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We present a simple treatment of the depletion-driven demixing transition in isotropic and perfectly aligned
binary hard-rod mixtures. The simplicity is mainly due to the fact that we use the second virial approximation
to the Helmholtz free energy in combination with a convenient Legendre transform. This combination leads to
an exact expression for the depletion-driven demixing spinodal in isotropic mixtures of hard rods with different
diameters. We show for rod species with the same length that the demixing spinodal is thermodynamically
stable with respect to the isotropic-nematic transition, if the diameter ratio is larger than about 5. We also show
that perfectly aligned rod mixtures show a nematic-nematic demixing spinodal, that may preempt the nematic-
smectic or the nematic-columnar bifurcation if the size difference between the particles is sufficiently large.
@S1063-651X~96!06312-X#

PACS number~s!: 61.30.Cz, 64.70.Md, 64.75.1g

I. INTRODUCTION

Since the work of Onsager in the 1940s@1# and that of
Alder and Wainwright in the 1950s@2# it has been known
that the short-range repulsions between atoms and molecules
can be responsible for ordering in simple and complex fluids.
Onsager’s theory explains the orientational ordering upon
densification of a fluid of rodlike particles as the conse-
quence of hard-core repulsions alone@1#, and Alder and
Wainwright’s computer simulations show positional order in
a hard-sphere system at sufficiently high densities@2#. Thus
in both studies the short-range repulsions are modeled as
hard-core repulsions, while the attractions are neglected
completely. It has since been shown that many more order-
ing phenomena can be expected on the basis of hard-core
repulsions alone. For instance, also partially positionally or-
dered liquid-crystalline phases~e.g., smectic and columnar
phases! appear in the phase diagram of hard anisotropic par-
ticles @3,4#. Thus despite the fact that hard-core fluids are
athermal, with the density~or pressure! the only thermody-
namic variable, their phase behavior is rich.

The phase behavior of fluids consisting of hard particles is
even richer in the case of mixtures of several species. Apart
from the fact that the symmetry of ordering in a mixture can
be different from that of a pure system, there is also the
possibility of a demixing transition into coexisting phases
with different compositions and densities. The fact that the
presence of different species influences the ordering of hard-
core mixtures can be understood intuitively in terms of pack-
ing arguments. At first sight, however, there seems to beno
mechanism for demixing transitions in hard-core fluids. The
reason is that one would only expect a demixing transition if
like particles attract or unlike particles repel each other rela-
tively strongly. Neither of these two conditions seems to be
fulfilled in hard-core mixtures, since there are no attractions
at all and the repulsions, which are only manifest if particles
‘‘touch,’’ do not discriminate between the species. In the
past few years it has become clear, however, that there are
yet demixing mechanisms in binary hard-core mixtures.

One of the best-studied hard-core mixtures is the binary
hard-sphere mixture. Even for this relatively simple example

of an off-lattice additive hard-core mixture matters have not
been resolved completely. In 1964 Lebowitz and Rowlinson
concluded, using the Percus-Yevick closure of the Ornstein-
Zernike ~OZ! equation, that there isno fluid-fluid phase
separation for any composition, pressure, or size ratio of the
spheres@5#. This was confirmed in 1971 by Mansooriet al.,
who generalized the Carnahan-Starling expressions for pure
hard spheres to hard-sphere mixtures@6#, and did not find
any evidence for a spinodal instability. These findings prob-
ably triggered the intuitively attractive picture that hard-core
fluids do not demix at all. It was therefore surprising when
Biben and Hansen in 1991 provided evidence, based on the
self-consistent Rogers-Young closure of the OZ equations,
for a demixing instability of binary hard spheres if the diam-
eter ratio is more extreme than 1:5@7#. This result is quali-
tatively confirmed in a theoretical study by Lekkerkerker and
Stroobants@8#, whose analysis also provides a clear physical
picture of the demixing transition. These authors make the
connection between binary hard-sphere mixtures and colloid-
polymer mixtures, the latter of which are known to possibly
exhibit a phase separation due to thedepletioneffect @9,10#.
In this picture, the excluded volumeoverlap of phase-
separated large~colloidal! spheres generates sufficient free
volume for the small~polymeric! spheres to overcome the
loss of entropy of mixing caused by the phase separation. We
note that this picture suggests that the depletion mechanism
has a more-than-two-body character, since it takes at least
two big spheres with overlapping excluded volumes to gen-
erate any extra free volume for one single small sphere. The
recent theoretical advances in the description of binary hard-
sphere mixtures are supported by a computer simulation
study by Dijkstra and Frenkel@11#, who observed phase
separation in binary mixtures of hard cubes of different sizes
on a lattice. Moreover, in the past few years several experi-
mental studies of mixtures of colloidal hard spheres have
revealed evidence in favor of a demixing transition if the size
ratio is sufficiently extreme@12,13#. From these experiments
it seems, however, that the demixing transition is strongly
coupled to the freezing transition, and that the actual coex-
istence is that between a solid phase of primarily big spheres
and a fluid phase with primarily small spheres. These obser-
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vations are theoretically supported by Poon and Warren@14#
and Rosenfeld@15#. Nevertheless, given the sensitivity of the
theories to the adopted closure of the OZ equations, it seems
not completely resolved whether or not there is a~meta-
stable! fluid-fluid spinodal in binary mixtures of hard
spheres.

At first sight the difficulties encountered in the study of
the stability of hard-sphere mixtures suggest that mixtures of
asphericalparticles are really impossible to treat as yet, since
the corresponding OZ equations lack the radial symmetry
and are therefore even harder to deal with than those in the
hard-sphere case. However, Onsager has shown that the sec-
ond virial approximation to systems of hard rods is exact in
the limit of very thin hard rods. Therefore the opposite is the
case: theories for hard rods are much simpler than those for
hard spheres. Straightforward generalizations of Onsager’s
theory to include binary mixtures of longer and shorter hard
rods of the same diameter have therefore been performed by
several authors@16–20#. Apart from a number of interesting
phenomena related to the isotropic-nematic (I -N) transition
~e.g., strong fractionation, widening of coexistence region,
reentrant behavior!, the most relevant result for the present
context is the nematic-nematic (N-N) phase separation if the
length ratio of the rods is more extreme than about 1:3
@19,20#. Surprisingly, the mechanism behind this demixing
transition does not involve the excluded volume interactions
directly. Instead, the demixing is driven by the orientational
entropy, which can be optimized by phase separating the
short rods from the long ones, since the latter impose too
strong an alignment on the former. Thus this phase separa-
tion is driven by the gain of orientational entropy for the
short rods that more than compensates the loss of entropy of
mixing caused by the demixing. Obviously, this mechanism
is different from the depletion mechanism.

