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Synchronization of oscillators with random nonlocal connectivity
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In this paper we study the existing observation in literature about synchronization of a large humber of
coupled maps with random nonlocal connectifi§hate and Manneville, Cha& 307 (1992]. These con-
nectivities which lack any spatial significance can be realized in neural nets and electrical circuits. It is quite
interesting and of practical importance to note that a huge number of maps can be synchronized with this
connectivity. We show that this synchronization stems from the fact that the connectivity matrix has a finite
gap in the eigenvalue spectrum in the macroscopic limit. We give a guantitative explanation for the gap. We
compare the analytic results with the ones quoted in the above reference. We also study the departures from
this highly collective behavior in the low connectivity limit and show that the behavior is almost statistical for
very low connectivity.

PACS numbd(s): 05.45+b, 02.50+s, 05.90+m

I. INTRODUCTION help us to understand the existing observations. In this paper,
. . . we will explicitly illustrate how one can separate the mode
Of late, there has been .conS|derapIe att.ent|on paid to thI%ading to spatial homogeneity from the rest. We will show
study of coupled map lattice(CML) In various CONtextS.  ihat there exists a finite gap between the growth rates, the
They have been used as a computationally simple and angpsially homogeneous mode, and the rest in the model stud-
lytically tractable model for spatiotemporal systefi§ The jeq in Ref.[6]. We will also study the departures from this
sf[udles on CML's _have been elth_er in one and two d'me_”behavior for lower connectivities.
sional lattices or with global coupling, in which case there is  For the linear stability analysis of the synchronized state,
no notion of lattice geometry2]. The higher dimensional we will study the eigenvalue spectrum of the connectivity
connectivitieg 3] or hierarchial connectivitie4,5] are stud-  matrix with random nonlocal connectivity. We will also
ied very little. study the eigenspectrum of the product of such matrices. We
One more system that has been studied is the CML witlwould note that a similar model of random connectivity ma-
random nonlocal couplingEs]. The motivation is twofold. trix of size NXN with k nonzero elements in each row has
First, this is an effectively high dimensional system. Thebeen investigated by Cook and Derrida in Réf0] in con-
phenomenology in CML in higher dimensions has not beernection with the random energy model, the generalized ran-
studied much, and needs further investigation. Second, the@om energy model, and directed polymers in random media.
are systems like neural nets in which the local connectiondhey have obtained exact analytic results for products of
do not have any spatial significance. There also exist systen®ich matrices in the case where the matrices are sparse and
like electrical circuits[7] in which connectivity is at one’s the distribution function of nonzero elements is nat func-
will and such a coupling can be easily realized. Thus thdion. However, in the model studied by Chate and Mannev-
studies of different connectivities and their effects will beille [6], all connections have the same weight, i.e., the distri-
useful in designing well controlled systems. In this system ofoution function of nonzero elemenisa & function.
random nonlocal connectivity Chate and Manneville have
presented preliminary resuli§] which show that synchroni- || RANDOMLY COUPLED CML AND THE LINEAR
zation of a large number of oscillators is easily achieved with STABILITY ANALYSIS
this connectivity. ) ) ) o
Synchronization of oscillators in spatially extended sys- The model is the following: there ai¢ sites. Each site is
tems such as coupled oscillators is important from variou§oupled tok sites chosen randomly. The connection is not
points of view. By achieving synchronization, one can try ton_ecessarlly symmetric. A site can be connected to some other
build huge but more controllable and better behaved systenfite more than once and can be connected to itself. The
which are effectively low dimension4F]. Sometimes, syn- Strength of coupling is proportional to the number of times
chronization may serve other purposes, such as sendirf§€ two sites are connected.
codes that are difficult to bredi8]. In various contexts, this Let us define the “neighborhoodV; for each site in the
problem has been subjected to several studies in the past fedpove model. There atesites(which sitei is connected tb
years[9]. We would like to show that the phenomenon ofin  V;. These k sites are chosen randomly. Thus
synchronization can be generally understood by investigatinyi={c1.C5. . .. ¢} Where k randomly chosen sites
the eigenvalue spectrum of the connectivity matrix and care|,|=1, ... k,i=1,... N, to which the sitdé is connected,
form the neighborhood of site As mentioned above, con-
nections to all sites are equiprobable and the possibility that
*Present address: Jawaharlal Nehru Centre for Advanced Rsitei can be connected to some sjtenore than once is not
search, Jakkur, Bangalore-560064, India. ruled out. Now we define the interaction mattixfor the
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above connectivity. The matrix elemeht; is equal to the
number of times sité is connected to sit¢. If site i is not
connected to sit¢, obviously the matrix elemerit ; has a
zero value. Thus we define

