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Nonlinear dielectric relaxation and dynamic Kerr effect in a strong dc electric field suddenly
switched on: Exact solutions for the three-dimensional rotational diffusion model
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The infinite hierarchy of differential-recurrence relations for ensemble averages of the spherical harmonics
pertaining to the noninertial rotational Brownian motion of an ensemble of polar and anisotropically polariz-
able molecules in a strong external dc electric field is derived by averaging the underlying Langevin equation.
This procedure avoids recourse to the Fokker-Planck equation, the solution of which involves complicated
mathematical manipulations. Exact analytic solutions for the spectra of the relaxation functions and relaxation
times for nonlinear dielectric relaxation and dynamic Kerr effect of symmetric top molecules are calculated for
two limiting cases, namely, pure induced dipole moments and pure permanent moments, using the continued
fraction method. The general case where both types of moment are taken into account is then considered by
using matrix continued fractions. Exact expressions for the dielectric and Kerr effect relaxation times are also
derived as functions of the parametérand o characterizing the field-off and the induced dipole moments.
Plots of these relaxation times are presented for various valuésuad o. The nonlinear relaxation behavior
is emphasized in figures showing how the real and imaginary parts of the spectra of the relaxation functions
deviate from the Lorentzian profilegS1063-651X96)12512-5

PACS numbeps): 42.70.Df, 05.40+j, 78.20.Fm, 78.20.Jq

I. INTRODUCTION bution functionW({u},t) as a series of spherical harmonics.
This yields an infinite hierarchy of linear differential-
Dielectric and Kerr effect relaxation of polar fluids recurrence equations for averaged spherical harmonics. The
springs from the rotational motion of molecules in the pres-general method of solution of this hierarchy is effected by
ence of external electric fields and thermal agitatisee, successively increasing the number of equations until con-
e.g., [1-3)). Interpretation of these phenomena is usuallyvergence is attained. An alternative solution may be formu-
based on the rotational diffusion model in the noninertiallated by using continued fractiof§—7]. Numerical and ap-
limit which relies on the solution of the appropriate Fokker- proximate methods for solving the Fokker-Planck equation
Planck equation and has usually been confined to the linedrave been discussed elsewhdeee, for example, Refs.
response or the nonlinear response in low order of perturbg5-10]).
tion theory[4], where the energy of a molecule in the electric  The goal of the present paper is to derive exact analytic
field is far less than the thermal energy. This restricts conequations for the dielectric and Kerr effect response func-
siderably the range of the applicability of the theory. tions and relaxation times when a strong static electric field
The theoretical approach to the analysis of nonlinear diis suddenly applied to an assembly of noninteracting polar
electric and Kerr effect relaxation experiments when inertialand anisotropically polarizable molecules. For this purpose
effects are neglected usually starts with the underlyingve shall apply an analytical method recently developed for
Langevin equation whence the Fokker-Planck equation fothe calculation of the linear response of systems of particles
the probability distribution functioW({u},t) of orientations compelled to rotate in three-dimensional spfzel0—14.
of a unit vectoru fixed in the particle in configuration space The essence of this method is the exact analytical solution of

[5] is derived with the aid of the continuity equation the infinite hierarchy of differential-recurrence relations gov-
erning the relaxation dynamics of a Brownian particle in the

d T presence of an external potential by means of ordinary or

EWJF div(uw)=0, matrix continued fractions. The method also constitutes a

particularly simple way of deriving the hierarchy of linear

which is the probability conservation law. The Fokker- differential-recurrence relations for desired averages for any
Planck equation can then be solved by expanding the distrparticular external potential from the vector nonlinear Euler-
Langevin equation for a polar molecule. It is often very dif-
ficult to obtain such a hierarchy from the Fokker-Planck

* Author to whom correspondence should be addressed. equation because of the problems involved in separating the

1063-651X/96/546)/646214)/$10.00 54 6462 © 1996 The American Physical Society



54 NONLINEAR DIELECTRIC RELAXATION AND DYNAMIC . .. 6463

variables. This eliminates the excessive step in the theory afoise-driving torque, again due to Brownian movement so
constructing and solving the corresponding Fokker-Planckhat A(t) has the following properties:
equation entirely. In Refd.7,9—14 we have demonstrated

using several physical examples the applicability of the \i(t)=0,
method to the calculation of generalized complex suscepti-
bilities and correlation times for dynamic variables governed (TN (t2) = 2KTZ 8, 8(t — t). 2.3

by nonlinear Langevin equations in the linear response case.
In the present paper we apply this method to evaluate th
nonlinear response for dielectric and Kerr effect relaxation
Our method just as that of Watanabe and Mdriihis based

on continued fractions. However, in contrast to the approac

of Ref.[€], it aIIovt\(srL(Jsrt](_) ﬁbtam solutions cf)f 'nh?m?%?ne?hus(:artesian axeg,y,z of the fixed coordinate systend(t) is
recurrence equationsich are hecessary for calcuialing the o pyirac gelta function. The term(t) XE(t) in Eq.(2.2), is

relaxation timek Furthermore, it can be applied to the 9€n- e torque due to the total electric field acting on the mol-

eral case of polar and polarizable molecules, rat_her than tgcule. This torque can be expressed in terms of the potential
the particular cases of nonpolar and/or nonpolarizable molf

ecules. Diardin, Blaise, and Coffej15] have demonstrated unctionV({u}) as a function of the components of the vector
recently the applicability of the method to the calculation of ™
the transient birefringence due to the induced dipole Kerr