Still one could argue that the depletion mechanism could
also play a role in mixtures of anisotropic hard particles, just
as it may do in mixtures of hard spheres. We show in this
paper that this can actually be the case, not for nematic mix-
tures of long and short rods, but instead for isotropic mix-
tures of thin and thick rods, possibly~but not necessarily! of
different lengths. A physical realization of such a system is a
mixture of colloidal rods and liquid-crystalline polymers,
since colloidal particles are much ‘‘thicker’’ than polymers.
The theoretical description benefits from the fact that the
second virial theory for long hard rods is exact and simple
enough to allow for analytic results in the isotropic phase.
Therefore our results, when applied to binary mixtures of
thick and thin hard rods, are not subject to the reservations
encountered in the theories of hard-sphere mixtures, which
are sensitive to the adopted closure of the OZ equation. We
do, however, have to consider the possibility of orientational
ordering of the rods, analogous to the freezing transition in
the case of hard-sphere mixtures. We show that for suffi-
ciently dissimilar particles, the isotropic-isotropic (I -I ) de-
mixing preempts the isotropic-nematic transition. This result
is consistent with a recent analysis by Sear and Jackson, who
considered the extreme case of an infinitesimally thin~ideal!
polymeric rod and a thicker colloidal rod@21#.

The formalism that we adopt to study isotropic mixtures
of rods can equally well be applied to mixtures of perfectly
aligned rods of different sizes. The case of identical diam-

eters and different lengths has been analyzed to study phase
transitions in the well-ordered nematic phase of rods.1 It was
concluded from both a computer simulation study@25# and a
density functional analysis@26# that the nematic–smectic-A
(N-S) transition~which is the thermodynamically stable one
in the aligned pure rod system@27#! may be preempted by a
nematic-columnar (N-C) transition, if the length ratio of the
rods exceeds approximately 2. The possibility of a nematic-
nematic demixing transition seems to have been ignored in
both Ref.@25# and Ref.@26#. We show that this is no longer
justified if the length ratio is more extreme than about 1:5,
since then theN-N demixing ~probably strongly coupled to
theN-S transition! preempts theN-C transition. This result
is consistent with that obtained by Koda and Kimura, who
considered theN-S ~but not theN-C) transition of perfectly
aligned binary rod mixtures as a function of the length ratio
of the rods in detail@28#. In this paper we also consider
binary mixtures of perfectly aligned rods of the same length
with different diameters.

This paper is organized as follows. In Sec. II we discuss
the thermodynamics of binary mixtures, first generally and
then explicitly in the second virial approximation. We show
very generally that the usual description of the depletion ef-
fect is equivalent to the one that we consider convenient. In
Secs. III and IV we apply the second virial theory to isotro-
pic and perfectly aligned binary mixtures of hard rods, re-
spectively, and find which particle shape parameters deter-
mine the stability of these mixtures. Section V is devoted to
conclusions and a discussion of the main results.

II. THERMODYNAMICS OF BINARY MIXTURES

A. General considerations

We are concerned with the phase behavior of binary mix-
tures, consisting ofNs particles of speciess51,2 in a vol-
ume V at temperatureT. The appropriate thermodynamic
potential of such a system is the Helmholtz free energy
F(N1 ,N2 ,V,T). Since we focus on hard-core fluids, the tem-
perature is merely a scale factor which is irrelevant for the
thermodynamics. For notational convenience we therefore do
not retain the temperature dependence ofF, and of any of the
other thermodynamic potentials that we introduce, in the se-
quel. Since the Helmholtz free energy is an extensive quan-
tity, it can be written as

F~N1 ,N2 ,V!5Nf~x,v !, ~1!

whereN5N11N2 is the ~extensive! total number of par-
ticles andf the ~intensive! Helmholtz free energy per par-
ticle, which is a function of the~intensive! composition vari-
able x5N2 /N and the ~intensive! volume per particle
v5V/N. FromF or f the pressureP can be obtained as

P52S ]F

]VD
N1 ,N2

52S ] f

]v D
x

, ~2!

1One should realize, though, that the thermodynamics of the per-
fectly aligned rod system is certainly not identical to the extremely
well-ordered limit of a freely rotating rod system@20,22–24#.
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where the variables that are kept fixed are denoted below the
brackets. Obviously, we haveP5P(x,v) here.

This paper is particularly focused on the stability of bi-
nary mixtures of hard-core particles. For that reason we
study the stability conditions that follow from the Helmholtz
free energyF @29#. These conditions can be expressed in
terms of f (x,v) as

S ]2f

]v2D
x

.0,

S ]2f

]x2D
v

.0, ~3!

S ]2f

]v2D
x
S ]2f

]x2D
v

2S ]2f

]v]xD
2

.0,

where the variations with respect tox andv are supposed to
be independent. Strictly speaking, the three conditions of~3!
are not independent, but for reasons of convention and later
convenience we retain all three of them. The first line of Eq.
~3! is the mechanical stability condition, since combination
with Eq. ~2! reveals its equivalence with (]P/]v)x,0. The
second line of Eq.~3! is the incompressiblemixing stability
condition, where ‘‘incompressible’’ refers to the composition
fluctuations at constant volumev. The third line of Eq.~3!
reflects the stability with respect to combined volume and
composition fluctuations. This combined stability condition
is the most restrictive of the three, since a quadratic term is
subtracted from a term that is positive if the mechanical and
incompressible mixing stability conditions still hold. For this
reason we focus primarily on the physical meaning of this
combined stability condition, and assume in the sequel that
the mechanical and incompressible mixing stability are sat-
isfied.

We start with the observation that the combined stability
condition can be regarded as thecompressiblemixing stabil-
ity condition, where the composition fluctuations take place
at constant pressure instead of constant volume. This is most
easily understood by performing the Legendre transform
from Helmholtz to Gibbs free energy, given by
G5F1PV, with G5G(N1 ,N2 ,P)5Ng(x,P). Here we in-
troduced the ~intensive! Gibbs free energy per particle
g(x,P). Using Eq.~2! and the relationg5 f1Pv, it is easily
verified that

S ]2g

]x2D
P

5S ]2f

]x2D
v

2S ]2f

]x]v D
2Y S ]2f

]v2D
x

. ~4!