K
|i,j:|21 9j.dl- 1

The value of the element ; of the interaction matrix is the

number of times sité is connected to sitg, i.e., the number

evant eigenvectors are thosel pfand the problem reduces to
a study of the eigenvalues and eigenvectors of the interaction
matrix .

The fact that coherent patterns are allowed implies that a
right eigenvector of the interaction matrix is
e;=[1,1,...,1. This is a characteristic of row stochastic
matrices, and corresponds to the eigenvalder the product
of theJ’s. From Greshgorin’s theorefi 1] this is the largest
eigenvalue. Consider a small deviation, A
=[61,8,, ...,05y], from the homogeneous pattefw(0),
x(0), ... ,x0)]. We can reexpres4, in terms of its compo-
nent alonge, and the rest ad’.

of timesj occurs inV;. Thus it could have values from 0 to
k. [In the infinite lattice limit k<<<N), the possibility that
two sites will be connected more than once is negligible.
Thus the entries are 0 or 1. However, the summation in the
above expression is introduced to take care of the possibilit)we will explicitly show that in this particular case it is pos-
that the two sites may be connected more than once, i.e

o . sible to decompose the mattixn a component along; and
V; containsj more than oncéWe also note that in the above P P S

A02a1e1+A,.

()

model, the connectivity matrik is not symmetric, i.e.];
#1;,i in general.

For convenience, let us denote tiik row of matrix| by
Ii. The onlyk elements with nonzero value In will be at
sitesc’s, =1, ... k.

along theN—1 dimensional matrixS in the subspace or-
thogonal toe; . It is easy to check that using a similar tech-
nique it is possible to do the same for any row stochastic
matrix. If the only eigenvalue with modulus greater than
unity is A;=\ and the matrixS which is a projection of
matrix | in the N—1 dimensional subspace orthogonal to

Now we define a spatiotemporal system as follows. Let ug, hag all eigenvalues less than unity, then for large enough

associate a real numbgj(t) with the state of sité at time

t. The evolution rule for the above dynamical system

(coupled map system in the above wpik defined by

xi(t+1) =k~ 1 f(x; (1), )
]

wherei=1,... N. The functionf:|—1 is some function
from a real interval onto itself.
Using Eq.(2) and the fact thak;l; ;=k for all i, it is easy

t we can write

A=aj\ie;. (4)
The  perturbation grows along the  direction
e;=[1,1,...,1] and any random deviation will eventually

be homogenized. Thus the necessary condition for the syn-
chronized pattern to exigand evolve chaotically in timds
that\ is the only eigenvalue greater than unity and all oth-
ers in a subspace orthogonal ¢ are less than unity in

to verify that if one starts with the pattern in which all the magnitude. Since we achieve this decomposition by a simple

points are in a coherent state, i.exq(t)=x,(t)

similarity transformation, one can put the above statement as

=...=xy(t)=Xx(t), they remain in the coherent state for all a linearly stable coherent pattern—in the infinite lattice
timest’ >t . The connectivity is such that the time evolution limit—which therefore requires a finitgapin the eigenvalue
does not destroy coherence and the evolution is like the evespectrum of the interaction matrix.

lution of a single map.

