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Demixing versus ordering in hard-rod mixtures
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We present a simple treatment of the depletion-driven demixing transition in isotropic and perfectly aligned
binary hard-rod mixtures. The simplicity is mainly due to the fact that we use the second virial approximation
to the Helmholtz free energy in combination with a convenient Legendre transform. This combination leads to
an exact expression for the depletion-driven demixing spinodal in isotropic mixtures of hard rods with different
diameters. We show for rod species with the same length that the demixing spinodal is thermodynamically
stable with respect to the isotropic-nematic transition, if the diameter ratio is larger than about 5. We also show
that perfectly aligned rod mixtures show a hematic-nematic demixing spinodal, that may preempt the nematic-
smectic or the nematic-columnar bifurcation if the size difference between the particles is sufficiently large.
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[. INTRODUCTION of an off-lattice additive hard-core mixture matters have not
been resolved completely. In 1964 Lebowitz and Rowlinson

Since the work of Onsager in the 1940 and that of concluded, using the Percus-Yevick closure of the Ornstein-
Alder and Wainwright in the 195082] it has been known Zernike (OZ) equation, that there imo fluid-fluid phase
that the short-range repulsions between atoms and moleculssparation for any composition, pressure, or size ratio of the
can be responsible for ordering in simple and complex fluidssphereg5]. This was confirmed in 1971 by Mansoet al.,
Onsager’s theory explains the orientational ordering upomwho generalized the Carnahan-Starling expressions for pure
densification of a fluid of rodlike particles as the conse-hard spheres to hard-sphere mixtufé$ and did not find
guence of hard-core repulsions aloftd, and Alder and any evidence for a spinodal instability. These findings prob-
Wainwright's computer simulations show positional order inably triggered the intuitively attractive picture that hard-core
a hard-sphere system at sufficiently high densitids Thus  fluids do not demix at all. It was therefore surprising when
in both studies the short-range repulsions are modeled &iben and Hansen in 1991 provided evidence, based on the
hard-core repulsions, while the attractions are neglectedelf-consistent Rogers-Young closure of the OZ equations,
completely. It has since been shown that many more orderfor a demixing instability of binary hard spheres if the diam-
ing phenomena can be expected on the basis of hard-coeger ratio is more extreme than 1.B]. This result is quali-
repulsions alone. For instance, also partially positionally ortatively confirmed in a theoretical study by Lekkerkerker and
dered liquid-crystalline phaseg.g., smectic and columnar Stroobantg§8], whose analysis also provides a clear physical
phasesappear in the phase diagram of hard anisotropic parpicture of the demixing transition. These authors make the
ticles [3,4]. Thus despite the fact that hard-core fluids areconnection between binary hard-sphere mixtures and colloid-
athermal, with the densityor pressurgthe only thermody- polymer mixtures, the latter of which are known to possibly
namic variable, their phase behavior is rich. exhibit a phase separation due to thepletioneffect[9,10].

The phase behavior of fluids consisting of hard particles idn this picture, the excluded volumeverlap of phase-
even richer in the case of mixtures of several species. Apadeparated largécolloidal) spheres generates sufficient free
from the fact that the symmetry of ordering in a mixture canvolume for the smalkpolymerig spheres to overcome the
be different from that of a pure system, there is also thdoss of entropy of mixing caused by the phase separation. We
possibility of a demixing transition into coexisting phasesnote that this picture suggests that the depletion mechanism
with different compositions and densities. The fact that thehas a more-than-two-body character, since it takes at least
presence of different species influences the ordering of hardwo big spheres with overlapping excluded volumes to gen-
core mixtures can be understood intuitively in terms of pack-erate any extra free volume for one single small sphere. The
ing arguments. At first sight, however, there seems tadoe recent theoretical advances in the description of binary hard-
mechanism for demixing transitions in hard-core fluids. Thesphere mixtures are supported by a computer simulation
reason is that one would only expect a demixing transition ifstudy by Dijkstra and Frenkdl11l], who observed phase
like particles attract or unlike particles repel each other relaseparation in binary mixtures of hard cubes of different sizes
tively strongly. Neither of these two conditions seems to beon a lattice. Moreover, in the past few years several experi-
fulfilled in hard-core mixtures, since there are no attractionsmental studies of mixtures of colloidal hard spheres have
at all and the repulsions, which are only manifest if particlesrevealed evidence in favor of a demixing transition if the size
“touch,” do not discriminate between the species. In theratio is sufficiently extrem§l2,13. From these experiments
past few years it has become clear, however, that there aieseems, however, that the demixing transition is strongly
yet demixing mechanisms in binary hard-core mixtures.  coupled to the freezing transition, and that the actual coex-

One of the best-studied hard-core mixtures is the binarystence is that between a solid phase of primarily big spheres
hard-sphere mixture. Even for this relatively simple exampleand a fluid phase with primarily small spheres. These obser-
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vations are theoretically supported by Poon and Walrtdih  eters and different lengths has been analyzed to study phase
and Rosenfeldi15]. Nevertheless, given the sensitivity of the transitions in the well-ordered nematic phase of rbtisvas
theories to the adopted closure of the OZ equations, it seeng®ncluded from both a computer simulation st@$] and a
not completely resolved whether or not there ignaeta-  density functional analysiE26] that the nematic—smectis-
stable fluid-fluid spinodal in binary mixtures of hard (N-S) transition(which is the thermodynamically stable one
spheres. in the aligned pure rod systef27]) may be preempted by a

