a period of time needed for the nucleation rate to reach itsubsequent simulations the temperature is evolved according
asymptotic valud14]. This effect is sometimes taken into to Eq.(11), where the volume fraction is numerically evalu-
account by introducing an offset time. ated at each time step.
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a) e)

FIG. 7. Time and spatial dependence of the concentration file(d) correspond taC=0.015 for timesr= 125, 250, 375, and 500e)
and (f) and (i)—(l) correspond taZ=0.045 and 0.075, respectively, for the same time&jr(d).

For £=0, theA-X interface moves at a constant velocity amorphous solid. The elimination of the lamella can be eas-
and the lamella wavelength is quickly selected. EorO the ily seen for the largest value of. Various statistics were
velocity of the interface slows down and gradually the wave-averaged over at least ten independent runs, and are shown in
length increases as smaller lamella are eliminated. These dirigs. 5 and 6. The dynamics df(see Fig. $ are consistent
namics are shown in Fig. 4 fo£=0.0, 0.0075, 0.015, and with the form given in Eq.16) (i.e., A—Be "), but the
0.0225. In this figure the dark and light stripes correspond t@pecific values ofA, B, and C are not consistent with the
the two different solid phases, and the gray region to theparameters of the simulations. In essence the valu& of
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FIG. 8. Time dependence of the volume fraction. The open FIG. 9. Dynamics of the volume fraction and undercooling. In
circles correspond t€=0.0 and the open triangles 1=0.3. The () the dynamics of(£,t)—V(0}) is shown while in(b) the dy-
solid line is a fit to the formV=1—exg — mlv?(t—to)*], where  namics of the undercooling is displayed. In both figures the open
lv?=4.34x10"° andt,=48.74. circles, and solid circles, open squares, solid squares, open tri-

angles, and solid triangles correspond’te 0.0, 0.015, 0.03, 0.045,
seems to be much too large in the fits, implying that the0.06, and 0.075, respectively.
fronts will die out before the sample temperature reaches
Te. This is most apparent at the largest valueCpfn which ~ obtained by a visual examination of the time dependence of
the form breaks down near=500. The averaged gquantities the concentration field. In Fig. 7 the concentration field is
shown is this figure tend to obscure an interesting feature. Adisplayed at several different times and valuesCofn this
L£=0.002 25, forr>500, the interface seems to move in afigure the gray matrix corresponds to the metastable amor-
“jerky’ motion. An example of this motion is shown for an phous phase and the drops contain the two solid phases. For
individual run in the inset of Fig. 5. This motion is due to the a more quantitative picture of the crystallization process, the
elimination of lamella, which occur at discrete intervals.  volume fraction is shown in Fig. 8 fof=0.0 and 0.045. The

In Fig. 6 the time dependence of the average lamellasothermal case can be fit to the form
wavelength §) is displayed on a logarithmic scale. This V=1—exp{—[@/3]lv?(7—70)%}, where lv?~1.3x108
figure clearly shows that increases with time, implying that and 7o~49. The fact that an offset time is needed to fit the
\ increases with decreasing velocityimilar to directional data implies that the thermal fluctuations did not immedi-
eutectic growt1,7,11)). The growth ofA must be consis- ately relax to their equilibrium value.
tent with known growth laws for conserved fiel@nce the For a closer examination of the deviations from the
concentration is a conserved figldFor conserved fields, isothermal limit are shown in Fig.(8. In Fig. 9b) the
typical length scales grow at a rate 0% thus A should undercooling is shown as a function of time for all values
grow at this rate in the asymptotic limit. While this limit was of £. These figures can be compared with the calculations
not examined in this paper, the results are consistent with 8r noneutectic crystallization shown in Fig. 3. Clearly the
t1/3 growth at the latest times observed. general trends for eutectic crystallization are quite similar
to noneutectic crystallization. Nevertheless differences be-
tween the two cases exist. For examplefat0.015, AV
decreases, which contradicts the smalbehavior seen in

The basic result of these calculations is that, as the fronFig. 3. This effect can probably be attributed to the time
heats up, the interface slows down and the lamella spacingeeded for the fluctuations to relax as the temperature rises.
increases. This should also play an important role in the hol T is fixed andAT is increasing, the quantity? always
mogeneous nucleation of the amorphous metal. For thesgecreases. Thus if the “temperature” that enters the Boltz-
simulations the system was initialized in an amorphous statmann factor inl (i.e., e 2F/%eT) lags the “true” tempera-
with random fluctuations inys with the parameter set ture, the volume fraction will slow down in comparison to
(R.,R,8,AT(0),7,€,T)=(1.2, 1, 0.0055,—-0.06, 0.01, the isothermal case.

