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We have established the solid-fluid coexistence region for a system of polydisperse hard spheres with near
Gaussian diameter distributions, as a function of polydispersity. Our approach employs Monte Carlo simula-
tion in the isobaric semigrand ensemble with a Gaussian activity distribution. Gibbs-Duhem integration is used
to trace the coexistence pressure as a function of the variance of the imposed activity distribution. Significantly,
we observe a ‘‘terminal’’ polydispersity above which there can be no fluid-solid coexistence. The terminus
arises quite naturally as the Gibbs-Duhem integration path leads the pressure to infinity. This pressure diver-
gence is an artifact of the method used to evaluate the freezing transition, because the sphere diameters vanish
in this limit. A simple rescaling of the pressure with the average diameter brings the terminal pressure to a
finite value. Nevertheless, the existence of this terminus only at infinite pressure precludes the construction of
a continuous path from the solid to the fluid. At the terminus the polydispersity is 5.7% for the solid and
11.8% for the fluid while the volume fractions are 0.588 and 0.547 for the solid and fluid, respectively.
Substantial fractionation observed at high values of the polydispersity (.5%) implies that the ‘‘constrained
eutectic’’ assumption made in previous theoretical studies is not generally valid. Our results for the terminal
polydispersity are consistent with experiments performed on polydisperse colloidal suspensions.
@S1063-651X~96!05007-6#

PACS number~s!: 82.20.Wt, 64.60.Cn, 82.70.Dd

I. INTRODUCTION

Systems interacting via purely repulsive hard potentials
are of interest because their properties have a trivial depen-
dence on temperature, they are theoretically tractable, and
they capture the qualitative effects of intermolecular repul-
sion on material properties. These models are particularly
good at characterizing the structural features of condensed
phases@1#. While they are incapable of exhibiting vapor-
liquid transitions, properly formulated models have been
shown to exhibit a rich array of order-disorder transitions,
including freezing@2,3#, polymorphism~in hard-sphere mix-
tures! @4–6#, and liquid crystalline phases@7–9# ~seen, for
example, in hard spherocylinders!.

The hard-sphere model gives a very good description of
colloidal dispersions that consist of noncharged spherical
particles interacting via a steep steric repulsion@10#. In par-
ticular, such colloidal systems, if sufficiently monodisperse
in size, are known to crystallize at densities very close to that
predicted by a hard-sphere model@11#. However, colloidal
particles frequently exhibit considerable size polydispersity,
depending on the way they are synthesized. This polydisper-
sity will affect the thermodynamic properties, including the
location and existence of any phase transitions.

The influence of polydispersity on the solid-fluid transi-
tion in colloidal suspensions was first examined by Dickin-
son and Parker@12–14#. Their system consisted of particles
interacting via a screened Coulombic repulsion with a van
der Waals attractive term. They showed via molecular simu-
lation that the osmotic pressure of this system varies signifi-
cantly with size polydispersity. They estimated the solid-
fluid coexistence properties as a function of the

polydispersity, but without attempting any sort of rigorous
free energy calculations or considering the possibility of size
fractionation ~i.e., they assumed that the particle diameter
distributions in the coexisting solid and fluid phases are iden-
tical!. They found that the fluid-solid coexistence region nar-
rows as the polydispersity increases, and they surmised that
the transition disappears entirely at sufficiently high polydis-
persity. This value of the polydispersity has been called by
Dickinson and Parker the ‘‘critical polydispersity’’; this
choice is unfortunate as the phenomenon does not likely rep-
resent a continuous transition because the solid and fluid
phases have different symmetries. To avoid any confusion
with critical points as they are customarily understood, we
will instead refer to this polydispersity as the ‘‘terminal poly-
dispersity.’’

The terminal polydispersity has come to be the subject of
considerable interest. For a triangular size distribution, Dick-
inson and Parker extrapolated the change in volume upon
melting to zero, and estimated the terminal polydispersity at
11% ~we define the polydispersity as the standard deviation
of the particle size distribution, divided by the mean!. Later,
Pusey@15# proposed a simple criterion for the terminal poly-
dispersity based on an analogy of the Lindemann melting
criterion; he also obtained a value of about 11%. Pusey@11#
performed experiments in which he observed that dispersions
with a polydispersity of 7.5% would~partly! freeze, while
those with a polydispersity of 12% did not.

Several authors applied density functional theory~DFT!
to obtain the phase diagram of polydisperse hard spheres
@16,17#. These theories are significantly more sophisticated
than those employed in prior studies, and they give more
attention to free energy criteria in calculating the coexistence
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curves. They nevertheless do not represent a completely rig-
orous treatment, as they too do not consider the effect of
fractionation on the coexistence properties. McRae and
Haymet @17# refer to this approximation as a ‘‘constrained
eutectic.’’ The constrained eutectic is certainly valid at small
polydispersity, but it likely breaks down as the distribution
of diameters becomes wide. The DFT studies predict the
terminal polydispersity at about 5–6%.