At first sight the difficulties encountered in the study of Nematic-columnarN-C) transition, if the length ratio of the
the stability of hard-sphere mixtures suggest that mixtures ofods exceeds approximately 2. The possibility of a nematic-
asphericalparticles are really impossible to treat as yet, sincd'€matic demixing transition seems to have been ignored in
the corresponding OZ equations lack the radial symmetry©th Ref.[25] and Ref[26]. We show that this is no longer
and are therefore even harder to deal with than those in th&/Stified if the length ratio is more extreme than about 1:5,
hard-sphere case. However, Onsager has shown that the sel1ce then thé\-N demixing (probably strongly coupled to
ond virial approximation to systems of hard rods is exact int"€ N-S transition preempts theN-C transition. This result
the limit of very thin hard rods. Therefore the opposite is the!S consistent with that obtained by Koda and Kimura, who
case: theories for hard rods are much simpler than those f&onsidered th&l-S (but not the N-C) transition of perfectly
hard spheres. Straightforward generalizations of Onsager&igned binary rod mixtures as a function of the length ratio
theory to include binary mixtures of longer and shorter harc®f the rods in detai[28]. In this paper we also consider
rods of the same diameter have therefore been performed Rjnary mixtures of perfectly aligned rods of the same length
several authorEl6—20. Apart from a number of interesting With different diameters. _
phenomena related to the isotropic-nematid\) transition This paper is organized as follows. In Sec. Il we discuss
(e.g., strong fractionation, widening of coexistence regionth€ thermodynamics of binary mixtures, first generally and
reentrant behavigy the most relevant result for the present then explicitly in the second virial approximation. We show
context is the nematic-nematibl{N) phase separation if the very.gener_ally that the usual description qf the deplet.|on ef-
length ratio of the rods is more extreme than about 1-dect is equivalent to the one that we co.n.S|der convenient. In
[19,20. Surprisingly, the mechanism behind this demixings_ecs' [l and IV we 'apply the second virial theory to isotro-
transition does not involve the excluded volume interactiond'® ar_1d perfectly_ allgnEE_d blnary mixtures of hard rods, re-
directly. Instead, the demixing is driven by the orientationalSPectively, and find which particle shape parameters deter-
entropy, which can be optimized by phase separating th8!n€ th(_a stability of fthese mixtures. Secpon V is devoted to
short rods from the long ones, since the latter impose tog°nclusions and a discussion of the main results.
strong an alignment on the former. Thus this phase separa-
tion is driven by the gain of orientational entropy for the Il. THERMODYNAMICS OF BINARY MIXTURES
short rods that more than compensates the loss of entropy of
mixing caused by the demixing. Obviously, this mechanism
is different from the depletion mechanism. We are concerned with the phase behavior of binary mix-

Still one could argue that the depletion mechanism couldures, consisting oN,, particles of species=1,2 in a vol-
also play a role in mixtures of anisotropic hard particles, justume V at temperaturel. The appropriate thermodynamic
as it may do in mixtures of hard spheres. We show in thigpotential of such a system is the Helmholtz free energy
paper that this can actually be the case, not for nematic mix=(N;,N,,V,T). Since we focus on hard-core fluids, the tem-
tures of long and short rods, but instead for isotropic mix-perature is merely a scale factor which is irrelevant for the
tures of thin and thick rods, possib{put not necessarijyof  thermodynamics. For notational convenience we therefore do
different lengths. A physical realization of such a system is anot retain the temperature dependenct cdnd of any of the
mixture of colloidal rods and liquid-crystalline polymers, other thermodynamic potentials that we introduce, in the se-
since colloidal particles are much “thicker” than polymers. quel. Since the Helmholtz free energy is an extensive quan-
The theoretical description benefits from the fact that theity, it can be written as
second virial theory for long hard rods is exact and simple
enough to allow for analytic results in the isotropic phase. F(N1,N2,V)=Nf(x,v), (1)
Therefore our results, when applied to binary mixtures of
thick and thin hard rods, are not subject to the reservationswhere N=N;+ N, is the (extensive total number of par-
encountered in the theories of hard-sphere mixtures, whiclicles andf the (intensivg Helmholtz free energy per par-
are sensitive to the adopted closure of the OZ equation. Wecle, which is a function of théintensive composition vari-
do, however, have to consider the possibility of orientationabble x=N,/N and the (intensive volume per particle
ordering of the rods, analogous to the freezing transition in =V/N. FromF or f the pressuré can be obtained as
the case of hard-sphere mixtures. We show that for suffi-

A. General considerations

ciently dissimilar particles, the isotropic-isotropit-I) de- JF of
mixing preempts the isotropic-nematic transition. This result P==l% =7 (2
is consistent with a recent analysis by Sear and Jackson, who N1.N; x

considered the extreme case of an infinitesimally {fdeal
polymeric rod and a thicker colloidal rd@1].

The formalism that we adopt to study isotropic mixtures One should realize, though, that the thermodynamics of the per-
of rods can equally well be applied to mixtures of perfectlyfectly aligned rod system is certainly not identical to the extremely
aligned rods of different sizes. The case of identical diamwell-ordered limit of a freely rotating rod systef0,22—-24.
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where the variables that are kept fixed are denoted below thiact, since Eq.(4) shows that §2g/dx%)p<<(d%f/9x?),, it
brackets. Obviously, we hawe=P(x,v) here. reveals that compressible binary mixtures violate the stability

This paper is particularly focused on the stability of bi- criteria in general more easily than comparatiigpotheti-
nary mixtures of hard-core particles. For that reason weal) incompressible mixtures. This has also been remarked
study the stability conditions that follow from the Helmholtz by Sanche#30] in the context of polymer solutions. Sanchez
free energyF [29]. These conditions can be expressed indescribes the demixing of these solutions as the consequence
terms off(x,v) as of a mismatch in the equation of state of polymers and sol-
vent, which is reflected by large values ofR/dx),. This

) -0 demixing mechanism seems, at first sight, to be very differ-
2 ’ ent from that observed in binary hard-core mixtures, in
which demixing is usually ascribed to the depletion effect,

92f which yields an effective attraction between particles of one

(a_xz> >0, (3 species due to the presence of the ofi8érThe fact that the
v depletion effect is stronger when the size ratio of the par-
5 ) e \ 2 ticles is more extreme correlates, however, nicely with the
J f) (‘9 f) _( Al ) ~0 mismatch in the equation of state of the smaller and bigger
w? « x? , \dvdx ' species. In the remainder of this section we show that there is