Now the question is whether the interaction matrixen-

Thus a synchronized state is indeed an allowed pattern. Itioned above has a finite gap in the spectrum.

order that this “allowed” pattern is indeed realized in prac-

One more interesting observation in R is the follow-

tice for at least some set of initial conditions which span aing. They select a different interaction matrix each time. The
nonzero volume in the allowed phase space, this patternumber of connections that each sithas is stillk. How-

should be stable against infinitesimal perturbatior.4dlhthe

ever, the sites to which it is connected changes every time.

generic conditions for synchronized chaotic evolution in a(The neighborhood of sité, V;, still has k elements but
macroscopic system are discussed. In this work we analyzelements keep on changing in timéhus the interaction
the linear stability of a synchronized state on the lines ofmatrix | depends on time. It is easy to see that for this case

arguments in Refl4].

the condition is that the product of the interaction matrices

For the linear stability analysis the eigenvalues and eigenshould have a gap. In other words the effective interaction

vectors of the matrix J=Ilim__.,J(7), where
J(7)=13J,---J,J,, are (asymptotically relevant. The Jaco-

bian matrix at time t, ie. J; is given by
Jt(i,j)=k*1I(i,j)f'(xj(t)) and x;(t) =x(t) for all j. Thus
the Jacobian matrix is J=lim__[I/
K]"f'(x)f'(X,—1)---f'(X{). The eigenvalues of] are
lim._ .\, wherex;=v;\k wherev;,i=1,2,...,N are the
eigenvalues of the interaction matrix| and
N=lim, | f (x(7)f (x(7—1))-- - f'(x(1))|¥". The rel-

matrix1’, wherel'"=1_,_,---1;, has a gap in its spectrum
in the asymptotic limit.

We will show that the interaction matrix or the effective
interaction matrix mentioned above indeed has a gap. The
largest eigenvalue ik. The magnitude of the second largest
eigenvalue is of the ordeyk in the infinite lattice limit.

First let us give a qualitative explanation. Let us take an
example of interconnectivity matrix with=6 andk=2. Let
the matrix| be
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gin aftert time steps in symmetric random walk in 1D,
which is like sum oft random numbers with zero mean
scales as/t.) Thus the spectrum has a gap for 1.
Now let us try to give a formal proof for the above state-
) ment. We will carry out a similarity transformation of the
above matrix to separate its component along the eigenvector
e; and a matrix in aiN— 1 dimensional space orthogonal to
it.
The Fourier matrix of order N is given by
ThusV,={c1,c5}={2,5,V,={L18, ... andVe={14.  F (m,n)=ow™ DO-1 while its inverseFy! is given by
Itis clear thate;=[1,1,...,1] is aright eigenvector with g -1(m ny= - (M-DO-1)  where w=e2"/N =/~ 1. For
eigenvaluek=2. Let the next eigenvector in the space or- example, the Fourier matrix of order 6 will be
thogonal toe; be e;=[u;,u, ... ,uy]. Orthogonality with

R O O O +» O
P O Fk O B
O O O o o o
R O B B O O
O O »r O O B
S B O O BB

0

e; would imply thatEiNzlui=O. Since the connectivity is 1 1 1 1 1 1

nonlocal, the “correlation length” does not have a meaning. 5 3 4 5
Correlations, if any, are expected to span the entire lattice. 1 o o w 0 w

Thus the correlatlolns can only be expected in the zeroth Fou- 111 0 0 o o oo

rier component which is the vectpt,1,1 - - 1]. However, in Fe=— 3 6 ° 15 (6)
the space perpendicular to this vector we expect the compo- \/N 1 o o 0 0w

nents to bes correlated. Thus a mean valuewfis zero and 1 o0t 08 o2 @6 o2

e, is a vector which has components which are random ele- 1 of o0 o5 o0 o

ments with zero mean. If this is an eigenvector with eigen-
valuel,, i.e.,le;=\,e,, the equation implies that the sum
of k of the random elementn the left hand sidescales andFg'=F§.

