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Monte Carlo study of freezing of polydisperse hard spheres
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We have established the solid-fluid coexistence region for a system of polydisperse hard spheres with near
Gaussian diameter distributions, as a function of polydispersity. Our approach employs Monte Carlo simula-
tion in the isobaric semigrand ensemble with a Gaussian activity distribution. Gibbs-Duhem integration is used
to trace the coexistence pressure as a function of the variance of the imposed activity distribution. Significantly,
we observe a “terminal” polydispersity above which there can be no fluid-solid coexistence. The terminus
arises quite naturally as the Gibbs-Duhem integration path leads the pressure to infinity. This pressure diver-
gence is an artifact of the method used to evaluate the freezing transition, because the sphere diameters vanish
in this limit. A simple rescaling of the pressure with the average diameter brings the terminal pressure to a
finite value. Nevertheless, the existence of this terminus only at infinite pressure precludes the construction of
a continuous path from the solid to the fluid. At the terminus the polydispersity is 5.7% for the solid and
11.8% for the fluid while the volume fractions are 0.588 and 0.547 for the solid and fluid, respectively.
Substantial fractionation observed at high values of the polydispersiB24) implies that the “constrained
eutectic” assumption made in previous theoretical studies is not generally valid. Our results for the terminal
polydispersity are consistent with experiments performed on polydisperse colloidal suspensions.
[S1063-651%96)05007-9

PACS numbe(s): 82.20.Wt, 64.60.Cn, 82.70.Dd

[. INTRODUCTION polydispersity, but without attempting any sort of rigorous
free energy calculations or considering the possibility of size
Systems interacting via purely repulsive hard potentialdractionation (i.e., they assumed that the particle diameter
are of interest because their properties have a trivial deperistributions in the coexisting solid and fluid phases are iden-
dence on temperature, they are theoretically tractable, antital). They found that the fluid-solid coexistence region nar-
they capture the qualitative effects of intermolecular repul+ows as the polydispersity increases, and they surmised that
sion on material properties. These models are particularlyhe transition disappears entirely at sufficiently high polydis-
good at characterizing the structural features of condenseggersity. This value of the polydispersity has been called by
phaseg1]. While they are incapable of exhibiting vapor- Dickinson and Parker the “critical polydispersity”; this
liquid transitions, properly formulated models have beenchoice is unfortunate as the phenomenon does not likely rep-
shown to exhibit a rich array of order-disorder transitions,resent a continuous transition because the solid and fluid
including freezindg 2,3], polymorphism(in hard-sphere mix- phases have different symmetries. To avoid any confusion
ture9 [4-6], and liquid crystalline phasdg—9| (seen, for with critical points as they are customarily understood, we
example, in hard spherocylinders will instead refer to this polydispersity as the “terminal poly-
The hard-sphere model gives a very good description oflispersity.”
colloidal dispersions that consist of noncharged spherical The terminal polydispersity has come to be the subject of
particles interacting via a steep steric repuldid@]. In par-  considerable interest. For a triangular size distribution, Dick-
ticular, such colloidal systems, if sufficiently monodisperseinson and Parker extrapolated the change in volume upon
in size, are known to crystallize at densities very close to thamelting to zero, and estimated the terminal polydispersity at
predicted by a hard-sphere modéll]. However, colloidal 11% (we define the polydispersity as the standard deviation
particles frequently exhibit considerable size polydispersitypf the particle size distribution, divided by the meakater,
depending on the way they are synthesized. This polydispeiRusey 15] proposed a simple criterion for the terminal poly-
sity will affect the thermodynamic properties, including the dispersity based on an analogy of the Lindemann melting
location and existence of any phase transitions. criterion; he also obtained a value of about 11%. Pugdy
The influence of polydispersity on the solid-fluid transi- performed experiments in which he observed that dispersions
tion in colloidal suspensions was first examined by Dickin-with a polydispersity of 7.5% wouldpartly) freeze, while
son and Parkerl2—14. Their system consisted of particles those with a polydispersity of 12% did not.
interacting via a screened Coulombic repulsion with a van Several authors applied density functional the(@fT)
der Waals attractive term. They showed via molecular simuto obtain the phase diagram of polydisperse hard spheres
lation that the osmotic pressure of this system varies signifif16,17. These theories are significantly more sophisticated
cantly with size polydispersity. They estimated the solid-than those employed in prior studies, and they give more
fluid coexistence properties as a function of theattention to free energy criteria in calculating the coexistence
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curves. They nevertheless do not represent a completely rig- We consider a system & hard spheres with diameters
orous treatment, as they too do not consider the effect o distributed according tp(o). The isobaric semigrand ca-
fractionation on the coexistence properties. McRae andhonical free energy is defined by a Legendre transform of
Haymet[17] refer to this approximation as a “constrained the Gibbs free energé. In the polydisperse limit,
eutectic.” The constrained eutectic is certainly valid at small
polydispersity, but it likely breaks down as the distribution
of diameters becomes wide. The DFT studies predict the
terminal polydispersity at about 5—6%.