As a consequence we see that the combined stability condi-
tion of Eq. ~3! implies that

S ]2g

]x2D
P

.0 ~5!

thereby justifying the nomenclature of compressible mixing
stability condition. If we realize that (]2f /]x]v)
52(]P/]x)v , we see from Eq.~4! that the compressible
mixing stability condition tends to be violated by binary mix-
tures of species with widely different equations of state. In

fact, since Eq.~4! shows that (]2g/]x2)P,(]2f /]x2)v , it
reveals that compressible binary mixtures violate the stability
criteria in general more easily than comparable~hypotheti-
cal! incompressible mixtures. This has also been remarked
by Sanchez@30# in the context of polymer solutions. Sanchez
describes the demixing of these solutions as the consequence
of a mismatch in the equation of state of polymers and sol-
vent, which is reflected by large values of (]P/]x)v . This
demixing mechanism seems, at first sight, to be very differ-
ent from that observed in binary hard-core mixtures, in
which demixing is usually ascribed to the depletion effect,
which yields an effective attraction between particles of one
species due to the presence of the other@8#. The fact that the
depletion effect is stronger when the size ratio of the par-
ticles is more extreme correlates, however, nicely with the
mismatch in the equation of state of the smaller and bigger
species. In the remainder of this section we show that there is
a direct link between demixing induced by the difference in
equation of state of the constituent species and that induced
by the depletion effect. In fact, we show that the thermody-
namic description of the two mechanisms is equivalent.

A convenient way to show the equivalence of the loss of
compressible mixing stability and depletion-induced demix-
ing is to introduce an alternative choice to split intensive and
extensive variables, combined with another Legendre trans-
form of the Helmholtz free energy. Instead of usingN as the
extensive variable to scaleF, as in Eq.~1!, we now useV.
This leads to

F~N1 ,N2 ,V!5Vf~r1 ,r2!, ~6!

with f the ~intensive! Helmholtz free energy density as a
function of the number densitiesrs5Ns /V for s51,2. Us-
ing the relationsr15(12x)/v, r25x/v, andf5 f /v, it fol-
lows readily that

S ]2f

]r1
2 D

r2

S ]2f

]r2
2 D

r1

2S ]2f

]r1]r2
D 2

5v4F S ]2f

]v2D
x

S ]2f

]x2D
v

2S ]2f

]v]xD 2G . ~7!

We proceed by calculating the chemical potentialm1 of spe-
ciess51, given by

m15S ]F

]N1
D
N2 ,V

5S ]f

]r1
D

r2

, ~8!

with m15m1(r1 ,r2). The Legendre transform we perform
now yields the ~extensive! thermodynamic potential
V5F2m1N1, which describes speciess51 grand canoni-
cally and speciess52 canonically:V5V(m1 ,N2 ,V). We
exploit the extensiveness ofV and defineV5Vv(m1 ,r2),
with v the intensive thermodynamic potential that satisfies
v5 f2m1r1. Using this relation together with Eq.~8! gives

S ]2v

]r2
2 D

m1

5S ]2f

]r2
2 D

r1

2S ]2f

]r1]r2
D 2Y S ]2f

]r1
2 D

r2

~9!
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revealing in combination with Eqs.~4! and ~7! the equiva-
lence

S ]2g

]x2D
P

50 ⇔ S ]2v

]r2
2 D

m1

50. ~10!

We have almost reached our goal now. What remains to be
shown to prove the equivalence of a compressible demixing
instability and a depletion-induced demixing instability is the
relation between the second equality of Eq.~10! and the
depletion effect. This relation becomes clear by considering
the pressure in the (m1 ,r2) ensemble, which can be written
as

P52S ]V

]V D
m1 ,N2

52v1r2S ]v

]r2
D

m1

~11!

so that

S ]P

]r2
D

m1

5r2S ]2v

]r2
2 D

m1

. ~12!

From Eqs.~10! and~12! we can conclude that a compressible
demixing instability is equivalent to a ‘‘van der Waals’’-like
loop in P(m1 ,r2), the spinodal of which is given by
(]P/]r2)m1

50. The presence of this loop is then, in analogy
with equations of state of pure systems, interpreted as the
consequence of attractions between the particles of species
s52. In hard-core mixtures, with no bare attractions be-
tween particles, these must be ‘‘effective’’ attractions be-
tween particles of speciess52 caused by the presence of a
bath of speciess51, characterized by the chemical potential
m1. This attraction is known as depletion-induced attraction
@8#. Instead of a liquid-vapor instability, which is the usual
nomenclature in the case of a pure system showing a van der
Waals loop, we now interpret the instability as a demixing
instability, and the spinodal as the demixing spinodal.

The above analysis thus reveals the equivalence of demix-
ing induced by the depletion effect and by the difference in
equation of state of the pure species. We exploit this formal
equivalence to describe depletion-induced demixing in bi-
nary mixtures treated in the second virial approximation. We
show that the usual description of the depletion effect, in
terms ofV, is analytically intractable unless extra approxi-
mations are made. In contrast, the description in terms of
G and the combined stability criterion can be dealt with
without imposing extra assumptions.

B. Second virial approximation

Here we discuss the implications of the general discussion
above for a specific but typical choice of the Helmholtz free
energy. Having in mind hard-core fluids, for which the tem-
perature is merely a scale factor of the thermodynamic po-
tentials, we use units in whichkBT51, with kB the Boltz-
mann constant. From now on we use the number density
n51/v instead of volume per particlev as independent vari-
able. We focus on homogeneous binary fluid mixtures, for
which the Helmholtz free energy can be expanded as a virial

series inn. Retaining only the lowest order correction to the
ideal gas contributions yields the so-called second virial ap-
proximation

f ~x,n!5 fmix~x!1 1
2nE~x!, ~13!

with the ideal gas term lnn, the free energy of mixing

fmix~x!5x lnx1~12x!ln~12x!, ~14!

and the excluded volume terms

E~x!5~12x!2E1112x~12x!E121x2E22. ~15!