with the element itself as,. However, by the law of large For convenience let us denote tith row (column of F

numbers, one would expect the largest scaling factor of thas f;=1/\/N(Lwl 1,207, . oMN"DE-1) and theith
sum ofk random numbers with itself to be of the order of row (or colump of F~' as frl=1/yN(Lo (7D,
Jk. Thus one could guess that should be at most of the o 2071, . o (N"D(-1)

order+/k. (This is something like displacement from the ori-  The transformed matrix i& = Fgll Fn given by

KN N(lpfolofo, oo o) fr oo N fyu o fa, oo I fr) fr
(OB NTOPRS P RS PURNN VIS P B PR \[{ PEY {VN PSP IV T B P
1 0 N(Il'fz,lz'fz,...,IN'fz)'fgl N(Il'fN!IZ'fNY"'lIN'fN)'fS_:L
K:N (7)
0
0
0 N(q-folpfo, oy fo)fut oo NUp-fuulo iy, ool fr) fyt

(Though this separation between largest eigenvalue and its minor has been explicitly carried out in this case, it is easy to check
that it is possible for any row stochastic matyiln the particular case above for whikh=2, N=6, the above matrix can be
written as

2N (wc’(l,l)_|_wC’(l,Z))+(wC'(2,l)+wc’(2,2)) L. +(wc’(6,l)+wc’(6,2))
0 (0104 ¢ MDY 4 )L 2D 4 ¢ @2) . 4 =5, (B 4 (,¢'(62)
1] 0 (08 @04 o124 28 214 (22 4 =10, (BD 4 (¢ (6.2
K= N (8)
0
0
0 (wc/(1,1)+wc'(l,2))+w—5(wc/(2,1)+wc'(2|2)). . +w—25(w50/(6,1)+wc/(6,2))
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wherec'(i,j)=c;—1i=12,... N,j=1,... k. A typical 35 . . l .
matrix  element K(i,j) in this matrix is
K(i,j)=1UNZN_ (3K @l De (MD) o= (M=1(-1)  Thys 300
K(i,1)=1NZ}_ ko (M D01 and is 0 fori # 1 since the
sum of roots of unity is zero except for unity itself.

The above matrix can also be written as

25 1

20
|Ae]

k

15 |

|
|
0 | 10
|
|
|

0 , 9

0 1 1 L 1

0 0 200 400 v 600 800 1000

whereS is anN—1 dimensional matrix in the subspace or-
thogonal toe; . FIG. 1. This figure shows an eigenvalue of the interaction ma-
For convenience, we define matrices S’, andS"’ by trix which is the second largest in magnitude as a functiok Gthe
values closely follow the curvek. The points are obtained by
1 \/E averaging over 10—15 configurations and fluctuations are of the size
S=—-5=\kS'=—=9". (10)  of error bars.
N N
) , We have numerically confirmed the above statement by
) The eigenvalues of-the transforme_d malrix kra,nd the determining the second largest eigenvalue in large matrices.
eigenvalues of the minor of thi,,, i.e, S. In " each  \ye gperate a vector which is orthogonal to the largest eigen-
element is the sum dlk randomly chosen roots of unity. yector (and orthogonalize it repeatediagnd determine the
Now let us rewrite the mo,fjulus of one individual element of , 55 hitude of the second largest eigenvalue. Figure 1 shows
Sas|S j|=1N|S]j| = kS| (by the above definitionOne  the gigenvalue which is the second largest in magnitude for
can  write  S; as S;=(Jk/VN)(LNK(S}) different values ok. The points are obtained by averaging
=(Vk/YN)S"'(i,j). A typical element in S" is  over 10-15 different configurations fod=1000 and the
S'"'(i,j)=(Nk) " Y22k exp(4), where 6, are randomly fluctuations are of the size of the error bars. It is very clear
chosen. The variance of the modulus of this typical elementhat within numerical accuracy the second largest eigenvalue
is indeedyk. Figure 2 shows the eigenvalues of 10 configu-
(8" (i,)]?) = ({[=N¥, cog 6|])/\/m<}2> rations of matrices wittN=100 superposed over each other
NK s ) for k=16. It is very clear that while one of the eigenvalues is
+({[=Msin6) 1/ VNK}2).