The purpose of the present work is to determine rigor-or, in differential form,
ously the phase diagram of polydisperse hard spheres by mo-
lecular simulation, establish the terminal polydispersity, and 4 gy)=Hdg+ gVvd p_Nj p(0) B (o) — (o) dor
test the validity of the constrained eutectic assumption made
explicit in Ref.[17]. To do this properly we must simulate a + Bu(og)dN %)
system having a truly continuous distribution of particle o=
sizes, rather than a many-component but nevertheless digrere, 4() is the chemical potential as a function of
crete distribution. Such a simulation can be realized in thg; s the diameter of an arbitrarily chosen reference compo-
so-called semigrand ensemble, which has the added advagent, ands represents a functional differential. Algd,is the
tage that it is well suited for calculation of multicomponent gnthalpy, B=1/kgT is the reciprocal temperatur®, is the
phase equilibria. The semigrand ensemble is explained iCEressure, and/ the volume of the system. The semigrand
Sec. Il. Section IIl describes how the recently developec.anonical potential is a function of the independent vari-
Gibbs-Duhem integration methdd8] can be applied to ef-  5pesT v, andN and it is a functional of the chemical
ficiently obtain the phase diagram of polydisperse hardpotential difference functiop(o?) — u(o). In a simulation
spheres by integration along the coexistence line. To start thg,ase independent variables must be fixed while the thermo-
integration one needs the slope of the coexistence line in th&’ynamic conjugated), P, (o) and p(o) are allowed to
mono.dispe'rse limit; the means by_w_hich this is obtaineq IS1uctuate. This implies that the compositig{(o) can be
described in Sec. IV. In Sec. V, it is shown how scalingynqwn only after the simulation has been performed. Be-
properties of the system can be applied to greatly improve, se the total number of particles is fixed the chemical po-
the accuracy of the simulations. The simulation results arg, ia| of the referencg( o) still has to be computed. Once
discussed in Sec. VI. The existence of a terminal polydispery js jetermined, the entire chemical potential distribution is

sity raises questions of continuity of the fluid and solid, 0 The method is therefore well suited for phase equi-
states; we show in Sec. VIl how this issue may be resolVeqp g in continuous mixtures: for a given temperature and
Concluding remarks are presented in Sec. VII. distribution in chemical potential differences one needs to
match only the values of the pressure and the reference
chemical potential in both phases. This is far simpler than
matching the entire distributiop (o) in the canonical way.
The most straightforward approximation to a continuous We are interested in determining the influence of polydis-
mixture is based in the canonical ensemble and thus takespersity on the hard sphere fluid-solid transition. Although the
finite sample from a distribution of diametep§o). How-  composition distribution and hence the polydispersity cannot
ever, this approach is sensitive to finite size effects andpe imposed directly, it can be expected that its form will be
moreover, it is not practical when phase equilibria are conmuch like that of the imposed activity-ratio distribution
sidered as it is difficult to ensure chemical potential equili-efl#(?)~#(70)]1 [21]. Therefore we choose the following qua-
bration of each component. A better choice is a grand cadratic form for the chemical potential difference function
nonical simulation in which particles of different species are
inserted and removed according to the configurational energy Blu(0) = u(oo)]=—(o—00)%2v, (©)]
and theimposedchemical potential of that component. In | ) ) ) e
this way a truly continuous distribution can be realized andVNich gives rise to a Gaussian activity distribution that peaks
phase equilibrium can be more easily treated. However, @t ¢ =90, With width v. In the limit »—0, the pure mono-
the high densities of the liquid-solid equilibrium the insertion 4iSP€rseao phase is recovered. For smallthe mixture is
probability in both phases is too low to obtain reasonablddeal and the composition will be Gaussian with the peak
statistics; further, the need to maintain the crystal structure iff€@ro0- The choice of Eq(3) convertsy from a functional
the solid makes insertions especially problematic. of () — u(ay) to afunction ofs andv. The fundamental
The semigrand ensemble provides an alternative represefieérmodynamic equation now reads
tation that combines the best features of the canonical and
grand canonical ensembles for the study of continuous mix- d(BY)=HdB+pVdP+ Bu(oo)dN—(Nm, /v)dog
tures[19,21]. A simulation in this ensemble has the total —(Nmy/2v?)d v, (4
number of particles fixed, but the species identity of each
particle is allowed to change, giving rise to a truly continu-wherem; and m, are the first and second moments of the
ous distribution. Although the chemical potentials are im-composition aboutry. The nth such moment is defined as
posed in a way similar to the grand-canonical ensemble, in-
sertion of particles is avoided, so the method is suitable for
high densities and crystalline phases.

