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We present a molecular-dynamics study of the self-dynamics of water molecules in deeply supercooled
liquid states. We find that the decay of single-particle dynamics correlation functions is characterized by a fast
initial relaxation toward a plateau and by a region of self-similar dynamics, followed at late times by a
stretched exponential decay. We interpret such results in the framework of the mode-coupling theory for
supercooled liquids. We relate the apparent anomalies of the transport coefficients in water on lowering the
temperature to the formation of cages and to the associated slow dynamics resulting from the presence of
long-lived molecular cages. The so-called critical Angell temperature in supercooled water could thus be
interpreted as kinetic glass transition temperature, relaxing the need of a thermodynamic singularity for the
explanation of the anomalies of liquid water.@S1063-651X~96!09512-8#

PACS number~s!: 61.20.Ja, 64.70.Pf

I. INTRODUCTION

The behavior of liquid water on supercooling has been the
subject of a long-standing scientific debate for the past 30
years@1–3#. It has been found that there are anomalous in-
creases of thermodynamic quantities and apparent diver-
gences of dynamic quantities on approaching a singular but
experimentally unaccessible temperatureTs of about 227 K
at ambient pressure. This discovery has stimulated an enor-
mous amount of experimental, theoretical, and computa-
tional work in an attempt to clarify the origin of the singu-
larity. A recent detailed review of all these works can be
found in Ref.@3#.

In the past five years, efforts have been directed at eluci-
dating possible thermodynamic scenarios compatible with
the trend of experimental data. The pronounced increases in
isothermal compressibility, isobaric heat capacity, and the
change of sign of the thermal expansion coefficient of liquid
water upon supercooling can result from three possible
causes:~i! the existence of a continuous, retracing spinodal
curve bounding the superheated, stretched, and supercooled
states of liquid water@4–6#; ~ii ! the existence of a meta-
stable, low-temperature critical point@6,7#; or ~iii ! the pro-
gressive increase of four hydrogen-bonded~HB! coordinated
water molecules, favorable in terms of the low energy of this
state, but unfavorable in terms of the high local volume and
the low orientational entropy@8,9#.

While the phase behavior of supercooled water has been
debated extensively, not much attention has been devoted so
far to dynamics near the apparent singular temperature.
Computation of long-time behavior of dynamical quantities
could be very valuable. Therefore, it is timely to make an
effort in the direction of understanding the origin of the ap-
parent divergences of transport coefficients in water on su-
percooling. In particular, if the dynamics could be rational-
ized without resorting to an underlying thermodynamics
singularity, then the possibility of a singularity-free picture
capable of explaining satisfactorily the behavior of thermo-
dynamic quantities would be reinforced@9#.

Already in the late 1980s, Prielmeieret al. @10#, based on
NMR measurements and fitting of the self-diffusion constant
in supercooled water, and Angell@11# commented on the
possible relationship between the power-law temperature de-
pendence of transport coefficients in water and the predic-
tions of mode-coupling theory~MCT! @12# for the glass tran-
sition in supercooled liquids. More recently, the translational
region of Raman spectra of water has been interpreted in
terms of scaling behavior predicted by MCT@13#. Today,
due to the availability of sufficient computational power and
the extensive development of MCT@14#, such suggestions as
to the connection between the existence of a kinetic glass
transition temperature and the divergence of the transport
coefficients in water can be carefully examined.

In this paper we aim to test MCT predictions for the cor-
relation functions of single-particle dynamics in water with
corresponding quantities calculated from molecular-
dynamics~MD! simulations, carried out for sufficiently long
time as to allow the slow dynamics to be observed. In doing
so, we try to assess to what extent the MCT, which has been
shown to describe simple liquids@15,16#, is applicable also
to the description of the single-particle dynamics of super-
cooled water, a hydrogen bonded liquid with strong noniso-
tropic interactions among molecules. A brief report in this
direction has already been published@17#.