The purpose of the present work is to determine rigor-
ously the phase diagram of polydisperse hard spheres by mo-
lecular simulation, establish the terminal polydispersity, and
test the validity of the constrained eutectic assumption made
explicit in Ref. @17#. To do this properly we must simulate a
system having a truly continuous distribution of particle
sizes, rather than a many-component but nevertheless dis-
crete distribution. Such a simulation can be realized in the
so-called semigrand ensemble, which has the added advan-
tage that it is well suited for calculation of multicomponent
phase equilibria. The semigrand ensemble is explained in
Sec. II. Section III describes how the recently developed
Gibbs-Duhem integration method@18# can be applied to ef-
ficiently obtain the phase diagram of polydisperse hard
spheres by integration along the coexistence line. To start the
integration one needs the slope of the coexistence line in the
monodisperse limit; the means by which this is obtained is
described in Sec. IV. In Sec. V, it is shown how scaling
properties of the system can be applied to greatly improve
the accuracy of the simulations. The simulation results are
discussed in Sec. VI. The existence of a terminal polydisper-
sity raises questions of continuity of the fluid and solid
states; we show in Sec. VII how this issue may be resolved.
Concluding remarks are presented in Sec. VIII.

II. SEMIGRAND ENSEMBLE

The most straightforward approximation to a continuous
mixture is based in the canonical ensemble and thus takes a
finite sample from a distribution of diametersp(s). How-
ever, this approach is sensitive to finite size effects and,
moreover, it is not practical when phase equilibria are con-
sidered as it is difficult to ensure chemical potential equili-
bration of each component. A better choice is a grand ca-
nonical simulation in which particles of different species are
inserted and removed according to the configurational energy
and theimposedchemical potential of that component. In
this way a truly continuous distribution can be realized and
phase equilibrium can be more easily treated. However, at
the high densities of the liquid-solid equilibrium the insertion
probability in both phases is too low to obtain reasonable
statistics; further, the need to maintain the crystal structure in
the solid makes insertions especially problematic.

The semigrand ensemble provides an alternative represen-
tation that combines the best features of the canonical and
grand canonical ensembles for the study of continuous mix-
tures @19,21#. A simulation in this ensemble has the total
number of particles fixed, but the species identity of each
particle is allowed to change, giving rise to a truly continu-
ous distribution. Although the chemical potentials are im-
posed in a way similar to the grand-canonical ensemble, in-
sertion of particles is avoided, so the method is suitable for
high densities and crystalline phases.

We consider a system ofN hard spheres with diameters
s distributed according top(s). The isobaric semigrand ca-
nonical free energyY is defined by a Legendre transform of
the Gibbs free energyG. In the polydisperse limit,

Y5G2NE p~s!@m~s!2m~s0!#ds5Nm~s0! ~1!

or, in differential form,

d~bY!5Hdb1bVdP2NE p~s!bd@m~s!2m~s0!#ds

1bm~s0!dN. ~2!

Here, m(s) is the chemical potential as a function ofs,
s0 is the diameter of an arbitrarily chosen reference compo-
nent, andd represents a functional differential. Also,H is the
enthalpy,b51/kBT is the reciprocal temperature,P is the
pressure, andV the volume of the system. The semigrand
canonical potentialY is a function of the independent vari-
ablesT, V, andN and it is a functional of the chemical
potential difference functionm(s)2m(s0). In a simulation
these independent variables must be fixed while the thermo-
dynamic conjugatesU,P,m(s0) and p(s) are allowed to
fluctuate. This implies that the compositionp(s) can be
known only after the simulation has been performed. Be-
cause the total number of particles is fixed the chemical po-
tential of the referencem(s0) still has to be computed. Once
it is determined, the entire chemical potential distribution is
known. The method is therefore well suited for phase equi-
libria in continuous mixtures: for a given temperature and
distribution in chemical potential differences one needs to
match only the values of the pressure and the reference
chemical potential in both phases. This is far simpler than
matching the entire distributionm(s) in the canonical way.