V=GN [ p(o) ()~ o0 do=Nu(oo) (@

II. SEMIGRAND ENSEMBLE

mn:f do(o—00)"p(0). ©)
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In a semigrand Monte Carlo simulation, particles sample d[Bu(og)]=hdB+ BvdP
diameters in addition to the usual sampling of positions
within the simulation box. Diameters are sampled by select-
ing a particle at random, changing its diameter by a small
amount, and accepting with probability in accord with the

—f p(o) Bl (o) —u(oo)]do.  (8)

Metropolis algorithm. Details may be found [j&0]. Using the same procedure as for the derivation of(Bgwe
obtain
lll. GIBBS-DUHEM INTEGRATION d[Bu(og)]=hdB+ BvdP—(m;/v)doy— (m2/2vz)dvi9)

Evaluation of the hard-sphere fluid-solid coexistence line
as a function of polydispersity can be done by application ofTo ensure phase equilibriungu (o) and the chemical po-
the Gibbs-Duhem integration method recently developed byential difference function given in E43) must be the same
one of the authorEl8]. In this method two phases are simu- in the two phases. The latter requirement is fulfilled simply
lated simultaneously at the same state conditions. The tecly using the same (and o) in both phases. The first re-
nique allows a series of simulations to trace a line of coexquirement results in a Clapeyron type of equation which can
istence in the plane of two state variables; for the purpose dfe derived from Eq(9) by equating the right-hand side for
describing the method let us say that these variables are thgth phases and applyirdp,=0 anddg=0.
temperature and pressure, respectively. Chemical potential
equality between the phases is ensured by starting the pro- dP Am,
cess with two known equilibrium phases, and subsequently (a) = m
applying thermodynamic integration to select the appropriate
pressure while the temperature is varied from one simulatiojye can integrate in theR|, ») plane by measuring the second
to the next _in the series. The i_ntegration path may be deriveghoment of the composition distributiom, and the molar
from the Gibbs-Duhem equation volumew in both phases and applying the predictor-corrector

scheme described above.

(10

d(Bp)=hdB+pudP, © IV. THE INITIAL SLOPE
The starting point we use for the Gibbs-Duhem integra-
whereh=H/N andv =V/N are the molar enthalpy and vol- tion is the well known freezing point of monodisperse hard
ume, respectively. For two coexisting phases to remain iphereq2,3]. However, the initial slope at=0 given by
equilibrium when the temperature is changed, the pressurgq.(10) is not known here. Moreover, it cannot be calculated
must vary in a way that maintains chemical potential equalitydirectly in a simulation because both, and v are equal to
between them. The required change can be derived from Egero in the monodisperse limit, although the ratig/v is
(6) expected to be finite.
The second momenth, can be calculated if the compo-

sition p(o) is known. The composition in turn is related to

(dP> Ah the chemical potential by

)~ Bv "

Bu(a)=ul+ Inp(a)+ Bu, (o), (12)

where A indicates a difference between the two phasesWhere u® is a collection of terms taken as independent of
Equation (7) is known as the Clapeyron equation. It is a @ andBu.(o) is the residual chemical potential. With Eqg.
simple first-order differential equation which can be inte-(3), the chemical potential difference function can now be
grated using a predictor-corrector scheme. The “initial con-Written as

dition” is a known point at the coexistence line in the o(c) ( )2

(T,P) plane. By simulating the two coexisting phases simul- _ g _ o™ 09

taneously at the equilibrium pressure and evaluating the pAu(o)= Inp(ao)+'BA’ur(0) 2v (12
right-hand side of Eq(7), one can predict the pressure at

another temperature not far away. Simulation at thiand  or

T yields new values ofAh and Av, which can be used to

correct the predicted pressure while the simulation continues p(o)~exd — (o—00)%(2v)— BAu, ()] (13