¥he overbar means a statistical average over an ensemble of
molecules which all start at time with the same angular
velocity w and orientatioru (sharp initial conditions[5,7],

yj is Kronecker’s deltai,j=1,2,3, which correspond to the

d

effect only. Here we consider the general case of polar and mxE=—uX— V({u}), (2.4
anisotropically polarizable molecules, the nonlinear dielec- au
tric and Kerr effect relaxation being considered simulta-
neously. We remark that these problems, unlike the one¥here
considered in Refd.7,9-14, are truly nonlinear; therefore,
there is no longer any connection between the step-on re- RS S
sponse and the ac response and so the concept of relaxation U duy ] duy au,’
functions and relaxation times should be used rather than
correlation functions and correlation times. i, j, andk are the unit vectors along the Cartesian axgesg,
andz, respectivelyu,, u,, andu, are the Cartesian compo-
Il. ROTATIONAL DIFFUSION IN A STRONG nents of the unit vectou(t). These components are ex-
ELECTRIC FIELD AND RELATED pressed in terms of the poléf) and azimutha(p) angles as
RELAXATION FUNCTIONS follows:
We study the three-dimensional rotational Brownian mo- u,=sind cosp, uy=sind sinp, u,=cosd.
tion of a particle in an external electric field. The particle
contains a rigid electric dipolg.. We take a unit vectou(t) In the simplest case of a symmetric top molecule with the
through the center of mass of the pal’tiCle in the direction Ofﬁe'd E(t) app“ed a|0ng tha axis the potentia' function
p. Then the rate of change oft) is V({u}) is given by[6]
— 1 2
dté(tt) — ()X Ut), 2.1) V({u},t)=—uE(t)cosd— 3 (a;— ay)E (t)coszﬁ,(z 5

where w(t) is the angular velocity of the particle. It should wherea; anda, are the components of the electric polariz-
be noted that Eq(2.1) is a purely kinematic relation with no ability parallel and perpendicular to the axis of symmetry of
particular reference either to the Brownian movement or tdhe molecule.
the shape of the particle. For simplicity we specialize it to Equation(2.2) includes the inertia of the molecule. The
the rotational Brownian motion of a symmetrical top mol- noninertial or low-frequency responsthe Debye approxi-
ecule by supposing that the angular veloaiift) obeys the mation occurs when we neglect the inertia term in E22).
Euler-Langevin equatiofi7] In this limit the angular velocity vector may be immediately
obtained from Eq(2.2) as

~ do(t)
I =g T ¢ =m(O)XEM) + A1), (2.2 o(t)=[m(t) X E(t)+\(1)]¢ L
wherel is the inertia tensor of the moleculm is the total  ON combining. this equation with the kinematic relation Eq.
dipole moment which we represent as (2.1) one obtains
_ ~y du(t J
m(t) = p(t) +a(t) - E(1), —d(t ) _ -1 u(t) XV X u(t)+ ¢ (L) X u(t),

a is the molecular polarizability tensdthus effects due to
the hyperpolarizability are neglectedw(t) is the damping which, using the properties of the triple vector product, be-
torque due to Brownian movement, aidt) is the white- comes
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du(t) 4 9 d . ({ x})
gt =5 Y 5g VU ut)- S- VTR X (). =h;({x}, b f({X} +Dgyj({x},t)
(2.6
This is the vector Langevin equation for the motion of the 9.1({X} Ol f({X}) (213
vectoru in the noninertial limit. Equationi2.6) is equivalent
to three equations for the Cartesian components of where summation over, j, andk is also understood.

We remark that we shall always use the Stratonovich defi-
1 nition [5,7] of the average of the multiplicative noise term
Ux(t) =7 Ny (D Uz() = A (Duy (1) — (;_UXV here as that definition always constitutes the mathematical
idealization of the physical stochastic process of orienta-
d tional relaxation in the noninertial limit. Thus, it is unneces-
u(t)- au V” (2.7 sary to transform the Langevin equatiof@7)—(2.9) to It0
equations(e.g.,[18]). Moreover, we can apply the methods
d . d of ordinary analysi$5,18].
gt U(=¢ [)\z(t)ux(t)_)\x(t)uz(t)_ P In the study of orientation relaxation the quantities of in-
y terest are the spherical harmoniXg,, defined as

d
+uy| u(t)- £V”, (2.9 Xn+m=€"MPM(cosd)

= eiimcp( 1— CosZﬁ)mIZ den(COS{})

Uz(t)=§1[)\x(t)uy(t)—>\y(t)ux(t)— % v d cosy™

(2.19

where P, (x) and P(x) are the Legendre polynomials and
(2.9  the associated Legendre functions, respectidé§]. The
X,-m are expressed in terms of,u, ,u, as follows:

Jd
+uz( u(t)- Ju V) .

The stochastic differential equation2.7)—(2.9) contain

multiplicative noise termg; (t)u;(t). This poses an interpre- - d™P,(u,)
tation problem for these equations as has been discussed in Xnzm= (UyxEiuy) T
Refs.[5, 7]. We recall, taking the Langevin equation fiar z
stochastic variableg(t) }=1{£,(t),&x(t),....én (D)} Noting that according to the Stratonovich definition the con-
g ( ) ventional rules of transformation of a stochastic variable can
be used 18] and that
— S =h(ED)D+ g, (ED}LOT(0) (210 18]
d d™P,(u, d
) el _ iy ym-1 mTz =
with T Xnm=M(Uy+iuy) qum Uy
Fi(t)zor o " . dmpn(uz) d
im(uy+iuy) Wa Uy
[ (t)T(t) =2D 65 6(t1— to) (2.1
. - , . . d™"'Py(u,) d
and interpreting it as a Stratonovich equation, that the aver- + (ugtiuy)™ QT dt u, (2.15
uZ

aged equation for the sharp valug&) =x; at timet is [5,7]