We are interested in determining the influence of polydis-
persity on the hard sphere fluid-solid transition. Although the
composition distribution and hence the polydispersity cannot
be imposed directly, it can be expected that its form will be
much like that of the imposed activity-ratio distribution
eb@m(s)2m(s0)# @21#. Therefore we choose the following qua-
dratic form for the chemical potential difference function

b@m~s!2m~s0!#52~s2s0!
2/2n, ~3!

which gives rise to a Gaussian activity distribution that peaks
at s5s0 , with width n. In the limit n→0, the pure mono-
disperses0 phase is recovered. For smalln the mixture is
ideal and the composition will be Gaussian with the peak
nears0 . The choice of Eq.~3! convertsY from a functional
of m(s)2m(s0) to a function ofs0 andn. The fundamental
thermodynamic equation now reads

d~bY!5Hdb1bVdP1bm~s0!dN2~Nm1 /n!ds0

2~Nm2/2n2!dn, ~4!

wherem1 andm2 are the first and second moments of the
composition abouts0 . Thenth such moment is defined as

mn5E ds~s2s0!
np~s!. ~5!
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In a semigrand Monte Carlo simulation, particles sample
diameters in addition to the usual sampling of positions
within the simulation box. Diameters are sampled by select-
ing a particle at random, changing its diameter by a small
amount, and accepting with probability in accord with the
Metropolis algorithm. Details may be found in@20#.

III. GIBBS-DUHEM INTEGRATION

Evaluation of the hard-sphere fluid-solid coexistence line
as a function of polydispersity can be done by application of
the Gibbs-Duhem integration method recently developed by
one of the authors@18#. In this method two phases are simu-
lated simultaneously at the same state conditions. The tech-
nique allows a series of simulations to trace a line of coex-
istence in the plane of two state variables; for the purpose of
describing the method let us say that these variables are the
temperature and pressure, respectively. Chemical potential
equality between the phases is ensured by starting the pro-
cess with two known equilibrium phases, and subsequently
applying thermodynamic integration to select the appropriate
pressure while the temperature is varied from one simulation
to the next in the series. The integration path may be derived
from the Gibbs-Duhem equation

d~bm!5hdb1bvdP, ~6!

whereh5H/N andv5V/N are the molar enthalpy and vol-
ume, respectively. For two coexisting phases to remain in
equilibrium when the temperature is changed, the pressure
must vary in a way that maintains chemical potential equality
between them. The required change can be derived from Eq.
~6!

S dPdb D52
Dh

bDv
, ~7!

where D indicates a difference between the two phases.
Equation ~7! is known as the Clapeyron equation. It is a
simple first-order differential equation which can be inte-
grated using a predictor-corrector scheme. The ‘‘initial con-
dition’’ is a known point at the coexistence line in the
(T,P) plane. By simulating the two coexisting phases simul-
taneously at the equilibrium pressure and evaluating the
right-hand side of Eq.~7!, one can predict the pressure at
another temperature not far away. Simulation at thisP and
T yields new values ofDh andDv, which can be used to
correct the predicted pressure while the simulation continues
to proceed. The process is then repeated to get the next
(T,P) coexistence state point. Details of the method may be
found elsewhere@18,22#. In the case of polydisperse hard
spheres we do not need the temperature as an independent
variable, but instead we need a measure for the polydisper-
sity. An obvious choice isn, as it occurs in the fundamental
Eq. ~4!. The Gibbs-Duhem equation for polydisperse mix-
tures can be derived by combiningY5m(s0)N with Eq. ~2!

d@bm~s0!#5hdb1bvdP

2E p~s!bd@m~s!2m~s0!#ds. ~8!

Using the same procedure as for the derivation of Eq.~4! we
obtain

d@bm~s0!#5hdb1bvdP2~m1 /n!ds02~m2/2n2!dn.
~9!

To ensure phase equilibrium,bm(s0) and the chemical po-
tential difference function given in Eq.~3! must be the same
in the two phases. The latter requirement is fulfilled simply
by using the samen ~ands0) in both phases. The first re-
quirement results in a Clapeyron type of equation which can
be derived from Eq.~9! by equating the right-hand side for
both phases and applyingds050 anddb50.

S dPdn D5
Dm2

2n2bDv
. ~10!

We can integrate in the (P,n) plane by measuring the second
moment of the composition distributionm2 and the molar
volumev in both phases and applying the predictor-corrector
scheme described above.

IV. THE INITIAL SLOPE

The starting point we use for the Gibbs-Duhem integra-
tion is the well known freezing point of monodisperse hard
spheres@2,3#. However, the initial slope atn50 given by
Eq. ~10! is not known here. Moreover, it cannot be calculated
directly in a simulation because bothm2 andn are equal to
zero in the monodisperse limit, although the ratiom2 /n is
expected to be finite.

The second momentm2 can be calculated if the compo-
sition p(s) is known. The composition in turn is related to
the chemical potential by

bm~s!5m01 lnp~s!1bm r~s!, ~11!

wherem0 is a collection of terms taken as independent of
s, andbm r(s) is the residual chemical potential. With Eq.
~3!, the chemical potential difference function can now be
written as

bDm~s!5 ln
p~s!

p~s0!
1bDm r~s!52

~s2s0!
2

2n
, ~12!

or

p~s!;exp@2~s2s0!
2/~2n!2bDm r~s!#. ~13!