to proceed. The process is then repeated to get the next

(T,P) coexistence state point. Details of the method may bédere,A u, (o) = u, (o) — u(079) is the difference in residual
found elsewherg18,22. In the case of polydisperse hard chemical potential between a particle with diameteand a
spheres we do not need the temperature as an independgatrticle of the reference component. This difference can be
variable, but instead we need a measure for the polydispemeasured in a simulation of a pusg substance by perform-
sity. An obvious choice i®, as it occurs in the fundamental ing “test enlargements,” in which a randomly chosen par-
Eq. (4). The Gibbs-Duhem equation for polydisperse mix-ticle is enlarged from diameter, to a random diameter.
tures can be derived by combinig= u (o) N with Eq. (2) One tabulates the frequency with which such moves result in
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no overlap, although the moves themselves are never ac- s 3

cepted. This overlap probability yields the residual chemical P._.-=exg BP(L"*—L%)—3NIn(L'/L)

potential according to

1w - 1o -~
BAu () =—In(exd — BAU(sg—0)]), (14 52 (L' =00’ o2 (Fil—00)?),

where the brackets indicate the ensemble average; (19

exp(—BAU) is zero or unity, respectively, corresponding to \yhereL is the length of the cubic box with volumé=L3

the absence or presence of overlap. This “ghost-growing”’angq 7,=¢,/L are the scaled diameters. Although this
procedure is very similar to the Widom “ghost” particle method will produce better results, we can improve the
insertion techniqu§23]. In practice we tabulate the distance gcheme even more by scaling both the diameters and the
from a randomly selected particle to its nearest neighbor; thigordinates, thereby permittiigear) analytic evaluation of
histogram of nearest distances is then easily converted intg,e yolume integral. Consider the configurational part of the

the overlap histogram just described. _ _ isobaric semigrand partition function
For small values ofr— o the measured residual chemi-

cal potential might be approximated by a quadratic function 1 1

Y=g der do-Nf dVexp — BPV+ ZE (o—00)?
H I

—BAu(0)=a1(o—0ag) +ay(o— o) (15)

—BU(rN, oMy |. (20)

Substituting this in Eq(13) results in the composition

If we now introduce scaled coordinates and diameters

p(0)=CeXF{al(U—Uo)+ a,— 2_11/ (c—00)?|, (16) tsi=ri /L ando; as above the partition function can be writ-
en as

whereC is independent of— oy. Becaus@(o) is a Gauss- Y:f dSNJ d;Ne—guaN:}“)f dL3L*Nexd — gPL3

ian function, the desired second moment of the composition

m, can be analytically obtained 1
5,2 (@L-00)?

_ 1+a2/(1/V_2a2)
M= 1hv—2a,)

~v+(as+2ay)1?  (17)
= f dsN J doNe AU WG, (21)

The latter approximation is correct to the second order in

v. The initial slope can now be written as The outermost two integrals do not contain any volume
dependence. Moreover, the “weighting function®/(oN)
defined here can be evaluated entirely at every Monte Carlo

A Eai%— a, move. In this way, there is no need for volume sampling at
(d_P) _ Am, _ 2 (18) all. Instead, at every move we obtain the average volume by
dv/ _, 2v°BAv BAv evaluating
1,2 ; H 1 4N+5 3 1 -~ 2
where A[(3a7+a,)] is the difference between the coeffi- dLL exg —BPL +2—VEi(aiL—ao)

cient expressions evaluated in both phases. In sum, we mea-
sure the residual chemical potential in a simulation of a pure
hard-sphere system using Ed4), we fit it to a quadratic
function for smallo— oy and use the coefficients in E({.8)

to obtain the initial slope for the Gibbs-Duhem integration. In this scaling method there are only two kinds of Monte
Carlo moves: the regular particle displacements and the di-
ameter changes. Both changes are made in the scaled vari-
ables. The acceptance probabilities are

(22

1. -
J dLL4N+2exp[ —BPL3+ 2—V§)i(a'iL—(To)2

V. SCALING

Application of a standard Monte Carlo algorithm yielded
very poor statistics. This outcome is probably caused by the p
inability of the volume to adjust quickly to particle diameter si—s] oi=¢ W)’
changes, and vice versa. A remedy might be to introduce a (23)
combined volume and diameter-change Monte Carlo step:
while reducing the volume by a factar, we reduce all di- whereAU(sN,V) is the change in potential energy associ-
ameters by a factow*’3. In addition to more directly cou- ated with the move. If a particle’s diameter is changed the
pling the diameter and volume changes, this move is appeaintegral W(o"\) must be reevaluated. Because the exponen-
ing because it requires no overlap test. The acceptandal in the integral is a cubic polynomial this cannot be done
probability for this combined move is analytically. However, if we write the integral as

-~
—e AP po :efﬁAwsN,‘&“)W(Ui
I
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o FIG. 1. Solid-fluid coexistence pressure as a

E function of variance of the imposed activity dis-

@ tribution. In the inset the pressure is reduced to
100 Pv3/a3 to show the limiting behavior.