we can obtain the equation of motion of the spherical har-

ax _ - §(t+7)—X monics X, by cross-multiplying Eqs(2.7)—(2.9) by
dat o T
. d"Py(u,)
m-1 -z
09,0+ Da((X0) 5 Gy((XhD), (212 MU =g
where & (t+ 7) (7>0) is the solution of Eq(2.10 with the d™P (u,)
initial conditions &(t)=x;. In Egs. (2.10 and (2.12 the im(u,+iuy)m? noz
summation ovej andk is understoodEinstein’s notatioh du;
The last term in Eq(2.12 is called the noise-induced or
spurious driff 7]. The proof of Eq(2.12 can be found else- 4P (u)
where(see Ref[5], pp. 54, 53. (Ug+iuy)™ s
In the same manner we can prove that the averaged equa- X Y duy’

tion for an arbitrary differentiable functiom({£&}) has the
following form (see the Appendix respectively, and then summing them. Thus,
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d™ P [uy(1)]
Xamu(t))= - [[ux(t)+|uy(t)]mwm—+lu)
d"P,[u,(t)]
duj\(t)
L dPL(uy(D)
+ m[ux(t)+|uy(t)] T{gx1({u(t)})+|gy][{u(t)}]}

Z

d 17
_a_LIZV_l—U() u(t)- %V

+mluy(t) +iuy ()]t

J J _ J
—a—uXV—| — V[ uy(t )+|uy(t)](u(t)- ﬁv)

(9Uy

. AP [u,(t)]
[ uy(t) +iuy(t)] dum—+1()921({u(t)}) (2.16

where the components of the tengpare
Oxx=0, Oxy™ U /g, Ox= —uy/§,
OQyx= —u,/¢, Oyy= 0, Oy~ Ux /¢, (2.17)

Ozx= uylg! gzy:_uxlgv 9,7~0
On averaging the stochastic equati@i16 noting Eq.(2.13, we have

5 d X 1 m— 1de’ (uy) d Vv d Vv J Vv
7o gt Xnm= T m(uy+iuy) aum ﬁ_ux |(7—uy +(uy+iuy)fu i
o d™IP(uy) d 3
+(UX+IUy) W _(9_UZV+UZ u- %V
J o1 d"Pn(uy) . : "Py(uy)
+§ngj 0—,_uk m(ux+|uy)m l#rznz(ng+|gyj)+(ux+|uy)mTﬁlzgzj ) (2-18)
where
{

TD—m (219

is the Debye relaxation time. We remark thatu, ,u, in Eq. (2.18 andu,(t),u,(t),u,(t) in Egs.(2.7)—(2.9 have different
meanings, namelyy,(t),u,(t),u,(t) in Egs.(2.7)—(2.9) are stochastic variables whilg ,uy,u, in Eq. (2.18 are the sharp
(definite) valuesu,(t) =u, at timet. Instead of using different symbols for the two quantities we have distinguished sharp
values at timet from stochastic variables by deleting the time argument, as in [R&fThe right-hand side of E¢2.18
consists of two terms, namely, ttdeterministicdrift and the noise-induced(or spuriou$ drift. These terms have been
evaluated elsewheld,16).

The quantitiesX,,, in Eq. (2.18 are in general functions af, , which are themselves random variables with probability
density functionwW such thatWdy, is the probability of findingu, in the interval (i, ,u,+duy). Therefore in order to obtain

equations for the moments which govern the relaxation dynamics of the system we must also avel@gE8Eaver the
probability density functionV [8]. We have

d 0 0 J o d
27'D a <Xnm>+n(n+1)<xnm>: 2kT(2n+1) n<xn+1m+l au, V—i (9_uy \ >+(n+1)< n 1m+1( AU, V—i (9_uy V) >}
! +1 +2){ X J V+i J \Y
2kT(2n+ 1) | "N MEDNTME2 Xncamea| F VG

J Jd
+(n+1)(n+m—1)(n+m)< n—1m— 1((9“ V+i WV
y

|

n(n—m+ 1)<Xn+1m % V> —(n+21)(n+ m)<Xnlm % VH (2.20

1
T kTenr D
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where the angular brackets designate the averagesVéver is the relaxation function of orden. Moreover, another
Now, let us suppose that a strong constant electric Egld quantity which can be measured experimentally is the relax-

applied along the axis is suddenly switched on at time0.  ation timer, defined as the area under the normalized relax-

Our aim is to calculate the exact analytic solutions for theation function, namely,

nonlinear response of relaxation processes customarily mea-

sured by experiment and arising from an assembly of nonin- I fa(t)

teracting molecules. Equatio(2.20 can be considerably = fo f,(0)

simplified on noting that the vectdw/uou)V has only az

component, if the geometric axes of the molecule are chosen Having switched on the constant electric fi€lglthe sys-

to be coincident with those of the molecular polarizability tem will tend ast—o to a new equilibrium state with the

dt. (2.27

tensor, namely, Boltzmann distribution function
Ja (a1—ap) _, \%
e, V=—|Eot T a Eouz k. (2.23) Wo(9)=C exp( - k_T) =C exp(£ cosd+ o cogd),

(2.28

whereC is the normalizing constant. The equilibrium aver-
ages of the spherical harmonics satisfy the recurrence rela-
tions (stationary state

Using the recurrence relation between associated Legendre
functions[19]

(2n+1)xP(x)=(n—m+1)P, ;(x)+(n+m)P;.,(x),

and substituting Eq.2.21) into Eqg.(2.20, we obtain a five-

. 1-3m?/n(n+1)
term recurrence equation _
| e 1=20 G Dn+3) {Xnmlo
n(n+ —am
275 = (Xom + n(n+1)—20¥<xnm) (n+m) (n—m+1)
dt (2n—1)(2n+3) =¢ SETEE) (Xn—1mo— (h+D2n+1) (Xn+1m)o