Here,Dm r(s)5m r(s)2m r(s0) is the difference in residual
chemical potential between a particle with diameters and a
particle of the reference component. This difference can be
measured in a simulation of a pures0 substance by perform-
ing ‘‘test enlargements,’’ in which a randomly chosen par-
ticle is enlarged from diameters0 to a random diameters.
One tabulates the frequency with which such moves result in
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no overlap, although the moves themselves are never ac-
cepted. This overlap probability yields the residual chemical
potential according to

bDm r~s!52 ln^exp@2bDU~s0→s!#&, ~14!

where the brackets indicate the ensemble average;
exp(2bDU) is zero or unity, respectively, corresponding to
the absence or presence of overlap. This ‘‘ghost-growing’’
procedure is very similar to the Widom ‘‘ghost’’ particle
insertion technique@23#. In practice we tabulate the distance
from a randomly selected particle to its nearest neighbor; this
histogram of nearest distances is then easily converted into
the overlap histogram just described.

For small values ofs2s0 the measured residual chemi-
cal potential might be approximated by a quadratic function

2bDm r~s!5a1~s2s0!1a2~s2s0!
2. ~15!

Substituting this in Eq.~13! results in the composition

p~s!5CexpFa1~s2s0!1S a22 1

2n D ~s2s0!
2G , ~16!

whereC is independent ofs2s0 . Becausep(s) is a Gauss-
ian function, the desired second moment of the composition
m2 can be analytically obtained

m25
11a2 /~1/n22a2!

~1/n22a2!
'n1~a1

212a2!n
2. ~17!

The latter approximation is correct to the second order in
n. The initial slope can now be written as

S dPdn D
n50

5
Dm2

2n2bDv
5

DS 12 a121a2D
bDv

, ~18!

whereD@( 12a1
21a2)] is the difference between the coeffi-

cient expressions evaluated in both phases. In sum, we mea-
sure the residual chemical potential in a simulation of a pure
hard-sphere system using Eq.~14!, we fit it to a quadratic
function for smalls2s0 and use the coefficients in Eq.~18!
to obtain the initial slope for the Gibbs-Duhem integration.

V. SCALING

Application of a standard Monte Carlo algorithm yielded
very poor statistics. This outcome is probably caused by the
inability of the volume to adjust quickly to particle diameter
changes, and vice versa. A remedy might be to introduce a
combined volume and diameter-change Monte Carlo step:
while reducing the volume by a factora, we reduce all di-
ameters by a factora1/3. In addition to more directly cou-
pling the diameter and volume changes, this move is appeal-
ing because it requires no overlap test. The acceptance
probability for this combined move is

PL→L85expFbP~L832L3!23Nln~L8/L !

1
1

2n(i ~ s̃ iL82s0!
22

1

2n(i ~ s̃ iL2s0!
2G ,

~19!

whereL is the length of the cubic box with volumeV5L3

and s̃ i5s i /L are the scaled diameters. Although this
method will produce better results, we can improve the
scheme even more by scaling both the diameters and the
coordinates, thereby permitting~near-! analytic evaluation of
the volume integral. Consider the configurational part of the
isobaric semigrand partition function

Y5
1

N! E drNE dsNE dVexpF2bPV1
1

2n(i ~s i2s0!
2

2bU~r N,sN!G . ~20!

If we now introduce scaled coordinates and diameters
si5r i /L and s̃ i as above the partition function can be writ-
ten as

Y5E dsNE ds̃Ne2bU~sN,s̃N!E dL3L4NexpF2bPL3

1
1

2n(i ~ s̃ iL2s0!
2G

5E dsNE ds̃Ne2bU~sN,s̃N!W~ s̃N!. ~21!

The outermost two integrals do not contain any volume
dependence. Moreover, the ‘‘weighting function’’W(s̃N)
defined here can be evaluated entirely at every Monte Carlo
move. In this way, there is no need for volume sampling at
all. Instead, at every move we obtain the average volume by
evaluating

E dLL4N15expF2bPL31
1

2n
( i~ s̃ iL2s0!

2G
E dLL4N12expF2bPL31

1

2n
( i~ s̃ iL2s0!

2G . ~22!

In this scaling method there are only two kinds of Monte
Carlo moves: the regular particle displacements and the di-
ameter changes. Both changes are made in the scaled vari-
ables. The acceptance probabilities are

Psi→s
i8
5e2bDU~sN,s̃N!, Ps̃ i→s̃

i8
5e2bDU~sN,s̃N!

W~ s̃ i8!