HereEss8 is the excluded volume of a (ss8) pair of par-
ticles, given by the negative of the orientation averaged spa-
tial integral over the Mayer function of the (ss8) pair, as in
Mayer’s imperfect gas theory@31#. Note thatEss8 is tem-
perature independent, because the Mayer function of hard-
core potentials takes only the values21 ~overlap! and 0~no
overlap!, independent of temperature. The pressureP in the
second virial approximation is given by

P5n1 1
2n

2E~x! ~16!

as follows from inserting Eq.~13! into Eq. ~2!.
Neglecting the quadratic and higher order terms inn in

Eq. ~13! is a serious approximation in the case of spherical
particles at typical liquid densities. Consequently, this ap-
proximation does not yield any reliable thermodynamic in-
formation on the binary hard-sphere mixture. However, we
show that it does give more insight into the general condi-
tions for demixing. Moreover, and more importantly, there
are cases where the second virial approximation is expected
to be accurate~e.g., perfectly aligned hard rods@27#! or even
exact ~e.g., infinitely elongated freely rotating rods@1#!. In
addition, the structure of the free energy of Eq.~13! is simi-
lar to that of mean-field approximations of~incompressible!
mixtures on a lattice, if we interpretn as the coordination
number of the lattice andEss8 as the nearest neighbor inter-
action energy in units ofkBT. Examples of such lattice theo-
ries are the Bragg-Williams approach to dense liquid mix-
tures@31# and the Flory-Huggins theory of polymer solutions
@31#. Note that these lattice fluids are temperature driven in
contrast to the density-driven off-lattice hard particle fluids.
Thus although the second virial approximation is not justi-
fied in all circumstances, there is reason enough to consider
its stability conditions in detail.

When we insert the free energy expression of Eq.~13!
into the stability conditions of Eq.~3!, and substitute
v51/n throughout, we obtain

11nE~x!.0,

12nx~12x!x.0, ~17!

11n@~12x!E111xE22#2n2x~12x!D.0,

where we defined

x52E122E112E22,

D5E12
2 2E11E22. ~18!
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We conclude immediately that the mechanical stability con-
dition is always fulfilled for any densityn.0, since the ex-
cluded volume termE(x).0. The incompressible mixing
stability condition is not fulfilled for all positive densities if
x.0. In that case, namely, at densitiesn.@1/x
11/(12x)#/x, the stability is lost. The physical mechanism
behind this instability is provided by the unfavorable inter-
actions between unlike particles, represented by the rela-
tively large excluded volumeE12 of unlike particles as com-
pared toE11 andE22 of like particles. It is easily checked that
x52 1

2d
2E(x)/dx2, so that an incompressible demixing in-

stability corresponds to a concave functionE(x). The fact
that the incompressible demixing instability is governed by a
linear relation inEss8 strongly suggests that direct binary
excluded volume interactions drive this instability. An ex-

ample of a fluid satisfyingx.0 is the mixture of hard-rod-
like and platelike particles of the same volume and aspect
ratio, as discussed in@32#. In contrast, binary mixtures of
hard spheres have fully convex functionsE(x) for any diam-
eter ratio, so thatx,0. In fact, the parameterx plays the
same role in the present second virial theory as the so-called
x parameter in Flory’s theory of polymer solutions on a lat-
tice @31#. In this lattice theory, the~incompressible! demix-
ing is driven by direct unfavorable nearest neighbor interac-
tion energies between unlike species as compared to that
between the like species.

A compressible demixing instability is possible ifD.0,
since then the third inequality of Eq.~17! is no longer satis-
fied if n.ns(x), where we defined the composition depen-
dent spinodal density

ns~x!5
@~12x!E111xE22#1A@~12x!E111xE22#

214x~12x!D

2x~12x!D
. ~19!

The corresponding spinodal pressurePs(x) can be obtained
by insertingn5ns(x) into the equation of state, Eq.~16!.
The critical point of the demixing transition is then obtained
from dPs(x)/dx50. The fact that a compressible demixing
instability can only occur ifD.0 indicates that unfavorable
excluded volume interactions between unlike particles are
responsible again, just as in the case of incompressible de-
mixing. However, the nonlinear dependence ofD on Ess8,
and the nonlinearity inn of the compressible mixing stability
condition suggest a many-body character for the demixing
mechanism. This becomes explicit if we perform the Leg-
endre transform tog5 f1P/n in the second virial approxi-
mation, yielding the inversion of the pressure-density rela-
tion of Eq. ~16!,

n~x,P!5
211A112PE~x!

E~x!
~20!

from which follows that

g~x,P!5 lnn~x,P!1 fmix~x!1A112PE~x!. ~21!

Expanding Eq.~21! in powers ofP generates terms of all
orders inP, even though the second virial approximation of
f does not contain quadratic and higher order terms inn. The
nonlinear terms inP effectively represent the many-body
character of the depletion effect, which may drive a demix-
ing transition at sufficiently highP even ifE(x) is a convex
function. In fact, it turns out that the stability with respect to
depletion-driven demixing is governed by the convexity and
concavity of AE(x), since one easily checks that
D52E3/2(x)d2AE(x)/dx2. It is therefore possible that an
entirely convexE(x) ~with x,0 and thusno incompressible
demixing! can show compressible demixing, because
AE(x) is not ~entirely! convex. This is just a restatement of
our earlier observation that compressible fluids have a stron-
ger tendency to demix than incompressible fluids.

Thus we see from Eq.~21! that a crucial ingredient to
obtain higher order terms inP is the nonlinear relation be-
tween pressure and density. An important technical aspect is
the fact that this relation, given in Eq.~16!, could be inverted
analytically as in Eq.~20!, despite its nonlinearity. This in-
version is exactly the problem if the more usual description
of depletion, in terms ofv(m1 ,r2), had been used. To obtain
an analytic expression forv, consistent with the second
virial approximation off , would particularly require the in-
versionr15r1(m1 ,r2) from

m1~r1 ,r2!5 lnr11r1E111r2E12. ~22!

Obviously this inversion cannot be performed analytically,
unless speciess51 is an ideal gas withE1150. This extra
assumption need not be made if the theory is based on the
Gibbs free energy, or on the combined stability condition.

One should realize that the higher order terms inP in Eq.
~21! are modified if higher order terms in the virial series of
f are taken into account. It turns out that a third virial theory,
which can be dealt with analogously since the corresponding
cubic relation betweenP andn can also be inverted analyti-
cally, tends to stabilize a compressible binary mixture, at
least to orderP2 in Eq. ~21!. This is intimately related to the
recent determination of the distance dependent depletion
forcebetween the bigger spheres in binary hard-sphere mix-
tures. Biben and Bladon found in computer simulations that
this force is oscillatory with distance@33#, and thus contains
both repulsive and attractive contributions. This is also found
theoretically by Mao, Cates, and Lekkerkerker@34#, who
showed that only attractions are present to lowest order in
the density of small spheres, while higher order terms also
contain repulsive contributions. These authors also found a
similar effect for the depletion force between big hard
spheres in a semidilute solution of small hard rods@35#.