The law of large numbers implies that both the first and . . . . .
second terms have an expectation value 1/2. Since the sec- 1 v 1
ond moment is defined for the terms, the central limit theo-
rem asserts that the distribution will be GaussiéRigor-
ously speaking, distribution is approximately Gaussian and
the approximation becomes more and more exact for large
values ofNk.) Thus the modulus of the sum is a quantity
which has a Gaussian distribution with variance 1. Exploit- Im(})
ing the fact that different Fourier components of the same
random vector are independent of each other and that com-
ponents of different random vectors form a random vector
[see Eq.{7)], one can conclude that the matrix elements are
independent of each other. In bri§)’ is anN—1 dimen- 0l
sional matrix with independent identically distributed vari-
ables, modulus of whose elements has a Gaussian distribu-
tion with variance unity. Thus the matri®’'/\/N=S" has -4
elements such that for large N, N<|S{’J|2>=1, _4 0 1
i=1,...N=1,j=1,... N=1. Now S’ is an asymmetric

complex random matrix whose elements are i.i.d. and such

that their variance goes a(|S{;|?)=1. We know that FIG. 2. This figure shows the eigenvalues of 10 configurations
[12,13 eigenvalues of such matrices lie in the unit circle in of matrices withN=100 superposed over each other for 16.

the complex plane. Thus the eigenvaluesSathould lie ina  while one of the eigenvalues is 16, the rest are almost in the circle
circle of radiusk in the infinite lattice limit. of radius 4.

12 b

4}

Re()\) 8 12 16
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16, the rest are in a circle of radius 4.

Now let us turn to the product of such matrices. Here we
do not have the exact proof. We argue as follows. Each of
the matrices can be Fourier transformed. Since the Fourier

80

matrix depends only on dimensionality of the matrix and not 60
the element$see eq(6)], the product of these matrices has £V, B)
the same eigenvalues as the product of transformed matrices. IR

Let us consider the matrix
20

rT_— —c—1
I _ITIT*l'.'IleN IT'T*l'.'IlFN

-1 -1 1 0 1 1 ] 1 ! ! !
AR N Lol VR Vi F Ll . 0 50 100 150 200 250 300 350 400

k
:KTKT—l"'Kll (11) )

_E-1 .
WhereKt_,FN I{Fy and has the same form as EE). Thls_ FIG. 3. Dependence of average time needed for synchronization
product will have the same structure and one of the eigenc (N k) as a function of connectivitk for N=1000.

values of the product of. Such matrices will clearly be
k™. Let us denote the minor of the elemdfi(1,1) by S;.
The minor of the first element in the first row of this matrix
will be II{_;S;. For clarity, let us write the above matrix as

The maps explored in the above paper are logistic maps for
which the largest value of is 2.

Thus fork>4 the maps must get synchronizéeg. 3 of
Ref.[6]) if the second largest eigenvalue is less than or equal
k™ | ————-— - - = = to the expected value. However, for a given realization there
could be fluctuations and thus one may not observe synchro-
nization and might have to go to slightly higher values of

| k. Thus if one wants the convergence for all realizations, the
0 | ’ value could be a little higher in this case.
However, in the case in which the interaction matrix is
| newly selected each time, one observes kvl is indeed
| the transition point. This clearly reflects the fact that in the
case of the product of matrices, the fluctuations away from
(12) the expected value are quickly averaged out.