W~ s̃ i !
,

~23!

whereDU(sN,s̃N) is the change in potential energy associ-
ated with the move. If a particle’s diameter is changed the
integralW(s̃N) must be reevaluated. Because the exponen-
tial in the integral is a cubic polynomial this cannot be done
analytically. However, if we write the integral as
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W~ s̃N!5cE dxef ~x! ~24!

we can approximate it accurately by applying the method of
steepest descent. Replacing the functionf (x) by a second-
order Taylor expansion around the maximum off (x) yields

W~ s̃N!5cE dxexpF f ~xmax!1
1

2 S ]2f

]x2D
xmax

~x2xmax!
2G

5cef ~xmax!F22pS ]2f

]x2D
xmax

21 G 1/2. ~25!

This approximation is possible because the functionf (x)
~being proportional toN) is sharply peaked about its maxi-
mum.

VI. RESULTS

We performed a Gibbs-Duhem integration in the (P,n)
plane starting with an fcc solid and a fluid at the monodis-
perse hard-sphere freezing point. Both systems consisted of
256 particles and were well equilibrated. Using the ghost-
growing method of Sec. IV in combination with Eq.~18! we
found an initial slope ofdP/dn51400(650) ~in units such
that b and s0 are unity!. This value was used in the first
predictor step to go fromn50 to finite n, where the slope
could be directly measured. We evaluated the coexistence
line by gradually increasingn from one simulation to the
next while integrating Eq.~10! to determine the pressure. In
Fig. 1 the equilibrium pressure is shown as a function of the
polydispersity parametern. The slope starts off at a value of
dP/dn51400 as we obtained from Eq.~18! and increases
whenn is increased. At a value ofn/s0

250.0056 the slope
becomes infinite, so we had to invert the integration, taking
P as the independent variable. In this case, we can calculate
n(P) for increasing values ofP by applying the same inte-
gration scheme to the reciprocal of Eq.~10!. Surprisingly,
the equilibrium curve continues to bend back, approaching

n/s0
250 at infinite pressure. In the inset of Fig. 1 we rescale

the pressure toP̃5bPn3/s0
3 , which remains finite and fol-

lows a straight line asP→`,n/s0
2→0. The fact thatP̃ is

finite in this limit actually allows us to perform simulations
at infinite pressure as will be discussed in the next section.

The divergence of the pressure is somewhat misleading.
The pressure indeed goes to infinity on a scale characterized
by s0 , but when reduced instead by the volume or an aver-
age diameter it remains bounded. In fact, in this limits0
loses its relevance as a length scale because all particle di-
ameters are going to values much smaller thans0 . Scaling
by an average diameter~or the volume! makes the interpre-
tation of the results more intuitive because in experiments
the important microscopic length scale is the characteristic
particle diameter. Consequently, in most of what follows we
present our results in terms of^s& ~where the angle brackets
indicate an isobaric semigrand ensemble average!. We
choose arbitrarily to usês& of the solid to perform the
reduction; we could just as well have used the fluid value.
We will continue to refer to the limit of infinite pressure
because this represents a limiting behavior of our isobaric
semigrand system. It should be understood that in this case
the pressure is infinite on thes0 scale but not on, say, the
^s& scale.

Although the parametern shows a maximum as a func-
tion of P, the real polydispersity—given in terms of the
width of the composition distributionp(s)—does not. This
polydispersitys is defined as

s5
^s2&

^s&2
21. ~26!

In Fig. 2 the reduced pressurebP^s&solid
3 is plotted against

the polydispersitys in both the fluid and the solid. The equi-
librium pressure increases monotonically until at infinite
pressure a limiting value ofs andbP^s&3 is reached. From
this plot it becomes immediately clear that the polydispersity
of the fluid and the solid at equilibrium can be very different.
As reviewed in the Introduction, this fact, although antici-
pated, was discounted in previous studies.

FIG. 1. Solid-fluid coexistence pressure as a
function of variance of the imposed activity dis-
tribution. In the inset the pressure is reduced to
Pn3/s0

3 to show the limiting behavior.
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It is convenient to choose a density variableh given in
terms of the real volume fraction, because this is the quantity
one measures in experiments. We defineh5Np^s3&/~6V!;
note thath50.7405 for monodisperse close packed spheres.
The phase diagram in the (h,s) plane is shown in Fig. 3.
Because the polydispersity variable is not linearly additive,
the tie lines are curved. Coexisting fluid and solid hard
spheres will mix to density-polydispersity values given by
the lines~the converse is not necessarily true, as there are
many compositions possible for a particulars, and an arbi-
trary one may not split exactly to the coexisting phases com-
puted for the diagram!. The most remarkable feature of the
diagram is the fact that the fluid-solid equilibrium suddenly
ends. This is generally consistent with the prediction and
observation of a terminal polydispersity reported in studies
on crystallization of polydisperse hard spheres@11,17,16#
and reviewed in the Introduction. In particular, the consensus
of a terminal polydispersity in the range of 5%–12% is ex-
plained by our results. According to our phase diagram, the
fcc solid phase is thermodynamically stable for polydisper-