a direct link between demixing induced by the difference in
where the variations with respectxocandv are supposed to equation of state of the constituent species and that induced
be independent. Strictly speaking, the three condition8pof by the depletion effect. In fact, we show that the thermody-
are not independent, but for reasons of convention and latetamic description of the two mechanisms is equivalent.
convenience we retain all three of them. The first line of Eq. A convenient way to show the equivalence of the loss of
(3) is the mechanical stability condition, since combinationcompressible mixing stability and depletion-induced demix-
with Eq. (2) reveals its equivalence withvP/dv),<0. The ing is to introduce an alternative choice to split intensive and
second line of Eq(3) is theincompressiblemixing stability = extensive variables, combined with another Legendre trans-
condition, where “incompressible” refers to the composition form of the Helmholtz free energy. Instead of usMas the
fluctuations at constant volume The third line of Eq.(3) extensive variable to scalg, as in Eq.(1), we now useV.
reflects the stability with respect to combined volume andThis leads to
composition fluctuations. This combined stability condition
is the most restrictive of the three, since a quadratic term is F(N{,N,,V)=Vé(p1,p2), (6)
subtracted from a term that is positive if the mechanical and
incompressible mixing stability conditions still hold. For this with ¢ the (intensivé Helmholtz free energy density as a
reason we focus primarily on the physical meaning of thisfunction of the number densitigg, =N, /V for o=1,2. Us-
combined stability condition, and assume in the sequel thahg the relationg,=(1—Xx)/v, p,=x/v, and¢=f/v, it fol-
the mechanical and incompressible mixing stability are sattows readily that
isfied.

We start with the observation that the combined stability P PP PP \?
condition can be regarded as tt@mpressiblenixing stabil- ( ) (F) —( )
ity condition, where the composition fluctuations take place Py P2 P
at constant pressure instead of constant volume. This is most
easily understood by performing the Legendre transform vt
from Helmholtz to Gibbs free energy, given by
G=F+PV, with G=G(N;,N,,P)=Ng(x,P). Here we in-
troduced the(intensive Gibbs free energy per particle
g(x,P). Using Eq.(2) and the relatiomy=f + Pu, it is easily
verified that

dp1dp>

PP\ [ 9%f 9%f \2 .

a2 | o] “lawax] | 0
X v

We proceed by calculating the chemical potentialof spe-
cieso=1, given by

dpi

Pg| () [ P2 azf) . M:(ﬁ) :(ﬁ) ®
o)\ ~\oxa w2 @ NiJy v \9paf
v X
As a consequence we see that the combined stability condivith u;=4(p;,p,). The Legendre transform we perform
tion of Eq. (3) implies that now yields the (extensivé thermodynamic potential
) Q=F—u,N, which describes species=1 grand canoni-
(a_g) ~0 (5) cally and speciesr=2 canonically:QQ=Q(uq,N,,V). We
ax? b exploit the extensiveness 6I and defineQ)=Vo(u1,p2),

with o the intensive thermodynamic potential that satisfies
thereby justifying the nomenclature of compressible mixingw=f — u,p4. Using this relation together with E¢8) gives

stability condition. If we realize that #f/dxdv)
=—(dPldx),, we see from Eq(4) that the compressible (82w) (azcj)) PP )2/ (a%) ©
=\-z ~ -7
4y Ip3 oy Ip19p2 ap1 oy

mixing stability condition tends to be violated by binary mix- _apz
tures of species with widely different equations of state. In 2
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revealing in combination with Eq$4) and (7) the equiva- series inn. Retaining only the lowest order correction to the
lence ideal gas contributions yields the so-called second virial ap-
proximation

9% ’w

-2 =0 & |——] =0. (10 f(x,n) = fmix(x) + ZNE(X), (13

X b aps u

1
with the ideal gas term m the free energy of mixing

We have almost reached our goal now. What remains to be
shown to prove the equivalence of a compressible demixing

instability and a depletion-induced demixing instability is the
relation between the second equality of E§0) and the

fmix(X) =X Inx+(1—x)In(1—x), (19

and the excluded volume terms

depletion effect. This relation becomes clear by considering E(X)=(1—X)2E 11+ 2X(1—X)E1p+ X?Ey,. (15
the pressure in thew(;,p,) ensemble, which can be written
as HereE,, is the excluded volume of as{o’) pair of par-
ticles, given by the negative of the orientation averaged spa-
a0 dw tial integral over the Mayer function of ther¢’) pair, as in
P=- N =-owtp; Ipy 1D Mayer’s imperfect gas theorj31]. Note thatE,,  is tem-
ry:N2 #1 perature independent, because the Mayer function of hard-

core potentials takes only the valued (overlap and 0(no
overlap, independent of temperature. The presdRra the
second virial approximation is given by

P\ [P 15
apa) P2 Gp2) (12 P=n+1n2E(x) (16
M1 M1

so that

as follows from inserting Eq(13) into Eq. (2).

From Eqs(10) and(12) we can conclude that a compressible  Neglecting the quadratic and higher order termsnim
demixing instability is equivalent to a “van der Waals™-like Eq. (13) is a serious approximation in the case of spherical
loop in P(u1,p2), the spinodal of which is given by particles at typical liquid densities. Consequently, this ap-
(dP1dp,) ., =0. The presence of this loop is then, in analogyproximation does not yield any reliable thermodynamic in-
with equations of state of pure systems, interpreted as th®rmation on the binary hard-sphere mixture. However, we
consequence of attractions between the particles of specisbow that it does give more insight into the general condi-
o=2. In hard-core mixtures, with no bare attractions be-tions for demixing. Moreover, and more importantly, there
tween particles, these must be “effective” attractions be-are cases where the second virial approximation is expected
tween particles of species=2 caused by the presence of a to be accuratée.g., perfectly aligned hard rofi7]) or even
bath of species =1, characterized by the chemical potential exact(e.g., infinitely elongated freely rotating rofi$]). In
w1. This attraction is known as depletion-induced attractionaddition, the structure of the free energy of Etg) is simi-
[8]. Instead of a liquid-vapor instability, which is the usual lar to that of mean-field approximations 6hcompressible
nomenclature in the case of a pure system showing a van detixtures on a lattice, if we interpret as the coordination
Waals loop, we now interpret the instability as a demixingnumber of the lattice an,,,, as the nearest neighbor inter-
instability, and the spinodal as the demixing spinodal. action energy in units dfgT. Examples of such lattice theo-