The eigenvalues of the transformed matrix ak8l(” and the Now let us turn to the question of how the time needed
eigenvalues ofl’_,S,. Each of these matricey has entries Tom synchronization depends & andk. We denote the
which are independent identically distributed random vari-2verage time needed to synchronize a systeh ofaps with
ables. In the case of real matrices it has been proven th&2Cch site connected tosites ag(N,k). Figure 3 shows the
under certain conditions the noncommutative nature of th&épendence of the averge time needed for synchronization
matrices can be ignordd2,14. Thus, using the law of large ts(N,K) as a function ofk for N=1000. The average time
numbers the largest eigenvalue of the product converges f¢€ded for synchronizingl maps decreases witk and it
A7, where is the expectation value of the largest eigen\,a|uesaturates for Iarge_ values kbf If one investigates variation in
of an individual matrix. The necessary condition for this ts(N,k) as a function oN for givenk, one can see that for
theorem holds for complex matrices a[d®]. The condition @ large enough value & the time required is virtually un-
is that the distribution of|S,(z/||Z|)|| is independent of changed. Elgure 4 shows the dgpgndencg of this average time
#0 in #N. Cohen and Newmafi4,12 have also given a @S @ function ofN for'k=.9. It is interesting that the time
sufficient condition for the above. In particular, it holds for réquired for synchronization does not increase for lage
the product of random matrices where the elements aréhis may have to do with the fact that the connectivity is
jointly Gaussian variables and the columns are independentocally treelike” and thus the information at any point
and identically distributed. If we assume the sufficient con-SPreads quickly all over the lattice. The higher average time
dition to be true for Gaussiacomplexrandom matriceg16], at smallerN may have to do with higher fluctuations in the
one can claim that the largest Lyapunov exponent of théecond largest eigenvalue for lower values\of
product will asymptotically converge #72. Thus the effec-
tive interaction matrixl’ has the second largest Lyapunov
exponent with magnitude/k. The departures of the finite
time Lyapunov exponent from this value will be less and less
in the infinite time limit. Now let us address the question of Now we consider departures from the synchronized state.
whether the above analysis explains the results obtained hy the function is not highly chaotic, i.e) is small, the
Chate and Mannevillg6]. synchronization is achieved fairly quickly. Thus in order to
The answer is in the affirmative. The largest eigenvalue irunderstand the departures, we should consider a highly cha-
the above evolution i&, which is the same as the one in the otic function, i.e. one with a large Lyapunov exponent. Let
single map evolution. The second largestigk/k=\/ k. the functionf(x) in Eq. (2) be a thrice iterated logistic map,

Ill. TRANSITION FROM COLLECTIVE BEHAVIOR TO
STATISTICAL BEHAVIOR
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FIG. 4. Dependence of average time needed for synchronization
ts(N,k) as a function of number of site$ for k=9. FIG. 6. The mean square deviation of the mean field as a func-

tion of total number of sites for CML withk=4. The map
ie., f(x)=g3(x) whereg(x)=4x(1—x). The exponent  f(X)=g%(x), whereg(x)=4x(1-x).
for a single mam(x) is 2 and that forf(x) is 8. This func-
tion f being the third iterate of the logistic map is an eighthh(t) for various values of connectivity for a typical realiza-
order polynomial with four maxima and four minima. For tion, namely fork=4, k=15, k=33, andk=55. While for
A =8, one would expect complete synchronization of a largek= 55 the return map closely follows the méfx) (though a
number of oscillators fok>64, though the onset will differ Synchronized state is not reached departs from this be-
a little for a given configuration. As if6], let us define the havior for lower connectivities. Fdt=4 we do not see any
collective variableh(t)=2i’\':1xi(t). In Fig. 5 we plot the coherence emerging between the variables and the return
return map ofh(t) for various connectivities. In the case of map is a filled ellipse whose size decreases rapidly With
an exact synchronization, all the variablet) are identical ~ This is the behavior that one would expecii{t)’s were
and the whole array behaves like a single map. Thus onkl-d- random variables. This is further confirmed by checking
expects the return map to be the functioitself in this case. the variance oh(t) for different values oN for k=4. Fig-
This expectation is fulfilled even if the maps are not exactlyure 6 shows the plot of variance bft) for various values of
synchronized and the connectivikyis below the threshold N and it is clear that the variance decays a.1it is not
required for synchronization. As the connectivity is reducedinexpected that for small connectivities the variables will
further, there are further departures of this return map fronindeed be uncorrelated. For example, ket 1, the evolution
the functionf, and for very low connectivities one does not i as if N independent maps are evolving but are labeled