(n+1)(n+m) n(n—m+1)
“onr1 Keewm T T (Xneim)

(n+m)(n+m-—1)
n(2n—1)(2nT1) Cn-2mo

o

(n+1)(n+m)(n+m—1)
(2n—=1)(2n+1)

(Xn-2m) (n—=m+1)(n—m+2)
N (n+1)(2n+1)(2n+3) (Xn+2m)o

g

: (2.29

n(n—m+1)(n—m+2)
T (@nTDznt3) eram)

' (2.22 where (), designates the equilibrium values averaged over
the distribution function(2.28.

where On settingm=0, we obtain from Eqs(2.20 and (2.22
the hierarchy of differential-recurrence relations for the re-
“Eq (a1~ ap)E] laxation functions, namely,
s R 223
275 d o
The time-dependent quantities appropriate to dielectric n(n+1) dt fa(t)+) 1= (2n—1)(2n+3) fa(t)

and Kerr effect relaxation are the electric polarization

&
P(t)=uNo<Pl<cosa>><t>=MN0[<Pl<coa&)>(oo>—fét>2]4) = on+1 LIn-1(0 = Tnea(0)]
o | | (n-1)
and the electric birefringence function +20 m fooo(t)
2mNg(af— ad)
K(t)= o2 (y(cosh)) (1) (n+2) n=12....

T Zn+Dan+3) 2

27Ng(ad— ad 2.3

= 0(%2) [(Pa(c0s9)) (=)~ Fa(t)], 239
wheref,(t) is given by Eq.(2.26.
(2.29 An equivalent system of equations has been derived in
Refs. [3,5,6 starting from the underlying Fokker-Planck
equation. It should be noted that similar equations appear in
the theory of dielectric relaxation of nematic liquid crystals
[7,11,20 and magnetic relaxation of single domain ferro-
magnetic particled10,14,21-2% In Refs.[7,10-14 we

_ _ have developed an analytical method of evaluating the dy-
Fol(t) ={Pn(c039))(2) ={Pn(c0s9)) (1 namic characteristics of the linear response of various physi-

X{(Pn(cosd))(w)--- (2.26 cal systems governed by E@®.30 and the particular cases

whereN, is the concentration of moleculeag and «$ are
the components of the optical polarizability due to the elec
tric field of the light beamn is the mean refractive index,
and
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£=0 ando=0. Here we shall apply this approach to evaluate fon_1(0)=0, (3.9
the corresponding nonlinear responses.

where I'(z) is the gamma functiof19], M(a,b,z) is the

IIl. EVALUATION OFFgI—éEgRI(E)LAXATION TIME confluent hypergeometrig¢ummey function defined ag19]
This is a nonlinear problem concerning the rise transient az a(a+l)z’? a(a+tl)(a+2)z®

and relaxation time of the induced dipole Kerr effect, which M(a,b,z)=1+ T b(b+1) TR b(b+1)(b+2) 3!
was recently investigated in detail by @edin, Blaise, and

Coffey [15]. However, below we reexamine this problem +-e (3.5
and present a solution which has the merit of being consid-

erably simpler than that previously derived. Here the quanyere (P, (cos9))(0)=0 because at tim¢=0 no field is
tity of interest is the induced dipole relaxation time. Equationpresent.

(2.30 can be considerably simplified and reduced to a three- On applying the Laplace transform to E§.1) we obtain

term recurrence relation as follows. We have the algebraic equation
2o d 1-2 f T
n(n+1) dt n(t) + T Zn=1)(2n+3) n(t) ~fn(s) 27pS 1 20
L (n—1) f fr_o(s) [IN(n+1) (2n—1)(2n+3)
29 2n—1)(2n+1) n—2(0) . 20(n+2) ?M(s)}
(n+2) (2n+1)(2n+3) fu(s)
T 2n+D(z2n+3) 2 @D
271 f,(0) +20'(n—1) 3.6
with n(n+1) f,_n(s) 4n*-1 ' '
fo(t)=0. 3.2
ot 32 where
Since the reduced potential is of the forrtogd, only the
even Legendre polynomials will contribute to the initial con- ~ o -
ditions. These are fa(s)= JO (e sdt. 3.7

f2n(0) =(P2n(cosd))(=)
Following Refs.[7,10,11, we seek the solution of E@3.6)

_ J3Pay(cosd)e” 5V singd 9 in the form
[Te7e0S Isingd 9 _ _
fn(s)=f,—2Si(s) +an(s), (3.8
S T(n+HM(n+1,2n+%,0) . myn2 "
o 2r@en+iH)MGt.ce) ' where the continued fractiog,(s), defined as
|
20(n—1)
B 4n’-1 .
S(8)= 55 M 20 . 20(n+2) ' 3.9
n(n+1) Zn=1)(2n+3) " (2n+1)(2n+3) +2d
|
is the solution of the homogeneous E8.6) [with f,(0)=0]. On substituting Eq«(3.8) into Eq. (3.6) and using Eq.
As demonstrated in Ref6], the solution of the homoge- (3.9), we have
neous equation(3.6) allows one to evaluate the Laplace
transform of(P,(cosd))(t), which is ™
(s) an= ;anfn(o)_bnanrZ Si(s), (3.10
o s
f(Pz(coas»(t)e—stdt:SZ—.
0 S where
However in order to obtain the Kerr effect relaxation time )
from Eq.(2.27) we must obtain a solution of the inhomoge- a— 4n“—1 (n+2)(2n—1) (3.1
n .

neous Eq(2.30. n(n?—1)’ " (n—1)(2n+3)"
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Thus,

(S) { n— 2(S)+'__'an n(o) bnqn+2]s%(s)

(3.12

(4n+1)T'(2n)M3(n+1/2,h+ 3/2,0)

(2n+1)T%(2n+3/2) (318

We remark that Eq35) of Ref.[15] differs in form from Eqg.