0.000 0.002 0.004 0.006

v/cso2
~N 00 v/o-(2,=0 at infinite pressure. In the inset of Fig. 1 we rescale
W(a ):Cf dxe (24 the pressure t®=BP 1%/ a3, which remains finite and fol-

_ . _ lows a straight line a®—o,v/c3—0. The fact thatP is
we can approximate it accurately by applying the method ofinjte in this limit actually allows us to perform simulations
steepest descent. Replacing the functi¢r) by a second-  at infinite pressure as will be discussed in the next section.
order Taylor expansion around the maximumf¢X) yields The divergence of the pressure is somewhat misleading.
) The pressure indeed goes to infinity on a scale characterized
g7 (X—Xman)2 by o, but when reduced instead by the volume or an aver-
Ix* ma age diameter it remains bounded. In fact, in this limi
Xmax loses its relevance as a length scale because all particle di-
12 ameters are going to values much smaller thgn Scaling
(25) by an average diametéor the volume makes the interpre-
tation of the results more intuitive because in experiments
the important microscopic length scale is the characteristic
This approximation is possible because the functi¢r) particle diameter. Consequently, in most of what follows we

(being proportional to\) is sharply peaked about its maxi- present our re_sults i.n terms ©F) (where the angle brackets
mum. indicate an isobaric semigrand ensemble averay¥e

choose arbitrarily to uséo) of the solid to perform the
reduction; we could just as well have used the fluid value.
We will continue to refer to the limit of infinite pressure
We performed a Gibbs-Duhem integration in the, ¢) because this represents a limiting behavior of our isobaric
plane starting with an fcc solid and a fluid at the monodis-semigrand system. It should be understood that in this case
perse hard-sphere freezing point. Both systems consisted #fe pressure is infinite on the, scale but not on, say, the
256 particles and were well equilibrated. Using the ghost{c) scale.
growing method of Sec. IV in combination with EG.8) we Although the parameter shows a maximum as a func-
found an initial slope oflP/dv=1400(+50) (in units such tion of P, the real polydispersity—given in terms of the
that 8 and o are unity. This value was used in the first width of the composition distributiop(o)—does not. This
predictor step to go fromv=0 to finite », where the slope polydispersitys is defined as
could be directly measured. We evaluated the coexistence
line by gradually increasing’ from one simulation to the @
next while integrating Eq(10) to determine the pressure. In
Fig. 1 the equilibrium pressure is shown as a function of the
polydispersity parameter. The slope starts off at a value of In Fig. 2 the reduced pressugP(o)3,,, is plotted against
dP/dv=1400 as we obtained from E§18) and increases the polydispersitys in both the fluid and the solid. The equi-
when v is increased. At a value 0f/o§=0.0056 the slope librium pressure increases monotonically until at infinite
becomes infinite, so we had to invert the integration, takingoressure a limiting value of and 8P{c)® is reached. From
P as the independent variable. In this case, we can calculatgis plot it becomes immediately clear that the polydispersity
v(P) for increasing values oP by applying the same inte- of the fluid and the solid at equilibrium can be very different.
gration scheme to the reciprocal of Eq.0). Surprisingly, As reviewed in the Introduction, this fact, although antici-
the equilibrium curve continues to bend back, approachingated, was discounted in previous studies.

- 1
W(aN):cf dxexp{ f(Xmax) + 5

§?f\ 71
—2'77( 0_'7)
X

zcef<xmax)

X

max

VI. RESULTS

—1. (26)
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25.0 .
;"H FIG. 2. Coexistence pressure of the sdl&ft
& curve and the fluid(right curve as a function of
P the width of the composition distribution, the
»' polydispersitys.
10'%.oo 0.05 0.10 0.15