sities no more than 5.7%, yet crystallization is possible in
fluids of polydispersity up to 12% provided one allows for
fractionation in the phase separation process. This is consis-
tent with Pusey’s experiments@11# in which he observed that
dispersions with a polydispersity of 7.5% would freeze,
while those with a polydispersity of 12% did not. The DFT
studies which reported a terminal polydispersity of 5–7%
are also consistent with our results given their use of the
constrained eutectic, which precludes fractionation.

In Fig. 4, we plot the number density~in units of the
average diameter! as a function ofs. This plot illustrates the
counterintuitive result that the fluid density may adopt values
greater than that in the solid phase. At the point where both
densities are equal theDv term in Eq.~10! switches signs
and becomes negative, which gives rise to the maximum of
n(P) seen in Fig. 1. Of course, the fluid is able to take on
larger densities than the solid only because it is composed of
particles of smaller diameter.

The composition distributions of the fluid and the solid
phases are displayed in Fig. 5 for four values of the coexist-

FIG. 2. Coexistence pressure of the solid~left
curve! and the fluid~right curve! as a function of
the width of the composition distribution, the
polydispersitys.

FIG. 3. Phase diagram in the plane of volume
fraction and polydispersity. Coexisting phases are
joined by tie lines, which are not straight because
the polydispersity is not an additive variable. The
circles represent the end points of the coexistence
region atbPs0

3→`, i.e., the terminal polydis-
persity.

54 639MONTE CARLO STUDY OF FREEZING OF . . .



ence pressure. For a monodisperse equilibrium~not shown in
the figures! the distributions in both phases would be equal
to the imposed activity, which is ad function ats0 . As the
equilibrium pressure~or equivalently the value ofn) is in-
creased, the composition distributions depart from the ideal
activity. Although still almost Gaussian, they are shifted con-
siderably to lower values ofs. The average diameter is
smaller in the fluid, whereas the solid composition is located
at larger diameters and is more narrowly distributed. The
difference between the phases becomes more pronounced at
higher pressures. At infinite pressure, all diameters go to zero
on the scale ofs0 . Interesting distributions can be recovered
by proper scaling of the diameters by their average, as pre-
sented in Fig. 5~d!. The fluid distribution is much broader
than the solid one, in accord with the larger polydispersity
s we encountered above. Although the valuen/s0

2 has de-
creased to zero in this limit~and of course has the same value

in the two phases!, the ~rescaled! composition distributions
are still near-Gaussian with a finite width~on a scale of
^s&). This curious outcome is a result of the limiting process
in which bPs0

3→` while n/s0
2→0.

As the distributions are shifted to a lower diameter at a
high pressure, the precise shape of the imposed activity dis-
tribution becomes less important ands0 , as discussed
above, becomes irrelevant. In Fig. 5~c! the chemical potential
difference function, the logarithm of the activity, is nearly a
straight line; it becomes exactly a straight line in the infinite
pressure limit. This property enables us to perform simula-
tions in the limit ofbPs0

3→`.

VII. THE INFINITE PRESSURE LIMIT

The existence of the terminal polydispersity suggests the
possibility of constructing a continuous path from the solid

FIG. 4. Phase diagram in the plane of reduced
number density and polydispersity. Coexisting
phases are joined by tie lines, which although
curved in reality are rendered straight in this fig-
ure.

FIG. 5. Composition distributionsp(s) for
fluid-solid equilibrium at different pressures. In
the figures, the leftmost solid curve represents the
fluid composition, the rightmost one the solid
phase composition.~a! p(s) for bPs0

3515. The
dotted curve is the imposed~Gaussian! activity
distribution. ~b! p(s) for bPs0

35100. The dot-
ted curve is the imposed~Gaussian! activity dis-
tribution. ~c! p(s) for bPs0

356400. The dotted
line denotes the imposed chemical potential dif-
ference function, which is becoming straight at
high bP. ~d! p(ss0 /n) for bPs0

3→`. In this
limit the diameter are pushed to zero. By dividing
them byn/s0 they remain finite. The dotted line
denotes the imposed chemical potential differ-
ence function.
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to fluid without going through a first-order phase transition.
We do not expect such a process to be realizable in general,
and in this section we show that it is indeed not possible in
the context of our system. The explanation lies in the infinite
pressure limiting behavior of the model in the isobaric semi-
grand ensemble.

Consider the partition function of Eq.~21!