The above analysis thus reveals the equivalence of demixies are the Bragg-Williams approach to dense liquid mix-
ing induced by the depletion effect and by the difference intures[31] and the Flory-Huggins theory of polymer solutions
equation of state of the pure species. We exploit this formal31]. Note that these lattice fluids are temperature driven in
equivalence to describe depletion-induced demixing in bicontrast to the density-driven off-lattice hard particle fluids.
nary mixtures treated in the second virial approximation. WeThus although the second virial approximation is not justi-
show that the usual description of the depletion effect, irfied in all circumstances, there is reason enough to consider
terms of(}, is analytically intractable unless extra approxi- its stability conditions in detail.
mations are made. In contrast, the description in terms of When we insert the free energy expression of Ef)
G and the combined stability criterion can be dealt withinto the stability conditions of Eq.3), and substitute

without imposing extra assumptions. v=1/n throughout, we obtain
B. Second virial approximation 1+nEC)=>0,
Here we discuss the implications of the general discussion 1-nx(1—x)x>0, (17)
above for a specific but typical choice of the Helmholtz free
energy. Having in mind hard-core fluids, for which the tem- 1+ n[(1—X)Eq+XEp] —Nn?x(1—X)A>0,

perature is merely a scale factor of the thermodynamic po-

tentials, we use units in whickgT=1, with kg the Boltz- Where we defined

mann constant. From now on we use the number density

n=1/v instead of volume per particte as independent vari- X=2E1— By~ By,

able. We focus on homogeneous binary fluid mixtures, for )

which the Helmholtz free energy can be expanded as a virial A=ET,~EEy). (18
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We conclude immediately that the mechanical stability con-ample of a fluid satisfyinge>0 is the mixture of hard-rod-
dition is always fulfilled for any densitp>0, since the ex- like and platelike particles of the same volume and aspect
cluded volume termE(x)>0. The incompressible mixing ratio, as discussed if82]. In contrast, binary mixtures of
stability condition is not fulfilled for all positive densities if hard spheres have fully convex functidgéx) for any diam-
x>0. In that case, namely, at densitiea>[1/x  eter ratio, so thay<O. In fact, the parametey plays the
+1/(1—x)]/x, the stability is lost. The physical mechanism same role in the present second virial theory as the so-called
behind this instability is provided by the unfavorable inter- y parameter in Flory’s theory of polymer solutions on a lat-
actions between unlike particles, represented by the relaice [31]. In this lattice theory, théincompressibledemix-
tively large excluded volume&,, of unlike particles as com- ing is driven by direct unfavorable nearest neighbor interac-
pared toE;; andE,, of like particles. It is easily checked that tion energies between unlike species as compared to that
x=—3d?E(x)/dx?, so that an incompressible demixing in- between the like species.

stability corresponds to a concave functiBfx). The fact A compressible demixing instability is possibleAf>0,

that the incompressible demixing instability is governed by asince then the third inequality of E¢L7) is no longer satis-
linear relation inE,,, strongly suggests that direct binary fied if n>ng(x), where we defined the composition depen-
excluded volume interactions drive this instability. An ex- dent spinodal density

[(1—X)Eq+ XEp]+ V[ (1—X)E 1+ XEpp]?+4x(1—X)A
2x(1—-x)A '

Ng(X)= (19

The corresponding spinodal pressitgx) can be obtained Thus we see from Eq(21) that a crucial ingredient to
by insertingn=n¢(x) into the equation of state, Eq16). obtain higher order terms iR is the nonlinear relation be-
The critical point of the demixing transition is then obtainedtween pressure and density. An important technical aspect is
from dP¢(x)/dx=0. The fact that a compressible demixing the fact that this relation, given in E(L6), could be inverted
instability can only occur ifA>0 indicates that unfavorable analytically as in Eq(20), despite its nonlinearity. This in-
excluded volume interactions between unlike particles areersion is exactly the problem if the more usual description
responsible again, just as in the case of incompressible def depletion, in terms o (u1,p5), had been used. To obtain
mixing. However, the nonlinear dependencefobn E, ./, an analytic expression fow, consistent with the second
and the nonlinearity im of the compressible mixing stability virial approximation off, would particularly require the in-
condition suggest a many-body character for the demixingersionp,=p;(uq,p,) from

mechanism. This becomes explicit if we perform the Leg-

end_re transfo_rm t@=_f+ P/_n in the second virial approxi- wi(p1.p2)=INp1+ p1Eq+ poEos. (22)
mation, yielding the inversion of the pressure-density rela-

tion of Eq. (16), Obviously this inversion cannot be performed analytically,

—_— unless species=1 is an ideal gas witle,;;=0. This extra
n(x,P)= —1+V1+2PE(X) (20) assumption need not be made if the theory is based on the
' E(x) Gibbs free energy, or on the combined stability condition.
One should realize that the higher order term®im Eq.
from which follows that (21) are modified if higher order terms in the virial series of

f are taken into account. It turns out that a third virial theory,

g(x,P)=Inn(x,P)+fy(X) +V1+2PE(X).  (21)  which can be dealt with analogously since the corresponding

_ ) cubic relation betweeR andn can also be inverted analyti-
Expanding Eq.(21) in powers ofP generates terms of all cally, tends to stabilize a compressible binary mixture, at
orders inP, even though the second virial approximation of |east to ordeiP? in Eq. (21). This is intimately related to the
f does not contain quadratic and higher order terms ifhe  recent determination of the distance dependent depletion
nonlinear terms inP effectively represent the many-body force between the bigger spheres in binary hard-sphere mix-
character of the depletion effect, which may drive a demix+yres. Biben and Bladon found in computer simulations that
ing transition at sufficiently high? even ifE(x) is a convex  this force is oscillatory with distand®3], and thus contains
function. In fact, it turns out that the stability with respect to poth repulsive and attractive contributions. This is also found
depletion-driven demixing is governed by the convexity andtheoretically by Mao, Cates, and Lekkerkerk@4], who
concavity of |E(x), since one easily checks that showed that only attractions are present to lowest order in
A=—E¥(x)d?JE(x)/dx?. It is therefore possible that an the density of small spheres, while higher order terms also
entirely convexE(x) (with y<<0 and thusoincompressible contain repulsive contributions. These authors also found a
demixing can show compressible demixing, becausesimilar effect for the depletion force between big hard
VE(X) is not (entirely) convex. This is just a restatement of spheres in a semidilute solution of small hard rf8s|.
our earlier observation that compressible fluids have a stron- We conclude this section with the observation that the
ger tendency to demix than incompressible fluids. demixing spinodal, as follows from the second virial ap-
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proximation to the Helmholtz free energy, can be calculatedt is straightforward to inserf23) into the spinodal expres-
analytically. Since the second virial approximation is exactsionsng(x) andP4(x), and study the demixing of the isotr_o-
for thin hard rods, we have an exact theory for the demixingpic phase as a function of the relative shapes of the particles,

spinodal in binary mixtures of thin hard rods. characterized by the ratios and d. A first guess of the
!nteresting partic_le shapes is obtained by inserting (£8)
lll. ISOTROPIC MIXTURES OF THIN into Eq. (18) to yield
AND THICK LONG RODS A=(d-1)2/%2, (24)