It is convenient to choose a density variabjegiven in  sities no more than 5.7%, yet crystallization is possible in
terms of the real volume fraction, because this is the quantitfluids of polydispersity up to 12% provided one allows for
one measures in experiments. We deﬁner(o3>/(6\/); fractionation in the phase separation process. This is consis-
note thatn=0.7405 for monodisperse close packed spheregent with Pusey’s experimenf$1] in which he observed that
The phase diagram in they(s) plane is shown in Fig. 3. dispersions with a polydispersity of 7.5% would freeze,
Because the polydispersity variable is not linearly additive while those with a polydispersity of 12% did not. The DFT
the tie lines are curved. Coexisting fluid and solid hardstudies which reported a terminal polydispersity of 5-7 %
spheres will mix to density-polydispersity values given byare also consistent with our results given their use of the
the lines(the converse is not necessarily true, as there areonstrained eutectic, which precludes fractionation.
many compositions possible for a particuigrand an arbi- In Fig. 4, we plot the number densityn units of the
trary one may not split exactly to the coexisting phases comaverage diametgas a function o. This plot illustrates the
puted for the diagrajn The most remarkable feature of the counterintuitive result that the fluid density may adopt values
diagram is the fact that the fluid-solid equilibrium suddenly greater than that in the solid phase. At the point where both
ends. This is generally consistent with the prediction anddensities are equal th&v term in Eq.(10) switches signs
observation of a terminal polydispersity reported in studiesand becomes negative, which gives rise to the maximum of
on crystallization of polydisperse hard sphefdd,17,16 v(P) seen in Fig. 1. Of course, the fluid is able to take on
and reviewed in the Introduction. In particular, the consensuarger densities than the solid only because it is composed of
of a terminal polydispersity in the range of 5%—12% is ex-particles of smaller diameter.
plained by our results. According to our phase diagram, the The composition distributions of the fluid and the solid
fcc solid phase is thermodynamically stable for polydisperphases are displayed in Fig. 5 for four values of the coexist-

0.65

FIG. 3. Phase diagram in the plane of volume
fraction and polydispersity. Coexisting phases are
joined by tie lines, which are not straight because
the polydispersity is not an additive variable. The
circles represent the end points of the coexistence
region at,BPog—mo, i.e., the terminal polydis-
persity.

= 0.55
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0.45 . ’
0.00 0.05 0.10 0.15
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1.20 T

1.10

FIG. 4. Phase diagram in the plane of reduced

=]

o E number density and polydispersity. Coexisting
é phases are joined by tie lines, which although
Ky curved in reality are rendered straight in this fig-

1.00 ure.
0.90 : >
0.00 0.05 0.10 0.15
S

ence pressure. For a monodisperse equilibrioat shown in  in the two phases the (rescaledl composition distributions
the figure$ the distributions in both phases would be equalare still near-Gaussian with a finite widifon a scale of

to the imposed activity, which is & function atoy. As the  (o)). This curious outcome is a result of the limiting process
equilibrium pressuréor equivalently the value of) is in-  in which BPo3— while v/03—0.

creased, the composition distributions depart from the ideal As the distributions are shifted to a lower diameter at a
activity. Although still almost Gaussian, they are shifted con-high pressure, the precise shape of the imposed activity dis-
siderably to lower values ofr. The average diameter is tribution becomes less important ang,, as discussed
smaller in the fluid, whereas the solid composition is locatedhbove, becomes irrelevant. In Figchthe chemical potential

at larger diameters and is more narrowly distributed. Thedifference function, the logarithm of the activity, is nearly a
difference between the phases becomes more pronouncedsataight line; it becomes exactly a straight line in the infinite
higher pressures. At infinite pressure, all diameters go to zerpressure limit. This property enables us to perform simula-
on the scale ofr,. Interesting distributions can be recoveredtions in the limit of BPog— .

by proper scaling of the diameters by their average, as pre-
sented in Fig. &). The fluid distribution is much broader
than the solid one, in accord with the larger polydispersity
s we encountered above. Although the valrz/erg has de- The existence of the terminal polydispersity suggests the
creased to zero in this lim{and of course has the same value possibility of constructing a continuous path from the solid

VII. THE INFINITE PRESSURE LIMIT

FIG. 5. Composition distributionp(o) for
fluid-solid equilibrium at different pressures. In
the figures, the leftmost solid curve represents the
fluid composition, the rightmost one the solid
phase composition(@) p(o) for BPo3=15. The
dotted curve is the impose@aussiah activity
‘ [ S distribution. (b) p(o) for BPa3=100. The dot-
olo 120 0.00 0.50 e ® 150 ted curve is the impose@aussiaj activity dis-

o ? tribution. (c) p(o) for BPa3=6400. The dotted
d line denotes the imposed chemical potential dif-
ference function, which is becoming straight at
high BP. (d) p(ooo/v) for BPos—o. In this
limit the diameter are pushed to zero. By dividing
them byw/o they remain finite. The dotted line
denotes the imposed chemical potential differ-
ence function.