We conclude this section with the observation that the
demixing spinodal, as follows from the second virial ap-
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proximation to the Helmholtz free energy, can be calculated
analytically. Since the second virial approximation is exact
for thin hard rods, we have an exact theory for the demixing
spinodal in binary mixtures of thin hard rods.

III. ISOTROPIC MIXTURES OF THIN
AND THICK LONG RODS

We apply the second virial expressions for the demixing
instability to a binary fluid mixture consisting of hard
spherocylinders of lengthLs and diameterDs in the isotro-
pic phase. This model may be used as a simplified descrip-
tion of an isotropic binary mixture of colloidal rods of dif-
ferent sizes. IfD1!D2, we may also interpret species 1 as a
long stiff liquid-crystalline polymer, and species 2 as a
~much thicker! colloidal rod. For convenience we define
L2 /L15l , D2 /D15d, andb5(p/4)L1

2D1. A conventional
dimensionless density is defined asc5nb. As indicated
above, Onsager showed that the second virial approximation
of the free energy of a monodisperse isotropic rod system is
exact in the limit of infinite length-to-width ratio@1#. We
therefore expect that the second virial approximation of the
rod mixture is exact if Ls@Ds8 for all combinations
s,s851,2. In this limit, we may neglect the end-cap contri-
butions to the excluded volume interactions, and we have
Ess85(p/4)LsLs8(Ds1Ds8) @1#. Using the scaled units
we thus have

E1152b,

E125~11d!l b, ~23!

E2252dl 2b.

It is straightforward to insert~23! into the spinodal expres-
sionsns(x) andPs(x), and study the demixing of the isotro-
pic phase as a function of the relative shapes of the particles,
characterized by the ratiosl and d. A first guess of the
interesting particle shapes is obtained by inserting Eq.~23!
into Eq. ~18! to yield

D5~d21!2l 2b2, ~24!

which is manifestly positive ifdÞ1. We may therefore ex-
pect a demixing transition ifD1ÞD2, i.e., in mixtures of thin
and thick rods. Demixing in the isotropic phase of equally
thick long rods is predicted to be impossible in the present
theory, even if their lengths are extremely different. We note
that the conditions for demixing would have differed sub-
stantially if the incompressible criterion had been used, since
x52b(l 21)(12l d). Hence an incompressible binary rod
mixture could only demix ifl .1 andd,1/l , correspond-
ing to mixtures of ‘‘thicker shorter’’ and ‘‘thinner longer’’
rods. This is clearly qualitatively different from what fol-
lowed from the compressible instability criterion.

So far, we have considered the mixture of rodsassuming
that it is in the isotropic phase (I ). It is well known, how-
ever, that hard-rod fluids exhibit a transition to an orienta-
tionally ordered nematic phase (N) at sufficiently high den-
sities ~or pressures! @1,4,16#. It is therefore necessary to
investigate whether or not the demixing transition in the iso-
tropic phase, if the particle shapes permit one, is preempted
by this I -N transition. An analytic expression for an upper
bound of the stability of the isotropic phase can be obtained
by a straightforward generalization of the bifurcation analy-
sis of the monodisperse rod system as presented by Kayser
and Raveche´ @36#. Denoting the composition dependent
isotropic-nematic bifurcation density bynI -N(x), we obtain

cI -N~x!5bnI -N~x!5
8

11~dl 221!x1Ax~12x!~d21!2l 21@11~dl 221!x#2
. ~25!

Note that cI -N(x50)54, consistent with the bifurcation
analysis of the monodisperse system by Kayser and Raveche´
@36#. It is known that the densities of the coexisting isotropic
and nematic phase for the system withx50 are given by
c53.290 andc54.191, respectively, so that the bifurcation
analysis gives a good estimate for the location of the actual
phase transition@4#. The pressure at the bifurcation,
PI -N(x), is obtained by inserting~25! into ~16!. In fact, the
actual isotropic to nematic transition will already take place
at pressures belowPI -N , but analogous to pure rod systems
we expect thatPI -N is a good estimate for the true transition
pressure. Thus we expect a demixing transition in the isotro-
pic phase of binary mixtures of hard rods if the critical point
(xc ,Pc) of the demixing transition satisfiesPc,PI -N(xc).
We study this criterion for several rod shapes.

First we focus on rods of equal length, so thatl 51, and
we consider several values of the diameter ratiod.1. In Fig.
1 we plot the spinodal pressurePs(x) and the upper bound of
the isotropic-nematic transition pressurePI -N(x) for d52,

4, 6, and`. The demixing transition is preempted by orien-
tational ordering ford52 andd54, but is thermodynami-
cally stable for the larger values ofd. We see that the critical
point of the demixing transition shifts to smaller values of
x whend increases. In the limit ofd→`, the critical point is
given by (xc ,Pcbd)5(1/9,27/4). This must be compared to
the bifurcation pressure limd→`PI -N(xc)bd554, which is a
factor of 8 higher than the critical pressure. We therefore
conclude that the demixing sets in well before the orienta-
tional ordering ifd is sufficiently large, at least larger than
aboutd'5. The precise crossover diameter ratio can only be
determined by a calculation of the binodals of theI -I transi-
tion and theI -N transition, which requires some numerical
effort.

Another relatively simple and symmetric case is obtained
by settingE115E22, so thatd51/l 2. If we considerd.1
~andl ,1), then species 1 may characterize a thin very stiff
long polymer and species 2 a much shorter and thicker col-
loidal rod. We now haveD5(d11/d22)b2, which is posi-

54 6435DEMIXING VERSUS ORDERING IN HARD-ROD MIXTURES



tive for any dÞ1. The same trend as found in Fig. 1 is
observed now: for small values ofd the critical point of the
demixing transition is metastable with respect to orienta-
tional ordering, while for larger values ofd the demixing
transition is thermodynamically stable. The value separating
the two regimes is given byd'4.5. Because of the symme-
try, the critical point of the demixing transition is now lo-
cated atx51/2. Recently, Sear and Mulder analyzed this
system in more detail, and indeed foundI -I demixing to
occur @37#.

A final illustration of demixing in an isotropic rod mixture
is a feeble attempt to describe a mixture of colloidal tobacco
mosaic virus~TMV ! particles (L253000 Å,D25180 Å! and
a typical stiff 20 beads long liquid-crystalline polymer
(L15203305600 Å, D154.5 Å!. These sizes correspond
to l 55 andd540 in the present notation. In Fig. 2 we show
the corresponding spinodal and the isotropic-nematic bifur-
cation pressure in the composition interval 0,x,0.1.
Clearly, the critical point atx'0.021 appears below the
nematic ordering bifurcation, hinting at a stable demixing
transition in the isotropic phase. Obviously, this result is sub-
ject to many reservations. Among them, a condition for the
validity of the second virial approximation,L1@D2, is only
marginally satisfied. Moreover, the flexibility and the attrac-
tive interactions of the polymers, which are both neglected in
the theory, may play significant roles in reality. Still, the
basic demixing mechanism described in the present simple
theory should be considered in a more elaborate and detailed
description of realistic mixtures of rods.