~ We apply the second virial expressions for the demixingyhich is manifestly positive itl# 1. We may therefore ex-
instability to a binary fluid mixture consisting of hard pect a demixing transition B,+D,, i.e., in mixtures of thin
spherocylinders of length,, and diameteD,, in the isotro-  and thick rods. Demixing in the isotropic phase of equally
pic phase. This model may be used as a simplified descrighick long rods is predicted to be impossible in the present
tion of an isotropic binary mixture of colloidal rods of dif- theory, even if their lengths are extremely different. We note
ferent sizes. ID,<D,, we may also interpret species 1 as athat the conditions for demixing would have differed sub-
long stiff liquid-crystalline polymer, and species 2 as astantially if the incompressible criterion had been used, since
(much thickey colloidal rod. For convenience we define x=2b(/—1)(1—-/d). Hence an incompressible binary rod
L,/Ly=/, D,/D,=d, andb=(#/4)L5D,. A conventional ~mixture could only demix i">1 andd< 1//,_ correspond-
dimensionless density is defined as=nb. As indicated ing to mixtures of “thicker shorter” and “thinner longer”
above, Onsager showed that the second virial approximatiof@ds. This is clearly qualitatively different from what fol-
of the free energy of a monodisperse isotropic rod system iwed from the compressible instability criterion. ,
exact in the limit of infinite length-to-width rati§1]. We So far, we have considered the mixture of redsuming

therefore expect that the second virial approximation of thdhat it is in the isotropic phasd X. It is well known, how-
rod mixture is exact ifL >D ., for all combinations €ver that hard-rod fluids exhibit a transition to an orienta-
g g

o, =1,2. In this limit, we may neglect the end-cap contri- tionally ordered nematic phasél) at sufficiently high den-

butions to the excluded volume interactions, and we hav&liti€s (Or pressures[1,4,16. It is therefore necessary to
E,,=(m4)L,L,(D,+D,) [1]. Using the scaled units investigate whether or not the demixing transition in the iso-
we thus have 7 tropic phase, if the particle shapes permit one, is preempted

by this I-N transition. An analytic expression for an upper

E;;=2b, bound of the stability of the isotropic phase can be obtained
by a straightforward generalization of the bifurcation analy-
E;o=(1+d)/Db, (23 sis of the monodisperse rod system as presented by Kayser
and Raveche[36]. Denoting the composition dependent
E,o=2d/D. isotropic-nematic bifurcation density by _y(x), we obtain
8

cin(X)=bn n(X)= (25

1+ (d/ 2= 1)x+ Vx(1—x)(d—1)2/2+[1+(d/ >~ 1)x]*’

Note that c,.ny(Xx=0)=4, consistent with the bifurcation 4, 6, and~. The demixing transition is preempted by orien-
analysis of the monodisperse system by Kayser and Ravechational ordering ford=2 andd=4, but is thermodynami-
[36]. It is known that the densities of the coexisting isotropiccally stable for the larger values df We see that the critical
and nematic phase for the system witkrO are given by point of the demixing transition shifts to smaller values of
€c=3.290 andc=4.191, respectively, so that the bifurcation x whend increases. In the limit ofi— oo, the critical point is
analysis gives a good estimate for the location of the actuajiven by (x.,P:bd)=(1/9,27/4). This must be compared to
phase transition[4]. The pressure at the bifurcation, the bifurcation pressure lim,..P,.n(Xc)bd=54, which is a
P,.n(X), is obtained by inserting25) into (16). In fact, the  factor of 8 higher than the critical pressure. We therefore
actual isotropic to nematic transition will already take placeconclude that the demixing sets in well before the orienta-
at pressures below,_y, but analogous to pure rod systems tional ordering ifd is sufficiently large, at least larger than
we expect thaP, . is a good estimate for the true transition aboutd~5. The precise crossover diameter ratio can only be
pressure. Thus we expect a demixing transition in the isotrodetermined by a calculation of the binodals of thietransi-
pic phase of binary mixtures of hard rods if the critical pointtion and thel-N transition, which requires some numerical
(xc,P¢) of the demixing transition satisfieB.<P,_n(Xc). effort.
We study this criterion for several rod shapes. Another relatively simple and symmetric case is obtained
First we focus on rods of equal length, so that 1, and by settingE,;=E,,, so thatd=1//2. If we considerd>1
we consider several values of the diameter rdtiol . In Fig.  (and/<1), then species 1 may characterize a thin very stiff
1 we plot the spinodal pressuiRg(x) and the upper bound of long polymer and spece2 a much shorter and thicker col-
the isotropic-nematic transition pressugy(x) for d=2,  loidal rod. We now have\ = (d+ 1/d—2)b?, which is posi-
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FIG. 1. Phase diagrams of hard rods with the same lengths FIG. 2. Phase diagram of large colloidal rosole fraction

(/'=1) in the pressure-composition plane for several values of thé() in a stiff liquid-crystalline polymer. solution. The shape param-
diameter raticd, (a) d=2, (b) d=4, (c) d=6, (d) d— . In (d) the eters are/=5 andd=40. The continuous curve represents the

vertical axis represen®8bd, in the other plot®b. The continuous demixing SPi”Oda'v an_d the_dashed one the isotrqpic-nematic bifur-
curves represent the demixing spinodals in the isotropic phase, thc@t'on density. T,h,e orlentatlonal °f_d‘?””9>@t’0-°? is clearly prg-
dashed curves the isotropic-nematic bifurcation pressures. F¢fTPted by demixing into two coexisting isotropic phases of differ-
d=2 andd=4 the demixing transition is thermodynamically meta- €t composition.

stable with respect to orientational ordering, but at the larger values

for d there is a composition regime with a stabi phase separa- d€mixing spinodal, which preempts the nematic ordering
tion. transition if the diameter ratio exceeds a critical value of

about 5.