; s
0.00 0.10 0.20 030 0 20 40 60 80
o/o, G o)V
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TABLE |. Polydispersities, densities, and volume fractions of W(}N) and imposing the reduced pressﬁeThis limiting
the solid fluid equilibrium atBPag—m. The subscript numbers  giate is governed by two length scales, namﬂ?xfl’?’ and
indicate the error in the last digd. vloy. The pressurggP drives the diameters to smaller val-
ues whereas/ o drives them to large ondsry/v is equal

Solid Fluid to the now-constant slope afu(o) as is shown in Fig.
s 0.0567%; 0.1178, 5(d)]. The ratio of these two lengths, as expressed Rija
()i 1.113% 1.1663 represents the balance between the two forces.
7 0.5884 0.5468; The reduced coexistence pressure can be obtained from

extrapolation ofP to v/ag = 0 as suggested by Fig. 1. The

to fluid without going through a first-order phase transition.equ”!brlum d-ensmes.ar.ld "°'3“me fracUops of the solid-fluid
oexistence in the limilBPoy—> are displayed as open

We do not expect such a process to be realizable in generﬁ, N . . )
and in this section we show that it is indeed not possible irfIrcles in Figs. 4 and 3, respectively and are given in Table .

the context of our system. The explanation lies in the infinite3€cause these equilibrium points are at infinite pressure,
pressure limiting behavior of the model in the isobaric semithese are really the end points of the phase coexistence. For
grand ensemble. the choice of the chemical potential distribution given by Eq.

Consider the partition function of E¢21) (3), there is no fluid-solid phase transition at higher polydis-
persities, volume fractions or densities.
N UMD This method makes it possible to address the question of
Y:f dSNf doe AU )f dL3L4Nex;{—,8PL3 solid-fluid phase continuity posed above: given that the co-
existence region terminates abruptly, why is it not possible to
go from the solid to the fluid via a continuous path in the
. 27 (»,s) plane, that is, without encountering a first-order phase
transition? The answer is made clear by simulations at other,
In the limit of BPog— o the volume and hence the length off-coexistence values of the reduced pressur&he results

L will go to zero. The quadratic term ib in the exponent &€ included_ in Fig. 6. The curve bounding the solid r_egion
vanishes in this limit, whereas thePL3 and theLo,/y  [TOM monodisperse close packing<0,7=1) to the solid-
terms remain finite. This is equivalent to the observation thaflUid coexistence represents the infinite pressure line; a simi-
the chemical potential difference function is becoming al@r curve is shown for the fluid phasiet us call these curves
straight line. If we define a new, always finite, parameterthe “P lines”). The P lines provide an upper limit, above

x=Lo,/v and introduceP defined above, the limiting par- which the system cannot be compressed. This upper bound
tition function can be written as implies that it is not possible to go from the solid to the fluid

avoiding a first-order transition.

Although all semigrand® states are of infinite pressure,
the P line does not correspond to close-packed states one
would achieve in a canonical ensemble. The linear chemical
2 E-)x potential that arises in the infinite pressure limit is incapable

= 7l of producing the tight packing one normally associates with
infinite pressurg(i.e., in a fixed-composition ensemhldn
We can conduct simulations in the infinite pressure limit byorder to determine the maximum volume fractigg of the
using the integral overx as the “weighting function” solid phase as a function of polydispersity, we performed

1
— ey 2
5,2 (@iL=00)

Ych dst d'&Ne*ﬁU(SNT‘}“)I dxx“Nexp{ —Px8

+ . (28

FIG. 6. Phase diagram of polydisperse hard
spheres in the)-s plane. The coexistence region
is as in Fig. 3. The curve joining the terminal
solid-phase coexistence point to tse 0 closed-
packed limit is the solid-phase line (see tex,
while that emanating from the liquid-phase termi-
nus is the quuid-phzisé line. The solid line
above the solid-phase line describes the pack-
ing fractions obtained from the fixed-composition
compressions described in the text. Fluid-phase
random close packing obtain by Schaertl and
Sillescu[25] is described by the dashed curve.

0.4 1 I 1
0.00 0.05 0.10 0.15 0.20
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FIG. 7. Behavior of polydisperse hard spheres

in the »-s plane. Phase diagrank, lines, and

. random-close packing curves from Fig. 6 are in-
. cluded. Fluid-phase curves according to the Man-

soori et al. [24] equation of state are presented

for chemical potential distributions lineédotted

curve, quadratiodashed curve and cubidsolid

S curve in the sphere diameter. The three lines

02 r T ) Y i converge at the infinitely polydisperse limit, for

R \;/ which a Monte Carlo daturf26] is indicated.