2/3), whereT=(1+AT/0.15) (so that “zero” temperature In Fig. 10 the dynamics of the average concentration

is atAT=—0.15). For£=0.0, 0.015, 0.03, 0.045, 0.06, and SPacing[R(£,)] is shown, whereR is defined to be the

0.075, a system of size 2556 mesh points was simulated, first zero of the pair correlation function(G(r,7)

and statistics were averaged over 15 runs. =[dé(h(r’,7)h(r+r’,7))]. For clarity each curve has been
A gualitative assessment of the influence ®fcan be offset, except in the inset, where a direct comparison be-

V. NONISOTHERMAL EUTECTIC NUCLEATION
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| FIG. 10. Time dependence of
the average domain size. For conve-

© nience the values of IK) have
§ ] been separated by 0.025 for each
| - value of £. The symbols are the
— 4 same as in Fig. 8. The lines denoted
D:. A L T T T [ T T T I T T77 | T T H
= 13 F 4 | Tya, T12, @nd7g, correspond to the
Q% F ] times needed to crystallize 25%,
o 105 3 50%, and 75% of the sample, re-
- F 1 1 spectively. In the inset a direct com-
2 4oL 3 - parison betweerf = 0.0 and=0.075
- E 1 is shown. The dashed lines corre-
L 115 E /3 . - spond to slopes of (upper ling and
. TR s 3 2 (lower line).
[ A E_ /Naé // _: b
R 11 & 7]
e | | |
0.9 L 105 Ol ] L1 11 [ 1
L 2.2 24 2.6 2.8 3
I log,(7)
i 1 1 | 1 1 1 l 1 1 1 \ i 1 1 |
2.2 2.4 26 2.8 3
log,o(T)

tweenR(0.0,7) andR(0.075,7) is shown. To interpret these Thus it is extremely difficult, and probably unrealistic, to

results it is instructive to recapitulate the results discussed ifdentify different growth regimes, the exception being the

[1] for £L=0. For this case there is an initial period of diffu- final regime in which spinodal decomposition dominates.

sive growth as the small nucleated drops attempt to grow té\symptotically, it should be expected th&=t for all

the lamella wavelength by absorbing atoms from the sur£L<ATg—AT(0).

rounding amorphous background. This regime leadRkto

«t¥2, WhenR reaches the lamella wavelengftictated by

the A-X velocity), R should become fixed in timé.e., the

“lamellar” growth regime, except for small corrections due

to additional droplets nucleating and growing. This regime is The dynamics of nonisothermal homogeneous eutectic

difficult to distinguish in the present simulations, since thenucleation is a complex process involving many different

droplets begin to coalesce shortly after the diffusive regimegrowth processes. It seems unlikely that generic scaling ar-

There is, however, a small reginibetween 25% and 50% guments, used in many domain growth phenomgha,

crystallization) in which R slows considerably. Finally once will be applicable to this phenomena. Nevertheless many

the system is crystallized, spinodal decomposition occurs foof the observations described in this work should be ex-

which Rect3, perimentally accessible in the crystallization of metallic
For £=0.03, this pattern is roughly repeated, but&as glasses.

approaches 0.075 there is no evidence of diffusive or lamel-

lar growth regimes. Since the lamella wavelength increases

as the temperature increases, there can be no regime in which

R is constant. This is especially apparent 6 0.075,

which shows that asR(0t) begins to slow down K.R.E. would like to thank Nigel Goldenfeld for many

R(0.075t) continues increasing, so that when the spinodalseful discussions. This work was supported by Grant No.

decomposition regime is entered the valueRg§D.075t) is  NSF-DMR-9596202. We would also like to acknowledge

larger thanR(0\t). support of the Pittsburgh Supercomputing Center and the
In general there are many factors influencing the dy-Lehigh University Computing Center. K.R.E. acknowledges

namics ofR. In particular as the undercooling goes to zerothe support of Grant No. NSF-DMR-89-20538, administered

both the critical droplet size and lamellar wavelength di-through the University of lllinois Materials Research Labo-

verge. In addition, the nucleation rate changes drasticallyatory.

VI. CONCLUSION
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