see any coherence. In F|g 5, we p|0t the return map o{differently each time. Fok>1, the same explanation will
not be exactly applicable. However, one seems to have a

statistical behavior for small connectivities and a highly col-
lective synchronized evolution for larger values of connec-
tivity.

IV. DISCUSSION

Our result on synchronization is indeed significant from
an experimental point of view. There have been attempts to
have macroscopic synchronized chaos in one dimension with
asymmetric coupling and open boundary conditions. The
problem with this type of connectivity is that due to convec-
tive instabilities one cannot have synchronization in systems
with really large size§17]. However, since in this model
there is no preferred direction in which instabilities can
“flow and grow,” it does not have the above problem. Auer-
bach[18] suggested system size dependent controls to over-
come this problem while Gade, Cerdeira, and Ramaswamy
suggested4] the tree type connectivity so that the problem
nee) ’ is less pronounced. However, it is interesting to note that

random connectivities can achieve the same thing. Since one

FIG. 5. The return plot of the collective variable(t) for can indeed achieve asymmetric connectivities in systems like
k=4,15,33, and 55 for a typical configuration. It is clear that while electrical circuits, it could be useful for those who want to
for k=4 this variable behaves like a sum of i.i.d. random variables build huge but better controlled and effectively low dimen-
it exhibits highly collective motion for larger values kf sional systems.

h(t+1)
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One more advantage with this kind of connectivity overrather its absengehas been widely investigated in globally
globally coupled lattices or any other type of regular conneccoupled mapswhich is an analog of the mean field model in
tivity is the lack of symmetries in the model. In the presencestatistical mechanigsand it is claimed that the reason for an
of symmetries, one can have many equivalent attractorapparent lack of nonstatistical behavior emerging in this
present simultaneously. All these equivalent attractors willmodel is due to nonstationary evolution of the mgd]. It
be equally attracting and have their own basin of attractionis interesting that this behavior is observed with finite non-
Thus the basin of attraction of a synchronized state, even itocal couplings.
the case where it exists and is stable, could be very small. In brief, we have tried to explain the existing observations
For example, in Josephson junction arr&y3A’s), a similar  in the literature about the models with random nonlocal con-
phenomenon of attractor crowding is reported where a smaltectivity. We have shown that the interaction matrix has a
change in initial conditions makes one jump from one attracgap in the eigenvalue spectrum which is of the order of the
tor to other[19]. The number of competing attractors ex- number of connections. We have pointed out the practical
plodes even for a small number of oscillators. This is inimportance of this observation. We have also studied the
contrast with the present model where almost all initial con-departures from this collective behavior. We observe that the
ditions lead to a synchronized std&0]. maps become highly uncorrelated and their sum shows a

We have also shown that for lower connectivities, thestatistical behavior in the low connectivity limit.
collective motion slowly disappears and for very low con-
nectivities statistical behavior appears in this model. We note
that for this type of coupling, the array looks like a tree with
k branches locally. We note that in the case of coupled maps The author would like to thank Professor B. Derrida for
on treeq 4], the model indeed resembles a similar model inextremely useful suggestions and critical reading of the
statistical mechanid®1] and displays a mean-field type be- manuscript, as well as Professor Newman for useful corre-
havior. We would like to mention that such behaviar = spondence
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