Y5E dsNE ds̃Ne2bU~sN,s̃N!E dL3L4NexpF2bPL3

1
1

2n(i ~ s̃ iL2s0!
2G . ~27!

In the limit of bPs0
3→` the volume and hence the length

L will go to zero. The quadratic term inL in the exponent
vanishes in this limit, whereas thebPL3 and theLs0 /n
terms remain finite. This is equivalent to the observation that
the chemical potential difference function is becoming a
straight line. If we define a new, always finite, parameter
x5Ls0 /n and introduceP̃ defined above, the limiting par-
tition function can be written as

Y5CE dsNE ds̃Ne2bU~sN,s̃N!E dxx4NexpF2 P̃x3

1S (
i

s̃ i D xG . ~28!

We can conduct simulations in the infinite pressure limit by
using the integral overx as the ‘‘weighting function’’

W(s̃N) and imposing the reduced pressureP̃. This limiting
state is governed by two length scales, namely (bP)21/3 and
n/s0 . The pressurebP drives the diameters to smaller val-
ues whereasn/s0 drives them to large ones@s0 /n is equal
to the now-constant slope ofDm(s) as is shown in Fig.
5~d!#. The ratio of these two lengths, as expressed viaP̃,
represents the balance between the two forces.

The reduced coexistence pressure can be obtained from
extrapolation ofP̃ to n/s0

2 5 0 as suggested by Fig. 1. The
equilibrium densities and volume fractions of the solid-fluid
coexistence in the limitbPs0

3→` are displayed as open
circles in Figs. 4 and 3, respectively and are given in Table I.
Because these equilibrium points are at infinite pressure,
these are really the end points of the phase coexistence. For
the choice of the chemical potential distribution given by Eq.
~3!, there is no fluid-solid phase transition at higher polydis-
persities, volume fractions or densities.

This method makes it possible to address the question of
solid-fluid phase continuity posed above: given that the co-
existence region terminates abruptly, why is it not possible to
go from the solid to the fluid via a continuous path in the
(h,s) plane, that is, without encountering a first-order phase
transition? The answer is made clear by simulations at other,
off-coexistence values of the reduced pressureP̃. The results
are included in Fig. 6. The curve bounding the solid region
from monodisperse close packing (s50,h51) to the solid-
fluid coexistence represents the infinite pressure line; a simi-
lar curve is shown for the fluid phase~let us call these curves
the ‘‘P̃ lines’’!. The P̃ lines provide an upper limit, above
which the system cannot be compressed. This upper bound
implies that it is not possible to go from the solid to the fluid
avoiding a first-order transition.

Although all semigrandP̃ states are of infinite pressure,
the P̃ line does not correspond to close-packed states one
would achieve in a canonical ensemble. The linear chemical
potential that arises in the infinite pressure limit is incapable
of producing the tight packing one normally associates with
infinite pressure~i.e., in a fixed-composition ensemble!. In
order to determine the maximum volume fractionhM of the
solid phase as a function of polydispersity, we performed

FIG. 6. Phase diagram of polydisperse hard
spheres in theh-s plane. The coexistence region
is as in Fig. 3. The curve joining the terminal
solid-phase coexistence point to thes50 closed-
packed limit is the solid-phaseP̃ line ~see text!,
while that emanating from the liquid-phase termi-
nus is the liquid-phaseP̃ line. The solid line
above the solid-phaseP̃ line describes the pack-
ing fractions obtained from the fixed-composition
compressions described in the text. Fluid-phase
random close packing obtain by Schaertl and
Sillescu@25# is described by the dashed curve.

TABLE I. Polydispersities, densities, and volume fractions of
the solid fluid equilibrium atbPs0

3→`. The subscript numbers
indicate the error in the last digit~s!.

Solid Fluid

s 0.056712 0.117612
r^s&solid

3 1.11317 1.166216
h 0.58847 0.546813
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simulations starting with a configuration obtained by semi-
grand simulation at theP̃ line and compressing at fixed com-
position until every particle was constrained by its neighbors.
The maximum volume fractionhM so obtained was averaged
over ten different starting configurations with a different di-
ameter distribution snapshot. These averagedhM as a func-
tion of polydispersity are included in Fig. 6. It is immedi-
ately clear that there is a large difference between the
semigrandP̃ curve and the canonical results forhM . Simu-
lations of larger systems indicate that this is not a finite-size
effect. The explanation is that the imposed linear chemical
potential difference function in the semigrand simulations is
simply not the one that produces the maximum volume frac-
tion hM . To remove the difference between the canonical
and semigrand picture one could study other forms of
Dm(s). In the fluid phase there is also a fixed-composition
maximum volume fraction boundary: the random close pack-
ing volume fractionhRCP. Schaertl and Sillesca@25# have
studiedhRCP as a function of polydispersity. Their results
are included in Fig. 6. The difference between the semigrand
P̃ curve and thehRCP curve is increasing with polydisper-
sity. As in the solid case, this difference can be reduced by
choosing other forms of the chemical potential distribution
function. We demonstrate this via application of the hard-
sphere mixture equation of state of Mansooriet al. @24#,
which is applicable to the fluid phase only. In Fig. 7, we plot
the packing fraction versus polydispersity according to this
equation of state, for the linear chemical potential distribu-
tion used in the simulations, and for distributions that are
quadratic or cubic in the sphere diameter

bDm~s!5c1s1c2s
21c3s

3, ~29!