In brief, in this section we have shown that binary mix-
tures of hard rods with different diameters show an isotropic

demixing spinodal, which preempts the nematic ordering
transition if the diameter ratio exceeds a critical value of
about 5.

IV. PERFECTLY ALIGNED ROD MIXTURES

It is well known that the orientational ordering of rodlike
particles in the nematic phase becomes more and more pro-
nounced as the density increases@1,4,17,19,20#. Therefore it
is tempting to argue that the orientational order becomes
saturated at very high densities, and that the well-aligned
system can be describedassumingperfect alignment of the
rods. This assumption, although not entirely justified@20,22–
24#, has led to several interesting predictions concerning the
existence of smectic and columnar ordering in dense systems
of rods. It was shown by Mulder@27# that a monodisperse
aligned rod system exhibits a transition from the nematic
phase to the smectic-A phase, characterized by a one-
dimensional density modulation parallel to the nematic direc-
tor. An alternative possibility, a transition from the nematic
to the two-dimensionally ordered hexagonal columnar phase,
was found to be metastable with respect to the nematic-
smectic transition. The results of Ref.@27#, obtained within
the second, third, and fourth virial approximation, are con-
firmed by more elaborate density functional theories of
aligned rods@38,39#. There is also agreement with computer
simulation studies of this system@40#. Initial doubts as to
whether or not orientation fluctuations would destroy the
smectic order have been eliminated, since both computer
simulation studies@41# and density functional theories
@42,43,24# of freely rotating hard rods reveal a stable smectic
phase at high densities, although the transition densities dif-
fer from those obtained in the aligned system.

Given the qualitatively correct predictions of the aligned
monodisperse hard-rod system as a simplification of freely
rotating rods at high densities, it should not come as a sur-

FIG. 1. Phase diagrams of hard rods with the same lengths
(l 51) in the pressure-composition plane for several values of the
diameter ratiod, ~a! d52, ~b! d54, ~c! d56, ~d! d→`. In ~d! the
vertical axis representsPbd, in the other plotsPb. The continuous
curves represent the demixing spinodals in the isotropic phase, the
dashed curves the isotropic-nematic bifurcation pressures. For
d52 andd54 the demixing transition is thermodynamically meta-
stable with respect to orientational ordering, but at the larger values
for d there is a composition regime with a stableI -I phase separa-
tion.

FIG. 2. Phase diagram of large colloidal rods~mole fraction
x) in a stiff liquid-crystalline polymer solution. The shape param-
eters arel 55 and d540. The continuous curve represents the
demixing spinodal, and the dashed one the isotropic-nematic bifur-
cation density. The orientational ordering atx'0.03 is clearly pre-
empted by demixing into two coexisting isotropic phases of differ-
ent composition.

6436 54RENÉVAN ROIJ AND BELA MULDER



prise that the high density phases ofbinary hard-rod mix-
tures have been studied in the same fashion. An interesting
result was obtained by Stroobants@25#, whose computer
simulation study of a binary mixture of longer and shorter
aligned hard rods revealed a mechanically stable nematic-
columnar (N-C) transition@and a corresponding metastable
nematic-smectic (N-S) transition# if the length ratio of the
rods exceeds 1.9. This was qualitatively confirmed by a den-
sity functional analysis by Cui and Chen@26#, who adopted
the third virial approximation. However, in neither the simu-
lation study of Ref.@25# nor the theoretical study of Ref.@26#
was the stability of the homogeneous nematic phase consid-
ered. Here we show that a stable nematic phase of a binary
mixture of aligned cylinders should not always be taken for
granted, as was also concluded in Ref.@28#. A depletion
driven nematic-nematic (N-N) demixing transition is shown
to possibly preempt theN-C andN-S transitions if the sizes
and shapes of the rods differ substantially.

Using the same notation as above, we can write the sec-
ond virial approximation to the free energy of a homoge-
neous binary mixture ofNs parallel cylinders of lengthLs

and diameterDs ~with s51,2) as in Eq. ~13!, with
Ess85(p/4)(Ls1Ls8)(Ds1Ds8)

2. Denoting the volume
of the particles of species 1 byv15(p/4)L1D1

2, and defining
as before the ratiosl 5L2 /L1 and d5D2 /D1, we obtain
from Eq. ~18!

D5@~11d!4~11l !2264d2l #v1
2 . ~26!

HenceD>0 for any combination of positive values forl
andd, where the equality only holds ifl 5d51. Therefore
we expect a demixing transition of the homogeneous aligned
hard-rod mixture at sufficiently high densities or pressures.
The spinodal pressurePs(x) for a particular set of lengths
and diameters of the rods is obtained by inserting the present
values forEss8 into Eqs.~16! and ~19!.

The question now is whether or not theN-N demixing
transition is preempted by theN-S or the N-C transition.
This can again be sorted out by means of a bifurcation analy-
sis, analogous to the one presented in Ref.@27# for the mono-
disperse system, and that in Ref.@26# for a binary mixture.
Here we only sketch the procedure. The starting point of the
analysis is the linearization~about the homogeneous solu-
tion! of the stationarity condition of the second virial free
energy functional with respect to fluctuations in the one-
particle distributions. Obviously we only consider fluctua-
tions that are consistent with the imposed number densityn
and compositionx. If we denote the homogeneous~nematic!
distributions byrs5xsn, with x15(12x) and x25x, and
the inhomogeneous density fluctuations bydrs(rW), the sta-
tionarity conditions read

drs~rW !2rs(
s8

E drW8 f ss8~r
W,rW8!drs8~r

W8!50, ~27!

where f ss8 is the Mayer function of two aligned cylindrical
rods of speciess and s8. Note that the linear eigenvalue
structure of Eq.~27! is nested, in the sense thatdrs(rW) is an
eigenfunction of a 232 problem with respect tos, and of a
continuous kernel with respect torW. Using the translational

invariance of the Mayer functions, it can be shown that so-
lutions of ~27! must be of the form

drs~rW !5ascos~qW •rW !, ~28!