(3.18, however, it can be reduced to E@®.18. We also
remark that all the confluent hypergeometric functions ap-

Since all the relaxation functions with odd indices arepearing in Eq(3.18 may be expressed in terms of the more

equal to zerdsee Eq(3.4)], we can solve Eq3.1) for even

n only. In particular forn=2 we have

T oo 57 f 12
2(8)= oy 2(0)_7(44 Sy(s). (.13
We obtain by iterating Eq.3.10 for n=4,6 and so on in Eq.
(3.13,
n
Too)= o2 o 2 (=)™ Hon(0)az 1 bac-2Sa(s)
n=1 k=1

3\/;TD

neq (An+1)I(N)
2( 1) 1szn(0)

X kljl Suds). (3.14

The Kerr effect relaxation time,, defined from Eq(2.27)

forn=2is

5ttt F5(0)
f2(0) f2(0)’
so that from Eq(3.14) we have

3\/;7'[)

727 841,(0)

To=

)

4n+1)I'(n)

n=1

WhereAS'n(O) is given by Eq.(3.9) ats=0.

Noting that the equilibrium averagé®,(cos9))(«) sat-

isfy Eq. (2.29 for m=0 with £&=0, we have

_ (Pp(cos))(=)
(0= 75, " (cosn)) ()

Taking into account Eq(3.17), the initial conditionsf,,(0)

are

f2n<0>=82n<0>52n72<0>...sz<0>=k[[182k<0>. (3.17

Thus on using Egs(3.3) and (3.17), we obtain from Eg.
(3.15 the exact analytical solution for the relaxation time,

namely,

3 4577 i o2\t
T2TBAM (12,3120 M (312, 7125) =4

a1 { :
X2 (0" g fan(O 1 Sa(0),
(3.19

(3.19

familiar error function of imaginary argument, viz.,

X 2
erfi(x)=— | e''dt.

\/;fo

In particular([26], pp. 580 and 581
1/2

erfi(\2),

T

1
M(%,%,Z):E

15

3 7 3+2z
M(z,z,Z)Zg

2

T 1/2

3e?— ;) erfi(yz)].
Equations for the othe functions occurring in Eq(3.18
may be obtained from Table 7.11.2 of R¢R6] and the
recurrence relations for the confluent hypergeometric func-
tion.

In the limit c—0, on using the Taylor expansidf.5), we
obtain

n 1.2 212

™ 3 637 33075

a?+0(cd). (3.19

In the opposite limitss— o, on using the asymptotic ex-
pansion of the confluent hypergeometric functjas]

e' ™z~ T (b) 1
“A(aqb,Z)““-—i:(Bt?aj—— 14‘()(jj2)
e’2* "T'(b) 1

+—F(a) 1+0 E) . (3.20
we have
™ f r(n+2) < I(n+1)
—_—— — _1n
) E I'(n+ %) nzo( )F(n+§>

1
=55 [4,F1(1,2;3;—1)+,F1(1,1;3; - 1)]

3
=-—, for >0 (3.21
20
and
- * r'(n+3)
. \/;|<T| & (2n+3)I‘(n+2)
> I'(n+3)
+3 ()
=5 (2n+2)['(n+2)
3 2 3 3 5 3
= aTo1 3 oF2(15.5:23 - D+aFx(115:2.2-1)
3(1-1In2)
=——F———— for ¢<0. :
E for 0<0 3.22
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The initial conditions are therefore given by

Ihy 1A §)
(8

whereWy(9) is the equilibrium Boltzmann distribution func-
tion

fa(0)= JOWPn(coa?)Wo(ﬁ)sinﬁdﬁ= 4.2

-Ep)
Wy(9)=C ex (MkTo )= 47-rs§h(§) exp & cosd),

0'0-20 -1|o <I) 1Io 20 (4.3
and | ,(z) is the modified Bessel function of the first kind

[19].
On applying the Laplace transform to Eg.1), we obtain

FIG. 1. Relaxation timer, as a function ofa (solid line at
7 =1. The dashed lines are the asymptotic dependences given by
Egs.(3.21) and(3.22.

Here we have used the following equatlons for the hypergeo- [ 27 s+n(n+ 1)]fn(s) énintl) - [fn 1(s)— n+1(S)]
metric functions,F ,(ay ,...a4:0;,...b,;2) [26]: (2n+1)
3 1— |12 +275f,(0). (4.9
By T 1 ;
2F1(1,132;2) z [l ( z arcsinz/, The exact analytic solution of E¢4.4) is in like manner
(see alsd7,12):
arcsm/_
SFi(1,2;3 ,z)— 11, (3.23
i Vz(1-2) - 275 & .
fo(9)=fr-1(8)Si(9)+ == 2, (—1)
4 2(1-y1-z
3F2(1,13:2,22)==1In ; n+k—1
z z % Mf (0) H Si(S)
(n+k—1)(n+k) "0 L
arcsin/z
sFa(15.2:2.32)= - Y —11. (3.24 4.5
In particular forn=1 andn=2 we have
The behavior of the relaxation timeg as a function otr is
shown in Fig. 1 foro values in the range-20<o<20. For o
positive o values this positive Kerr-effect relaxation time T (5)222 E Can+l (2n+ (O)H S.(9),
passes through a maximum at a certain valuerdiefore ! & =1 n(n-+ 1) o
decreasing monotonically to zero with increasim@s a re- (4.6
sult already obtained by Watanabe and Mof# and De
jardin, Blaise, and Coffe}15]. For negativer values, ther,
decays monotonically to zero with increasijag. Moreover, - - 27 * (2n+1)
one can see that the asymptotic E@21) and(3.22 closely fa(s)=f1(s)Sy(s)+ = Z (=1 NN+ 1)
fit the exact solution folr>6 and o<—10. The surprising n=2
increase inr, at intermediate electric fields was also pre-
dicted from a numerical solution of E¢3.1) and observed X f (0 [T S(s)
experimentally by Tolle$27]. k=2
D 27p
IV. EVALUATION OF THE RELAXATION TIMES = f1(0)S1(s)S,(s) + =z [1-S1(s)S(9)]
FOR o=0
If the contribution of the induced dipole moment is neg- % )N +1) 0 s 4.
ligible in comparison with that of the permanent dipole mo- 2 (-1 n(n+1) Pl )E Sds), 42