FLUID

0.0 . ; .
0.0 0.2 0.4 0.6 0.8

simulations starting with a configuration obtained by semi-as well as at the infinitely polydisperse limit; however, one
grand simulation at th® line and compressing at fixed com- would not expect the equation to apply at conditions appro-
position until every particle was constrained by its neighborspriate to random close packing, so we cannot describe this
The maximum volume fractiory, so obtained was averaged limit in the present analysigijii) the c; line is terminated at
over ten different starting configurations with a different di- a point (c;/8P=0.507) where the computed composition—
ameter distribution snapshot. These averaggdas a func-  which is an exponential of a cubic polynomial in
tion of polydispersity are included in Fig. 6. It is immedi- ,—diverges because the coefficient of the cubic term be-
ately clear that there is a large difference between th@omes positive(the ¢, and ¢, lines are terminated on the
semigrandP curve and the canonical results fgg, . Simu-  figure at arbitrary points

lations of larger systems indicate that this is not a finite-size
effect. The explanation is that the imposed linear chemical
potential difference function in the semigrand simulations is
simply not the one that produces the maximum volume frac-
tion 7y . To remove the difference between the canonical ] ) ) ) )
and semigrand picture one could study other forms of We have esta_bllshed a solid-fluid coexistence region for a
Au(o). In the fluid phase there is also a fixed-compositionSystem of polydisperse hard spheres with near-Gaussian di-
maximum volume fraction boundary: the random close packameter distributions, as a function of polydispersity. Our ap-
ing volume fractionygcp. Schaertl and Sillescg25] have ~ proach employs simulation in the isobaric semigrand en-
studied 7rcp @s a function of polydispersity. Their results Semble with a Gaussian activity distribution. Gibbs-Duhem
are included in Fig. 6. The difference between the semigranihtegration is used to trace the coexistence pressure as a
P curve and theprcp curve is increasing with polydisper- function of the variance of the imposed activity distribution.
sity. As in the solid case, this difference can be reduced by'he Gibbs-Duhem integration is initiated with a monodis-
choosing other forms of the chemical potential distributionperse hard-sphere fluid and fcc solid, and throughout the in-
function. We demonstrate this via application of the hard-tegration process the solid remains in an fcc structure. We do
sphere mixture equation of state of Mansoetial. [24],  not explore the possibility of a polymorphic transition in the
which is applicable to the fluid phase only. In Fig. 7, we plot 5gjig.

the packing fraction versus polydispersity according to this ot the fluid-solid coexistence densities and volume
equation of state, for the linear chemical potential distribu+,.tions are monotonically increasing functions of the poly-
tion used in the simulations, and for distributions that are; it hich is ai in t f the standard devia-
quadratic or cubic in the sphere diameter ISPETSItys, Which 1S given In terms ot the standard devia
tion in the particle diameter distribution function. The vol-
BAu(o)=ci0+Cr0%+Cz0°, (29 ume change at the freezing transition decreases as a function
of s and eventually takes on negative values, which implies
where we have examined cases in which only one othat the number density of the fluid phase is greater than that
C1, Cy, andcg is nonzero. The figure simply shows how of the solid. However, the packing fraction of the fluid re-
other chemical potential forms can give rise to larger densimains always less than that of the coexisting solid phase.
ties than the “infinite pressure” results studied here. WeConnected to this is the observation of significant fraction-
note several pointgi) the case where;=c,=c3=0 results  ation between the two phases, which permits the fluid phase
in a so-called infinitely polydisperse mixtuf@6], at which  to comprise particles of a smaller average diameter.
$=0.7414 andn=0.104; this situation arises d&&—x; (ii) Significantly, we observe a terminal polydispersity, i.e., a
the Mansoori equation agrees very well with the Montepolydispersity above which there can be no fluid-solid coex-
Carlo data we have taken at and near the freezing transitioistence. This terminus arises quite naturally as the Gibbs-

VIIl. CONCLUSIONS
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Duhem integration path leads the pressure to infinity. Thepolydispersity exists is generally correct and that it is of the

existence of this terminus only at infinite pressure precludesrder of 5% in the solid and 12% in the fluid. However, we

the construction of a continuous path from the solid to thehave not examined the sensitivity of the terminal polydisper-

fluid. While it was anticipated in previous studies that such asity to variation in the chemical potential distribution func-

continuous path could not be constructed, the issue was ntibn (and thus the compositipnit seems likely that the ter-

addressed as fully as we are able to here. minal polydispersity would not be very sensitive to details of
At the terminus the polydispersity is 5.7% for the solid composition, and as our distributions are near Gaussian we

and 11.8% for the fluid while the volume fractions are expect our conclusions to be generally valid.

0.588 and 0.547 for the solid and fluid, respectively. Large

frz_icuonanon observe_d at moderate vaIues;@F.0.05).|m— ACKNOWLEDGMENTS
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