where we set an arbitrary phase factor to zero, and where the
amplitudesas ~possibly negative! and the wave vectorqW
Þ0 are unspecified yet. Note that smectic and columnar in-
stabilities are described byqW i ẑ andqW' ẑ, respectively, where
ẑ is the direction of the alignment of the rods. It is easily
checked that the trivial solutionsdrs(rW)50 ~thus as50)
always satisfy Eq.~27!. The condition for nontrivial solu-
tions ~with asÞ0) is a vanishing determinant of the 232
matrix B, with components

Bss8~q
W !5dss81nxsMss8~q

W !, ~29!

whereMss8 is the negative of the Fourier transform of the
Mayer function of aligned cylinders, anddss8 the Kronecker
delta. In terms of the standard and spherical Bessel functions
Jn and j n , respectively, and the definitionTn(y)5Jn(y)/
( 12y), we have

Mss8~q
W !5Ess8 j 0@

1
2 ~Ls1Ls8!qz#T1@

1
2 ~Ds1Ds8!qy#,

~30!

where the parallel and perpendicular components ofqW are
denotedqz and qy , respectively. The smallest density for
which the nontrivial solutions exist can now be expressed in
terms of the eigenvaluesL i(qW ) ~with i51,2) of the matrix
XM , where the diagonal matrixX has components
Xss85xsdss8. Denoting these minimumN-S andN-C bi-
furcation densitiesnN-S andnN-C , respectively, we have

nN-S~x!5
21

minqz ,iL i~qz ,qy50!
,

nN-C~x!5
21

minqy ,iL i~qz50,qy!
. ~31!

For a given set of particle sizes, the~negative! global mini-
mum of both eigenvalues is easily found numerically. We
note that the present bifurcation analysis, which is based on
the vanishing determinant ofB, is equivalent to the analysis
of the divergence of the structure factor matrixS, which is
given byS(qW )5XB21(qW ) @44#. Using j 0(0)5T1(0)51, it
can also be seen that the spinodal densityns(x)
521/@miniLi(qW50)#. This can be understood if we realize
that (]2g/]x2)P51/limqW→0Sxx(qW ), whereSxx is a particular
combination of the elements ofS @45#.

We can now compare the bifurcation densitiesnN-S(x)
andnN-C(x) with each other, and with the spinodal densities
ns(x) of the demixing transition. Equivalently, we can com-
pare the corresponding pressures.

The results for aligned cylinders of equal thickness
(d51) and length ratiol 51.8,2,6,10 are depicted in the
pressure-composition plane in Fig. 3. We see that the demix-
ing transition does not interfere with the smectic and colum-
nar ordering forl 51.8,2, where the critical point of the
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spinodal would appear far beyond the scale of the plot at
Pv1;53. For l ,1.85 theN-S transition always preempts
the N-C transition, whereas forl .1.85 a finite regime of
N-C transitions is present. However, for the even larger
length ratiosl 56,10 the demixing does interfere with the
ordering transitions. Actually, we see that theN-C transition
is preempted by either theN-N demixing or theN-S order-
ing. The present analysis is not sufficient to determine the
precise phase diagram forl .6, since theN-N and theN-
S transitions appear at approximately the same pressures.
This suggests possible biphasic equilibria between a nematic
and a smectic phase, or between two smectic phases, or
maybe even a triphasic equilibrium, analogous to the tripha-
sic equilibrium of one isotropic and two nematic phases in
freely rotating rod systems@17,19#. Whatever the precise
phase behavior will be, the possibility of a demixing transi-
tion should definitely be taken into account. The maximum
of theN-S bifurcation in~a!, that develops into a cusp in~b!
and further into a discontinuity in~c! and ~d! is a conse-
quence of the different character of the global minimum of
the eigenvaluesL i as a function ofqz . For small length
ratios~e.g.,l 51.85), there is a continuous shift of the asso-
ciated wavelength~smectic layer thickness! from 1.40L1 to
1.40L2, the bifurcation layer thickness of the pure systems
@27#. For larger length ratios~e.g., l 54), we find several
local minima forL i , corresponding to modulations of dif-
ferent wavelength. The global minimum condition then leads
to a cusp. For even larger length ratios (l .5), we find the
minimizing wave vector associated with the smectic modu-
lation of the longer rods to shift to smaller values ofqz ,

eventually reachingqz50. This minimum no longer corre-
sponds to a smectic instability, but rather to the demixing
instability, as we argued above. This is a signature of a
strong coupling of theN-N andN-S transition, as was also
found by Koda and Kimura@28#.

We can also consider binary mixtures of equally long
aligned rodlike cylinders (l 51) with different diameters
(dÞ1). In particular, we present the phase diagram in the
pressure-composition plane in Fig. 4, where~a! d52, ~b!
d54, ~c! d55, and~d! d58. Again the continuous curves
represent theN-N spinodal, the dotted curves theN-S bifur-
cation, and the dashed ones theN-C bifurcation. Note that

here 0<x< 1
2 ; for x. 1

2 the N-S bifurcation is never pre-
empted by theN-N spinodal or theN-C bifurcation. The
N-N spinodal is not drawn in~a!, since its critical point is
beyond the scale of the plot. Clearly, ford52 theN-S bi-
furcation is the only relevant one, since it preempts theN-
C andN-N instabilities considerably. Ford54, we see that
both theN-N spinodal and theN-C bifurcation take place
only just above theN-S bifurcation, so that a full calculation
may well reveal coexistence between some of these phases.
For d55, theN-N spinodal preempts theN-S bifurcation at
x'0.10, revealing the depletion driven instability of the ho-
mogeneous nematic phase. The same holds ford58, with
the remarkable difference that theN-C bifurcation preempts
the N-N andN-S instability at x'0.17. This phenomenon
was not observed in Ref.@26#, where only diameter ratios
between 1.5 and 4 were considered. In fact the same remarks
as before can be made about the cusp evolving into a discon-
tinuity, but now for theN-C instead of theN-S bifurcation.
The minimizing wave vector of the columnar modulation of
the thick particles shifts to smallerqy values and eventually

FIG. 3. Phase diagrams of mixtures of equally thick (d51)
aligned short and long hard cylinders, with length ratios~a!
l 51.8, ~b! l 52, ~c! l 56, and~d! l 510. The continuous curves
represent theN-N demixing spinodal, the dotted curves theN-S
bifurcation, and the dashed curves theN-C bifurcation. The demix-
ing spinodal in~a! and ~b! is not plotted, since its critical point is
located atPv1;53, which is far beyond the present scale. For
l 51.8, there is no stableN-C bifurcation, for l 52 there is a
composition regime where theN-C bifurcation does preempt the
N-S bifurcation. Forl 56,10 we see that theN-C bifurcation is
metastable with respect to either theN-N demixing or theN-S
transition.