tive for anyd#1. The same trend as found in Fig. 1 is
observed now: for small values dfthe critical point of the IV. PERFECTLY ALIGNED ROD MIXTURES

demixing transition is metastable with respect to orienta- |t js well known that the orientational ordering of rodlike
tional ordering, while for larger values af the demixing particles in the nematic phase becomes more and more pro-
transition is thermodynamically stable. The value separatingiounced as the density increagggt, 17,19,20 Therefore it
the two regimes is given bg~4.5. Because of the symme- is tempting to argue that the orientational order becomes
try, the critical point of the demixing transition is now lo- saturated at very high densities, and that the well-aligned
cated atx=1/2. Recently, Sear and Mulder analyzed thissystem can be describegsumingperfect alignment of the
system in more detail, and indeed fouhd demixing to  rods. This assumption, although not entirely justifi2d,22—
occur[37]. 24], has led to several interesting predictions concerning the
A final illustration of demixing in an isotropic rod mixture existence of smectic and columnar ordering in dense systems

is a feeble attempt to describe a mixture of colloidal tobaccdf rods. It was shown by Muldel27] that a monodisperse
mosaic virus TMV) particles (,=3000 A,D,=180 A) and  aligned rod system exhibits a transition from the nematic
a typical stiff 20 beads long liquid-crystalline polymer Phase to the smecti- phase, characterized by a one-
(L,=20x30=600 A, D,=4.5 A). These sizes correspond dimensional density modulation parallel to the nematic direc-

to /=5 andd=40 in the present notation. In Fig. 2 we show tor. An alternative possibility, a transition from the nematic

the corresponding spinodal and the isotropic-nematic bifur:[0 the two-dimensionally ordered_hexagonal columnar Pha?‘a’
. : . . was found to be metastable with respect to the nematic-
cation pressure in the composition intervaki@<O0.1.

. ) smectic transition. The results of R¢R27], obtained within

Clearl)_/, the crmcal_ pomt_ a‘X*,O-QZl appears below _th_e the second, third, and fourth virial approximation, are con-
nematic ordering bifurcation, hinting at a stable demixinggmed by more elaborate density functional theories of
transition in the isotropic phase. Obviously, this result is SUb'aIigned rodg38,39. There is also agreement with computer
ject to many reservations. Among them, a condition for thesimylation studies of this systefd0]. Initial doubts as to
validity of the second virial approximatiot,;>D,, is only  \hether or not orientation fluctuations would destroy the
marginally satisfied. Moreover, the flexibility and the attrac-smectic order have been eliminated, since both computer
tive interactions of the polymers, which are both neglected irsimulation studies[41] and density functional theories
the theory, may play significant roles in reality. Still, the [42,43,24 of freely rotating hard rods reveal a stable smectic
basic demixing mechanism described in the present simplphase at high densities, although the transition densities dif-
theory should be considered in a more elaborate and detailddr from those obtained in the aligned system.
description of realistic mixtures of rods. Given the qualitatively correct predictions of the aligned

In brief, in this section we have shown that binary mix- monodisperse hard-rod system as a simplification of freely
tures of hard rods with different diameters show an isotropiaotating rods at high densities, it should not come as a sur-
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prise that the high density phases hary hard-rod mix- invariance of the Mayer functions, it can be shown that so-
tures have been studied in the same fashion. An interestingtions of (27) must be of the form

result was obtained by Stroobani25], whose computer

simulation study of a binary mixture of longer and shorter dp,(r)=a,codq-r), (28)
aligned hard rods revealed a mechanically stable nematic-

columnar (N-C) transition[and a corresponding metastable where we set an arbitrary phase factor to zero, and where the
nematic-smectic N-S) transitior] if the length ratio of the amplitudesa, (possibly negativeand the wave vectoq

rods exceeds 1.9. This was qualitatively confirmed by a den=0 are unspecified yet. Note that smectic and columnar in-
sity functional analysis by Cui and Ch¢R6], who adopted  gapjlities are described |z andg. z, respectively, where

the third virial approximation. However, in neither the simu-5 is the direction of the alignment of the rods. It is easily

lation study of Ref[25] nor the theoretical study of R§R6] ghecked that the trivial solutionsp (F)=0 (thus a, = 0)

was the stability of the homogeneous nematic phase consi diways satisfy Eq(27). The condition for nontrivial solu-

ered. Here we show that a stable nematic phase of a bina ; ’ L .
mixture of aligned cylinders should not always be taken for%nS (with a,+0) is a vanishing determinant of the

granted, as was also concluded in Rgf8]. A depletion matrix B, with components
driven nematic-nematicN-N) demixing transition is shown
to possibly preempt thBl-C andN-S transitions if the sizes

an%s_haptehs of the rodts tghffer sut:)stantlally. ite th whereM . is the negative of the Fourier transform of the
sing the same notation as above, we can write the Se(f\'/layer function of aligned cylinders, anij, ., the Kronecker

ond V"‘?" apprqximation to the free energy of @ homOge-ggta I terms of the standard and spherical Bessel functions
neous binary mixture oN, parallel cylinders of lengthL, J, andj,, respectively, and the definitiom,(y)=J.(y)/

and diameterD, (with 0=1,2) as in Eg.(13), with 1
Eyor=(ml4)(L,+L,)(D,+D,)? Denoting the volume (2y), we have
of the particles of species 1 kwyl=(7r/4)L1Df, and defining M N=E L iTLL +L T.ILD +D

as before the ratiog’=L,/L,; and d=D,/D;, we obtain oo (A =Eoorlol2(LotLo)GTa[ (Do + D, )qy](’go)
from Eq. (18)

Boor (0) = 8gor +NXeM 40 (9), (29

where the parallel and perpendicular componentﬁ afre
denotedq, and q,, respectively. The smallest density for
which the nontrivial solutions exist can now be expressed in
terms of the eigenvalues;(q) (with i=1,2) of the matrix
M, where the diagonal matrixX has components
oo =Xs044. Denoting these minimumN-S and N-C bi-
furcation densitiesy.s andny.c, respectively, we have

A=[(1+d)*(1+/)?—64d>/Tv3. (26)

HenceA=0 for any combination of positive values fof
andd, where the equality only holds if =d=1. Therefore
we expect a demixing transition of the homogeneous aligne
hard-rod mixture at sufficiently high densities or pressures
The spinodal pressurBg(x) for a particular set of lengths
and diameters of the rods is obtained by inserting the present

values forE,, into Eqs.(16) and (19). Nn.s(X) = — ! ,
The question now is whether or not tieeN demixing ming, iAi(dz,dy=0)
transition is preempted by thN-S or the N-C transition.
This can again be sorted out by means of a bifurcation analy- -1
sis, analogous to the one presented in R&H] for the mono- Nn.c(X)= ming 1 Ar(G,=04,)" (3D
Y

disperse system, and that in RE26] for a binary mixture.