where we have examined cases in which only one of
c1 , c2 , and c3 is nonzero. The figure simply shows how
other chemical potential forms can give rise to larger densi-
ties than the ‘‘infinite pressure’’ results studied here. We
note several points:~i! the case wherec15c25c350 results
in a so-called infinitely polydisperse mixture@26#, at which
s50.7414 andh50.104; this situation arises asP̃→`; ~ii !
the Mansoori equation agrees very well with the Monte
Carlo data we have taken at and near the freezing transition,

as well as at the infinitely polydisperse limit; however, one
would not expect the equation to apply at conditions appro-
priate to random close packing, so we cannot describe this
limit in the present analysis;~iii ! the c3 line is terminated at
a point (c3 /bP50.507) where the computed composition—
which is an exponential of a cubic polynomial in
s—diverges because the coefficient of the cubic term be-
comes positive~the c1 and c2 lines are terminated on the
figure at arbitrary points!.

VIII. CONCLUSIONS

We have established a solid-fluid coexistence region for a
system of polydisperse hard spheres with near-Gaussian di-
ameter distributions, as a function of polydispersity. Our ap-
proach employs simulation in the isobaric semigrand en-
semble with a Gaussian activity distribution. Gibbs-Duhem
integration is used to trace the coexistence pressure as a
function of the variance of the imposed activity distribution.
The Gibbs-Duhem integration is initiated with a monodis-
perse hard-sphere fluid and fcc solid, and throughout the in-
tegration process the solid remains in an fcc structure. We do
not explore the possibility of a polymorphic transition in the
solid.

Both the fluid-solid coexistence densities and volume
fractions are monotonically increasing functions of the poly-
dispersitys, which is given in terms of the standard devia-
tion in the particle diameter distribution function. The vol-
ume change at the freezing transition decreases as a function
of s and eventually takes on negative values, which implies
that the number density of the fluid phase is greater than that
of the solid. However, the packing fraction of the fluid re-
mains always less than that of the coexisting solid phase.
Connected to this is the observation of significant fraction-
ation between the two phases, which permits the fluid phase
to comprise particles of a smaller average diameter.

Significantly, we observe a terminal polydispersity, i.e., a
polydispersity above which there can be no fluid-solid coex-
istence. This terminus arises quite naturally as the Gibbs-

FIG. 7. Behavior of polydisperse hard spheres
in the h-s plane. Phase diagram,P̃ lines, and
random-close packing curves from Fig. 6 are in-
cluded. Fluid-phase curves according to the Man-
soori et al. @24# equation of state are presented
for chemical potential distributions linear~dotted
curve!, quadratic~dashed curve!, and cubic~solid
curve! in the sphere diameter. The three lines
converge at the infinitely polydisperse limit, for
which a Monte Carlo datum@26# is indicated.
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Duhem integration path leads the pressure to infinity. The
existence of this terminus only at infinite pressure precludes
the construction of a continuous path from the solid to the
fluid. While it was anticipated in previous studies that such a
continuous path could not be constructed, the issue was not
addressed as fully as we are able to here.

At the terminus the polydispersity is 5.7% for the solid
and 11.8% for the fluid while the volume fractions are
0.588 and 0.547 for the solid and fluid, respectively. Large
fractionation observed at moderate values ofs(.0.05) im-
plies that the constrained eutectic assumption implicit in pre-
vious studies is not valid over a very large range of polydis-
persity. The constrained eutectic approximation is perhaps
the reason that McRay and Haymet@17# obtained the smaller
value of 6% for the terminus. Our results for the terminal
polydispersity are consistent with experiments performed on
polydisperse colloidal suspensions.

We feel that the qualitative conclusion that a terminal

polydispersity exists is generally correct and that it is of the
order of 5% in the solid and 12% in the fluid. However, we
have not examined the sensitivity of the terminal polydisper-
sity to variation in the chemical potential distribution func-
tion ~and thus the composition!. It seems likely that the ter-
minal polydispersity would not be very sensitive to details of
composition, and as our distributions are near Gaussian we
expect our conclusions to be generally valid.
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