FIG. 4. Pressure-composition phase diagram of mixtures of
equally long (l 51) aligned thick and thin hard cylinders, with
diameter ratios~a! d52, ~b! d54, ~c! d55, and ~d! d58. The
nomenclature is as in Fig. 3. We only depict the composition inter-
val 0<x< 1

2, and do not show theN-N spinodal in~a! because it is
beyond the scale of the plot. In~a! theN-S bifurcation is stable for
all compositions, whereas coupling of all three instabilities seems to
occur in ~b!, ~c!, and ~d!. Remarkably, theN-C bifurcation pre-
empts theN-S andN-N instability in ~d! at x'0.17.
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to qy50 if x is reduced. Atqy50, theN-C bifurcation con-
dition is identical to that of theN-N demixing spinodal.

We have argued that the second virial approximation
gives qualitatively reliable results in the case of perfectly
aligned rod mixtures. Still, we expect non-negligible contri-
butions from the higher virial coefficients. In order to illus-
trate their importance, we have calculated the spinodal of the
N-N transition in thethird virial approximation of equally
thick rods with a length ratiol 59. A phase diagram of this
system, also obtained within the third virial approximation,
is presented in Ref.@26#. In the homogeneous phase the di-
mensionless free energy per particle in the third virial ap-
proximation, f (3), reads

f ~3!5 f ~2!1 1
6n

2E~3!~x!, ~32!

with f (2)5 f , the free energy in the second virial approxima-
tion as given in Eq.~13!, and

E~3!~x!5p2S 12
3A3
4p DD4 (

s,s8,s9
xsxs8xs9

3~LsLs81LsLs91Ls8Ls9!. ~33!

We used the two-dimensional hard disk diagrams of Ref.
@46#, and setD15D25D. Inserting Eq.~32! into the com-
pressible mixing stability condition of Eq.~3! leads to a
quartic polynomial inn, the relevant root of which can easily
be determined to give the spinodal density as a function of
composition. For the aligned rod mixture withl 59 and
d51, the resulting third virial spinodal is represented by the
continuous curve in Fig. 5, the analogous second virial result
by the dashed curve. To facilitate the comparison with Ref.
@26#, we transformed the variables (n,x) into (h1 ,h2), with
the partial packing fractionshs5nxsvs . Clearly, the inclu-
sion of the third virial term does not alter the demixing phe-
nomenon considerably, except that the spinodal packing
fractions are slightly reduced. A comparison with the phase
diagrams of Ref.@26# reveals that theN-S andN-C transi-

tions can be preempted byN-N demixing. We argue, there-
fore, that theN-N demixing in aligned rod mixtures is not an
artifact of the second virial approximation. The results sug-
gest that phase separation in well-ordered nematic mixtures
should be considered seriously in the full determination of
the phase behavior of these systems.

V. DISCUSSION

In this paper we have considered the stability of binary
mixtures with respect to demixing into two homogeneous
phases, and with respect to possible orientational and posi-
tional ordering. Using general thermodynamic relations we
argued that a demixing instability is more likely to occur in
compressible than in incompressible mixtures. We have also
shown that two descriptions of the demixing mechanism
— the mismatch in the pure component equations of state
and the depletion-induced attraction — just reflect different
viewpoints of the same phenomenon. We exploited this
equivalence within the second virial theory of the Helmholtz
free energy (f or f) of a binary mixture: the Legendre trans-
formation to the Gibbs free energyg5 f1Pv leads to ana-
lytically tractable expressions for the demixing spinodal,
while the transformation to the potentialv5f2m1r1,
which is usually used to describe depletion, requires the in-
version of transcendental relations that cannot be dealt with
analytically. The analysis reveals the reason why a second
virial approximation to the Helmholtz free energy, which
includes only two-body correlations, is still capable of de-
scribing a many-body effect as depletion: the resulting Gibbs
free energy contains terms of all order inP due to the non-
linear relation between pressure and density.

The demixing spinodal that follows from the second virial
theory is calculated analytically for general binary mixtures.
We applied the general formalism to describe the isotropic
phase of binary mixtures of freely rotating hard rods. Since
in the limit of very thin rods the second virial theory is exact,
we thus have an exact analytic expression for the spinodal. It
turns out that depletion-driven demixing in the isotropic
phase is only possible if the diameters of the rods are differ-
ent, the lengths may but need not be different. In the case of
equally long rods, demixing in the isotropic phase preempts
nematic ordering if the diameter ratio is more extreme than
about 1:5.

We have also applied the second virial approximation to
binary mixtures of perfectly aligned hard rods, for which the
low density phase is the nematic phase. We found aN-N
demixing spinodal for any combination of nonidentical sizes
and shapes of the two rod species. If the aligned rods have
equal diameters~lengths!, thisN-N spinodal can preempt the
N-S and N-C bifurcation if the length~diameter! ratio is
more extreme than about 1:5.

We finally remark that the present theoretical treatment of
demixing and ordering is not yet completely conclusive in
every detail, since we determined only instability points~the
demixing spinodal and the ordering bifurcations!, whereas
we did not determine the thermodynamic coexistence points.
Given the first order nature of theI -N transition, a full cal-
culation of the binodals of the binary mixtures of thick and
thin freely rotating hard rods may reveal that the minimum

FIG. 5. Comparison of theN-N spinodal in the third~continuous
curve! and second~dashed curve! virial approximation of equally
thick aligned hard cylinders with length ratioL2 /L15l 59. Here
hs denotes the packing fraction of speciess.
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diameter ratio required to have a stableI -I binodal is more
extreme than the presently quoted value of 1:5. Moreover,
such calculations may also reveal a possible three-phasicI -
I -N equilibrium, analogous to theI -N-N equilibrium in bi-
nary mixtures of longer and shorter freely rotating hard rods
@19#. In the case of the perfectly aligned mixtures, the cou-
pling between demixing and ordering is probably even stron-
ger, since theN-N spinodal is always very close to theN-
S and/orN-C bifurcation. Calculations of the binodals may
therefore reveal coexistences between nematic, smectic,
and/or columnar phases with widely different compositions.
Thus although more research is required to map the phase
diagrams of binary hard-rod mixtures in full detail, the

present results already indicate that spontaneous demixing is
a phenomenon to be considered seriously.
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