Here we only sketch the procedure. The starting point of thg-, 4 given set of particle sizes, theegative global mini-
analysis is the linearizatiofabout the homogeneous solu- ,.um of both eigenvalues is easily found numerically. We
tion) of the stationarity condition of the second virial free qte that the present bifurcation analysis, which is based on

energy functional with respect to fluctuations in the one-he yanishing determinant &, is equivalent to the analysis
particle distributions. Obviously we only consider fluctua- o¢ yhe divergence of the structure factor matfixwhich is

tions that are consistent with the imposed number demsity . > 1,z L .
o . given by S(q)=XB™*(q) [44]. Using jo(0)=T4(0)=1, it
and compositiorx. If we denote the homogeneo(smatig can also be seen that the spinodal density(x)

distributions byp,=x,n, with x;=(1—x) andx,=x, and ) . ) i )
the inhomogeneous density fluctuations &y, (r), the sta- — LLminiA;(q=0)]. This can be understood if we realize

combination of the elements &[45].

. . . . We can now compare the bifurcation densitiggg(x)
8po(1) =P f dr'f . (r,r")ép,(r')=0, (270  andny.c(x) with each other, and with the spinodal densities
o' ng(x) of the demixing transition. Equivalently, we can com-

. . _ N pare the corresponding pressures.
wheref . is the Mayer function of two aligned cylindrical The results for aligned cylinders of equal thickness

rods of speciesr and ¢’. Note that the linear eigenvalue (d=1) and length ratio”'=1.8,2,6,10 are depicted in the
structure of Eq(27) is nested, in the sense thé,(r) isan  pressure-composition plane in Fig. 3. We see that the demix-
eigenfunction of a X2 problem with respect te, and of @ ing transition does not interfere with the smectic and colum-
continuous kernel with respect to Using the translational nar ordering for/'=1.8,2, where the critical point of the
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FIG. 3. Phase diagrams of mixtures of equally thick=(1) FIG. 4. Pressure-composition phase diagram of mixtures of

aligned short and long hard cylinders, with length rati@  equally long ¢'=1) aligned thick and thin hard cylinders, with
/=18,(b) /=2, (c) /=6, and(d) /=10. The continuous CUrVes giameter ratioga) d=2, (b) d=4, (c) d=5, and(d) d=8. The

represent theN-N demixing spinodal, the dotted curves theS  omenclature is as in Fig. 3. We only depict the composition inter-
bifurcation, and the dashed curves teC bifurcation. The demix- 5] o<x< % and do not show thal-N spinodal in(a) because it is
ing spinodal in(a) and (b) is not plotted, since its critical point is  peyond the scale of the plot. (@) the N-S bifurcation is stable for
located atPv,~53, which is far beyond the present scale. For 4 compositions, whereas coupling of all three instabilities seems to

/=18, there is no stabl&l-C bifurcation, for /=2 there is a  occyr in (b), (), and (d). Remarkably, theN-C bifurcation pre-
composition regime where thid-C bifurcation does preempt the empts theN-S andN-N instability in (d) at x~0.17.

N-S bifurcation. For/=6,10 we see that thdl-C bifurcation is
metastable with respect to either theN demixing or theN-S

i eventually reaching|,=0. This minimum no longer corre-
transition.

sponds to a smectic instability, but rather to the demixing

spinodal would appear far beyond the scale of the plot af?Stability, as we argued above. This is a signature of a
Pv,~53. For/<1.85 theN-S transition always preempts strong coupling of theN-N and N-S transition, as was also
the N-C transition, whereas for'>1.85 a finite regime of fouvr:/d by Kodla and K'Fg”r@g@- . . v |
N-C transitions is present. However, for the even larger . € can also consider binary F“'Xt“,fes of equally fong
length ratios/’=6,10 the demixing does interfere with the aligned rodhke_ cylinders £=1) with d|fferent_d|amett_ers
ordering transitions. Actually, we see that theC transition (d#1). In partlcqlf_:lr, WT pre.sené.theAfphahse d'j‘gr;m l:;n the
is preempted by either thd-N demixing or theN-S order- pr_essure—((j:cimposn(ljog %ine n "9 he wheep d=2, (b)

ing. The present analysis is not sufficient to determine thd =4 (¢) d=5, and(d) d=8. Again the continuous curves

precise phase diagram fat>6, since theN-N and theN- represent thé&l-N spinodal, the dotted curves tineS bifur-

S transitions appear at approximately the same pressureg?‘tion’ and the dashed ones tReC bifurcation. Note that

This suggests possible biphasic equilibria between a nematfiere 0sx=<3; for x>3 the N-S bifurcation is never pre-
and a smectic phase, or between two smectic phases, empted by theN-N spinodal or theN-C bifurcation. The
maybe even a triphasic equilibrium, analogous to the triphaN-N spinodal is not drawn irfa), since its critical point is

sic equilibrium of one isotropic and two nematic phases inbeyond the scale of the plot. Clearly, fd=2 the N-S bi-
freely rotating rod system§l7,19. Whatever the precise furcation is the only relevant one, since it preempts khe
phase behavior will be, the possibility of a demixing transi-C andN-N instabilities considerably. Fat=4, we see that
tion should definitely be taken into account. The maximumboth theN-N spinodal and theN-C bifurcation take place

of the N-S bifurcation in(a), that develops into a cusp (b) only just above thé\-S bifurcation, so that a full calculation
and further into a discontinuity ifc) and (d) is a conse- may well reveal coexistence between some of these phases.
guence of the different character of the global minimum ofFord=5, theN-N spinodal preempts thid-S bifurcation at