ment we have, on putting=0 in Eq. (2.30), ] ) o
where the continued fractio8,(s) is given by

271 % fa(t)+n(n+1)f (1)

3
_én(n+ S(S8)= 5 San+ 1) 4.8

(2n+1) [fn 1) =fria (D] (4.) W-l—ZrH—l—l—fSnJrl(S)
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The present problem has also been considered by

Watanabe and Moritg6]. However, they did not give exact

expressions for the relaxation times, nor did they solve the
three-term recurrence relations for the polarization and rise

transient in continued fraction form. As shown in RE3),

the solution of the homogeneous equatiér) allows one to
evaluate the Laplace transform ofP,(cosd))(t) and
(P,(cosd))(t), which is in our notation

fx<P1(cosﬁ)>(t)e’Stdt= Slés) ,
0

4.9

fx<P2(coaﬁ)>(t)e‘5‘dt= % [1— % (1+575)Sy(s)|.
0
(4.10

Using the definition of the relaxation time, namely,

T,(0)

=g ©) (n=1,2, (4.11
we have from Eqs(4.6) and(4.7)
27-D e (2n+1)f,(0)
E (— ! NN 1)f,(0) H Sn(0),
(4.12
D < L (2n+1)f(0)
7-2:7-1—’_?”22 (_ n(n+1)f2(0) IL[Z Sk(o)l
(4.13
where
_ & _nA8)
SO 18,20 T 4

since the modified Bessel functiohg(z) satisfy the recur-
rence relatio 19]

14
Iv—l(z)_lv+l(z): — IV(Z)y

which can be represented as the continued fraction

l(2) z
l,1(2) l,+1(2)°

1(2)

COFFEY, D,EJARDIN, KALMYKQOV, AND TITOV

15

FIG. 2. Relaxation timesy (curve 1) and 7, (curve 2 as a
function of £ at o =1. The dashed lines are the asymptotic depen-
dences given by Eq$4.19 and(4.20.

oo

___ 2™ _pyne 2D
(63l ) n§=:1( ) n(n+1) '+ al8).
(4.195
B 27p = _a(@nt1)
Tt B 2 "V e e
(4.1
In the limit £—0 on using the Taylor expansigi9]
z\" < (212)%
h(2)= E) & KT (o7 D)
we have
T1 4 > 8 6
=17 25 € gampt T O,
2 21 Lo, (41D
™ 3 126§ 66150§ (£). ’

In the opposite limité—, on using the asymptotic expan-
sion

z 1
| ~ 1+0|—]/|, 4.1
HD~ | 1t z) (4.18
we find
o2 (4.19
& '
T 3
T—D~E. (4.20

We remark that the modified Bessel functions of the second

kind K,(z) will also satisfy this recurrence relation. How-
ever, they must be discarded as a solution of([B@ as they
are infinite atz=0.

On substituting Eq(4.14) into Egs.(4.12 and(4.13), we
obtain

The behavior of the relaxation timegand r, as functions
of ¢is shown in Fig. 2. Bothry, and 7, decrease monotoni-
cally to zero with increasing. One can see in this figure that
the asymptotic Eqs(4.19 and (4.20 closely fit the exact
solution for £&>5.
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V. EVALUATION OF THE RELAXATION FUNCTIONS AND RELAXATION TIMES IN THE GENERAL CASE

Equation(2.30 can be transformed into the matrix three-term differential-recurrence equation
d - +
TDa Cn(t):Qn Cn—l(t)+QnCn(t)+Qn Cnsa(D), (5.9

if we arrange it as follow$7,14]:

én(2n—1)
d (fznl(t)) Aon(n—1)(zn-1) (@n—1) (fM(t))

Gt fon(t) | (4n_1)o(4n_3) 20n(2n—=1)(2n+1) | | fan-2(t)
(4n—1)(4n+1)
20 &n(2n—1)
n2n-1) Zi=g@nsn L " (4n—-1) (on_l(t))
+ é&n(2n+1) 20 fan(t)
D) M @n T3
_ 20n(2n—1)(2n+1) 0
(4“—;)(1”1+1) 4on(n+1)(2n+1) (IZ”“(:)). (5.2
_5?4(1”:1)_) T an+Dan+a) | a2l

On applying the general method of solution of the matrix three-term recurrence eqtipisuggested in Ref§7, 13]], we
obtain a solution for the Laplace transfo@(s) in terms of matrix continued fractions

(Il(s)
fa(s)

wherel is the 2<2 identity matrix,Q,,Q, are the X2 matrices given in Eq(5.2), the matrix continued fractioS,(s) is
defined as

)=TD[TDS|—Q1—Q1+52(S)]_1 C1(0)+n§2 kljz Qﬁ—lsK(S)(QD_lCn(O)}, (5.3

Si(8)=[7pSI —Qn—Qn Sh+1(9)]17'Q, . (5.4
The initial value vectors
fon-1(0) (P2n-1(cosd))o
C“(O):( F20(0) H (Pan(cos?))g ) 6.9
may be evaluated from the recurrence relation
20 _ ¢ 20(n—1) 20(n+2)
1- (2n—1)(2n+3) (Pn)o=5-7 [{Pn-1)0=(Pns1)ol + Zn-Dn+1D) (Pn-2)0— Zn+D)(2n<3) (Pn+2)o|s
(5.6
where the three first members of the hierarchy[a;&3]
(Po)o=1,
1 &
(P1)o= £ £ 25"
Vo (cothé+1)D| o+ m) +(cothé—1)D| Vo— m)
2 [eore— o)
B 7 |cote=52 322 3 1
<P2>O_\/— \/— & ) \/— 3 ) 802 40 2°
o| (cothe+1)D G'+m +(cothé—1)D —m
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FIG. 4. Relaxation time, as a function o€ ando at 0.0k£<8
and 0.0K0<8 and atrp=1.

calculation of the relaxation times. The Laplace transforms

of (P4(cos®))(t) and(P,(cos))(t) have a simpler repre-
FIG. 3. Relaxation time as a function of ando at 0.01<£<5 sentation as

and 0.0Ko<5 and atrp=1.

Here f:(Pl(cosﬁ))(t)e*Stdt

X N —st
efxzerﬁ(x):efxzf etzdt. fo <P2(C0&9)>(t)e dt
0

On taking into account Eq$2.26), (5.10, and (5.9, we
can simplify Eq.(5.3 as follows:

=slsl(s)((1)>. (5.10

o5

D(x)=

Equation(5.6) follows from Eq.(2.29 at m=0. It should be
noted however that this upward iteration is unstable and on

should use it with caution. ’f’l(s) 0
However the initial value vector§,(0) can be evaluated (r}; (s)) =s 1S;(0)—S,(s)] 1). (5.11
more efficiently with the aid of matrix continued fractions. 2

Thus, let us transform Ed5.6) to the matrix form Thus, in order to calculate the nonlinear dielectric and dy-
namic Kerr effect step-on responses we simply need to

Q”(§§2n3228£;i0 +Qn(<|<3;“(1£g;;9>)>0) evaluate the matrix continued fracti®(s).

2n—2 0 2n 0
+Q+(<Pzn+1(00&9)>o> o VI. RESULTS AND DISCUSSION

"1 (Pa2n+2(C083))0 The behavior of the real and imaginary parts of the one-

sided Fourier transforms of the normalized relaxation func-

or tions, defined as

Q, Cr-1(0)+Q,Cr(0)+Q Cpi1(0)=0. (5.7

_ Taliw) -
The solution of Eq(5.7) is then given by Xn(w)= m5f,(0)’ €.
Ch(0)=[-Qn—Q,; Sh+1(0)]7'Q, C,_1(0) is shown in Figs. 5—-8. Here the spectra evaluated from the

exact solutions given by Eq$3.14), (4.7), and (4.8), are

=S5h(0)Ch-1(0) compared with the Lorentz spectrum

0

=Sn(0)Sq1(0)---81(0)(1) (n=1,2..). _ Tlm 6.
XDn(w) 1+inn1 ( . )

(5.8
. wherer, are the relaxation times calculated from E(§18),
In particular, forn=1 we have (4.1), and(4.15. Equation(6.2) corresponds to the represen-
tation of the relaxation functio t) by a purely exponen-
O [ (Picow 0 "&(1) by a purely exp
1

Cl(o):(fz(O) <P2(C0&(})>0):51(0)( ) (5.9 tial term

We can now evaluate the relaxation timgsand 7, from
Egs.(5.3) and (5.9 (see Figs. 3 and)4We remark that the It is apparent from Figs. 5—-8 that Lorentzian behavior is
solution in the form of Eq(5.3 is mainly needed for the obtained for the spectrg (w) for arbitrary ¢ and ato=~0 and

f,(t)=f,(0)e Ym, (6.3
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2 3
: 3
i
—~ 1}
Ko
g
:;5‘_
& 2r
B st
_4 L
6 4 -2 0 2
log, e,
FIG. 5. Realcurves 1,2,8and imaginarycurves 1,2',3') parts FIG. 7. Reallcurves 1,2,8and imaginary(curves 1,2',3') parts

of the spectrumy;(w) of the normalized relaxation function at=5.  ©Of the spectrumy;(w) of the normalized relaxation function &t2.

Curves 1,1, 2,2, and 3,3 correspond t¢=0.01, 1, and 5, respec- Curves 1,1, 2,2, and 3,3 correspond tor=0.01, 5, and 10, re-

tively. spectively. Filled circles and squares are the real and imaginary
parts of the spectrunyp,(w) of the normalized exponential relax-

(o) for arbitrary o and =0 (cf. Ref.[15]). Thus, in these ation function with the relaxation time, from Eq. (4.14).

cases glone the reIaxanon funCt'th.S(t) and f,(t) can be Thus, in the context of the rotational diffusion model the
approximated by a single exponential. In all other cases the

decay of the relaxation functiorfs(t) has a more compli- Switch-on nonlinear dielectric relaxation and dynamic Kerr
Y i ) : P effect responses of an ensemble of noninteracting polar mol-
cated behavior. This may be explained as follows. The relax:

ation dynamics in the potential given by B@.5) (which has ecules can be evaluated from exact analytic equations. The

in general two potential wellss determined by two relax- range of applicability of the results obtained ds;,~1, as

. R inertial effects are ignored in our model. In order to take into
ation processes. One relaxati@ctivatior) process governs

the crossing of the potential barrier between positions 01account inertial effects in the theory one should consider the