the eigenvalues\; as a function ofg,. For small length x=0.10, revealing the depletion driven instability of the ho-
ratios(e.g.,/'=1.85), there is a continuous shift of the asso-mogeneous nematic phase. The same holdsifo8, with
ciated wavelengtlismectic layer thicknegdrom 1.4, to  the remarkable difference that theC bifurcation preempts
1.40_,, the bifurcation layer thickness of the pure systemsthe N-N and N-S instability atx~0.17. This phenomenon
[27]. For larger length ratioge.g.,/=4), we find several was not observed in Ref26], where only diameter ratios
local minima forA;, corresponding to modulations of dif- between 1.5 and 4 were considered. In fact the same remarks
ferent wavelength. The global minimum condition then leadsas before can be made about the cusp evolving into a discon-
to a cusp. For even larger length ratio§%5), we find the tinuity, but now for theN-C instead of theN-S bifurcation.
minimizing wave vector associated with the smectic modu-The minimizing wave vector of the columnar modulation of
lation of the longer rods to shift to smaller values @f, the thick particles shifts to smalley, values and eventually
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0.50

tions can be preempted Y-N demixing. We argue, there-
fore, that theN-N demixing in aligned rod mixtures is not an
artifact of the second virial approximation. The results sug-
gest that phase separation in well-ordered nematic mixtures
should be considered seriously in the full determination of
the phase behavior of these systems.

M2 025 |
V. DISCUSSION

In this paper we have considered the stability of binary
mixtures with respect to demixing into two homogeneous
phases, and with respect to possible orientational and posi-
tional ordering. Using general thermodynamic relations we
argued that a demixing instability is more likely to occur in
compressible than in incompressible mixtures. We have also
shown that two descriptions of the demixing mechanism
— the mismatch in the pure component equations of state

FIG. 5. Comparison of thB-N spinodal in the thirdcontinuous  and the depletion-induced attraction — just reflect different
curve and seconddashed curvevirial approximation of equally viewpoints of the same phenomenon. We exploited this
thick aligned hard cylinders with length ratlo,/L,=/=9. Here  gquivalence within the second virial theory of the Helmholtz
7, denotes the packing fraction of species free energy f or ¢) of a binary mixture: the Legendre trans-
formation to the Gibbs free energy=f+ Pv leads to ana-

t0q,=0 if x is reduced. A, =0, theN-C bifurcation con-  ica|ly tractable expressions for the demixing spinodal,
dition is identical to that of thé&\-N demixing spinodal. while the transformation to the potentiab=d— uipy,

. We ha\{e grgued Fhat the secqnd virial approximation, hic, i usually used to describe depletion, requires the in-
gives qualitatively reliable results in the case of perfectlyyq gjon of transcendental relations that cannot be dealt with
aligned rod mixtures. Still, we expect non-negligible contri- 5,5 sically. The analysis reveals the reason why a second
butions from the higher virial coefficients. In order to illus- ;i approximation to the Helmholtz free energy, which
trate their importance, we have calculated the spinodal of thg, | ,des only two-body correlations, is still capable of de-

N-N transition in thethird virial approximation of equally  g¢riping a many-body effect as depletion: the resulting Gibbs
thick rods with a length ratie’=9. A phase diagram of this a6 energy contains terms of all orderfndue to the non-
system, also lobtained within the third virial approximatior),“near relation between pressure and density.
IS pre§ented in Ref26]. In the homogepeous phase't'he di- The demixing spinodal that follows from the second virial
mensionless (fg)ee energy per particle in the third virial apyheory is calculated analytically for general binary mixtures.
proximation,f*~, reads We applied the general formalism to describe the isotropic
£3 =24 1n2EG@)(x) 32 phase of binary mixtures of freely rotating hard rods. Since
6 ' in the limit of very thin rods the second virial theory is exact,
with @ =1, the free energy in the second virial approxima-We thus have an exact analytic expression for the spinodal. It
tion as given in Eq(13), and turns out that depletion-driven demixing in the isotropic
phase is only possible if the diameters of the rods are differ-

0.00 .
0.00 0.25 0.50

n

3\3 ent, the lengths may but need not be different. In the case of
E®(x)= 772( 1- E) D* X XXgiXen equally long rods, demixing in the isotropic phase preempts
oo’o” nematic ordering if the diameter ratio is more extreme than

X (LyLyr+LyLgntLyLyn). (33  about 1:5.

We have also applied the second virial approximation to
We used the two-dimensional hard disk diagrams of Refbinary mixtures of perfectly aligned hard rods, for which the
[46], and setD,=D,=D. Inserting Eq.(32) into the com- low density phase is the nematic phase. We fourid-A
pressible mixing stability condition of Eq3) leads to a demixing spinodal for any combination of nonidentical sizes
guartic polynomial im, the relevant root of which can easily and shapes of the two rod species. If the aligned rods have
be determined to give the spinodal density as a function oéqual diameterflengths, thisN-N spinodal can preempt the
composition. For the aligned rod mixture with=9 and N-S and N-C bifurcation if the length(diametey ratio is
d=1, the resulting third virial spinodal is represented by themore extreme than about 1:5.
continuous curve in Fig. 5, the analogous second virial result We finally remark that the present theoretical treatment of
by the dashed curve. To facilitate the comparison with Refdemixing and ordering is not yet completely conclusive in
[26], we transformed the variables k) into (74, 7,), with  every detail, since we determined only instability poititse
the partial packing fractiong,=nx,v,. Clearly, the inclu- demixing spinodal and the ordering bifurcatipng/hereas
sion of the third virial term does not alter the demixing phe-we did not determine the thermodynamic coexistence points.
nomenon considerably, except that the spinodal packingiven the first order nature of tHeN transition, a full cal-
fractions are slightly reduced. A comparison with the phaseulation of the binodals of the binary mixtures of thick and
diagrams of Ref[26] reveals that thé\-S and N-C transi-  thin freely rotating hard rods may reveal that the minimum
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diameter ratio required to have a stablé binodal is more present results already indicate that spontaneous demixing is
extreme than the presently quoted value of 1:5. Moreovera phenomenon to be considered seriously.

such calculations may also reveal a possible three-phasic

[-N qu|llbr|um, analogous to the-N-N eqwhbnym in bi- ACKNOWLEDGMENTS
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