Ny inertial term in Eq.(2.2). However, the calculation will now
equilibrium by a current of molecules. Another process de'become very much more complicated
scribes orientational relaxation inside the wells. In the case The anal))/ltical treatment of ?he nonlinear dielectric relax-

of nonpolarizable molecules, when the potentib) trans- ation and the transient electric birefrigence presented in the

forms to a single well, we observe one relaxation process . .
aper can also be applied to other problems considered by

only. As is apparent from Figs. 3 and 4 the permanent dipo'%Vatanabe and Moritk6]. In particular, our approach can be
contribution suppresses the activation process. A similar re- ' k

sult has been obtained for the linear response in magnetl%Xtended to a homogeneous electric field suddenly applied to

relaxation of single domain ferromagnetic particles with higha system in which a Maxwell-Boltzmann distribution of par-

anisotropy barriers in the presence of a strong constant mati—Cle orientation has been established by another homoge-
Sotropy . _presen 9 t Mageous electric field, and to a homogeneous electric field sud-
netic field following an infinitesimal change in that field

[14] denly reversed or rapidly rotating. For all these problems the
' hierarchy of differential-recurrence relations for averaged

1 *

log, , Re(x,), log,, -Im(x,)

log,, 007,
FIG. 6. Realcurves 1,2,8and imaginarycurves 1,2',3) parts FIG. 8. Real(curves 1,2,8Band imaginarycurves 1,2',3") parts

of the spectrumy,(w) of the normalized relaxation function at of the spectruny,(w) of the normalized relaxation function &t2.

0=10. Curves 1,1, 2,2, and 3,3 correspond t¢=0.01, 1, and 5, Curves 1,1, 2,2, and 3,3 correspond tar=0.01, 5, and 10, re-

respectively. Filled circles and squares are the real and imaginargpectively. Filled circles and squares are the real and imaginary

parts of the spectrunyp,(w) of the normalized exponential relax- parts of the spectruntp,(w) of the normalized exponential relax-

ation function with the relaxation time, from Eq. (3.18). ation function with the relaxation time, from Eq. (4.15.
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spherical harmonic$2.22 can always be reduced to the T
three-term matrix equatio5.1) the solution of which is f({&t+ T)})Zf({X}HJO hi({&(t+t")},t+t")
given by Eq.(5.3). All that remains is to evaluate the initial
value vectorsC,,(0).

Our approach can be used for the evaluation of the non- FUEL+)D)d
linear response of analogous physical systems. In particular, c7§|
the results presented in Sec. V can also be applied with a
small modification to the calculation of the nonlinear dielec- T
tric response of nematic liquid crystals and to the appropriate + \/Bf gi; {&(t+t)}t+t")
nonlinear magnetic response of an assembly of single do- 0
main ferromagnetic particles. In the both cases the longitu-
dinal relaxation(dielectric and magnetic, respectivelpf
these systems is governed by Eg.2) with a different inter-
pretation for the parametefsand o (for details see Ref$7,
14,20,22,2%. Again, the solution for the Laplace transforms where
of appropriate relaxation functions describing the nonlinear
response of these systems is given by Ef13 with the

J
X3E fA&t+t)Ddw(t’), (A3)

appropriate initial value vectorS,,(0). t+r )
" w;(7)= J_j Tj(t")dt’,
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APPENDIX: DERIVATION OF EQ. (2.13 XLw;(tis 1) —wi(t)],
Noting that the rule for changing of variables in Stra- A=maxti;1—t), t=te<ty<..<ty=t+r7, (Ad)

tonovich differential equations is the same as in ordinary

analysis[18], we obtain from Eq(2.10 a stochastic equa- {w(t)}={w,(t),w,(t),... wn(t)} is the Wiener process in
tion for an arbitrary differentiable functioh({£(t)}): RN with the following properties:

d w,(1)=0, f wihdw()=76;.  (A5)
5 FAEOD=hGEDLD o ﬁgl FEDY 0

On supposing that the integrands in Egs2) and (A3) can
+0i; (&)}, t) f({§ )PHT(L). (A1) be expanded in Taylor series, we obtain

fi(t‘f' T):Xi—’_f hi({X},t'f't,)dtl
We remark that from the mathematical point of view the 0
stochastic differential equatig\1) [just as Eq(2.10] with

the &-correlated Langevin force(t) is not completely de- f [&(t+t")— Xk] hi({x},t+t")dt’
fined [7,18. The most satisfactory interpretation of Eq.
(2.10 and (A1) is as the stochastic integral equatici7] T
+ \/Bfo gij({x}, t+t")dw;(t")

£trn=x+ | (g erar +J5fof[§k<t+t'>—xk]

’ ’ ’ ’ J ' ’
+\/5J0 gij {&(t+t)}t+t)dw;(t") (A2) X g ({x}, t+t")dw;(t"), (A6)
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T 9 the equation so obtained taking account of the properties
fR&t+npH="F({x})+ fo hi({x}t+t) - f({x})dt’ (A5) and retaining only the terms proportional th we ob-
| .
tain

T a
+fo[§k(t+t,)_xk]a_xk[hi({X},t-H:’)

: f&t+nhH—f({x}) J
dt'+\/5JOgij({X},t+t’) { j & =hi({x},t+707) ax, T

Jd
X x f({x})

9 , J

D i t+t')—
B | et -x | gy (.t+ 7O - 1)

J 0
X X, [gij({x}iH’t,) ax f({x})|dw;(t") +O(n), (A8)

+oee (A7)

Following ([5], pp. 51-53 [namely, substituting;(t+t')  where O} are constantg0<0 {{)<1). Taking the limit
from Eq. (A6) into Eq. (A7), then integrating and averaging 7—0 in Eq. (A8), we have Eq(2.13.
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