The paper is organized as follows. In Sec. II we briefly
recall the predictions of MCT. In Sec. III we discuss in detail
the MD simulations performed and the potential used. Sec-
tion IV is divided into subsections where we present the
numerical results for correlation functions in time domains
and we discuss the rotational motion. Specifically, we com-
pute and compare the results of the mean-squared displace-
ment, the Van Hove space-time self-correlation function, the
intermediate scattering function, and the angular correla-
tions. In Sec. V we summarize our conclusions.

II. MODE-COUPLING THEORY
FOR SUPERCOOLED LIQUIDS

In this section we summarize the predictions of MCT rel-
evant for interpreting our MD simulation data. Our discus-
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sion emphasizes the results of the so-called idealized MCT
@14#, in which hopping effects are neglected. In contrast to
the MCT for critical phenomena@18#, the emphasis of the
MCT theory for the supercooled dense liquids is on distances
comparable to the interparticle distance, or in Fourier space,
for Q vectors close to the first maximumQmax of the struc-
ture factorS(Q). Therefore, theQ dependence of the dy-
namics quantities aroundQmax is of interest.

MCT for supercooled liquids is a theory that takes into
account the cage effect@19#, which is associated with a tran-
sient trapping of molecules on lowering the temperature or
on increasing the density. The microscopic density fluctua-
tions of locally disordered high-temperature and low-density
fluids tend to relax rapidly on the time scale of a few pico-
seconds. Upon lowering the temperature or increasing the
density of the liquid, there is a rapid increase in the local
order surrounding the particle, leading to a substantial in-
crease of the structural relaxation time. In the supercooled or
dense liquid regime a trapped particle in a cage can migrate
only through rearrangement of a large number of particle
surrounding it. In this sense there is a strong coupling be-
tween the single-particle motion and the density fluctuations
of the fluid. According to MCT, static density fluctuations
@i.e., S(Q)# completely determine the long-time dynamical
behavior.

MCT predicts the evolution of any correlator that has a
nonzero overlap with density@20#, such as, e.g., the density
itself, the current density, and the tagged particle density. In
the following we will denote such a generic correlator as
fQ(t). The evolution offQ(t) is controlled by a retarded
memory function, a nonlinear functional of the density. The
idealized MCT predicts that on moving along a path in the
pressure-temperature plane, a lineTc(P) is crossed on which
fQ(`) no longer decays to zero. Such a line defines the
locus of the ideal ergodic to nonergodic transition. This line
separates the liquid and the glass regions. On the liquid side,
the system is ergodic and limt→`fQ(t)50. Close to the line,
on the liquid side,fQ(t) has a two step relaxation behavior
displaying a fast and a slow decay. The two relaxation times
become more and more separated on a time scale on ap-
proaching the line. When the fast process decays,fQ(t)
reaches a plateau valuef Q

c the so-called nonergodicity pa-
rameter. Only after the second relaxation is completed,
fQ(t) relaxes to zero. The time interval in which the corre-
lation function is close to the plateauf Q

c is called the
b-relaxation region, while the long-time region is called the
a-relaxation region. Theb-relaxation region is centered
around a timets , which increases on decreasing the distance
s from the critical line in the pressure-temperature plane. In
particular, approaching the ideal glass transition line along
an isobaric path, using the temperature as an external driving
parameter, the distances can be measured byT2Tc(P).

The idealized MCT predicts the dependence ons of ts
and the functional form of the decay offQ(t) in the
b-relaxation region. It states that~i! ts scales inusu as

ts5t0usu21/2a, ~1!

where t0 is a characteristic microscopic time;~ii ! the ap-
proach to the plateau is described, in leading order in time,
by a power law with exponenta,

fQ~ t !2 f Q
c 5BQusu1/2~ ts /t !a5BQ~ t/t0!

2a; ~2!

and ~iii ! on the liquid side of the phase diagram,fQ(t) de-
parts from the plateau valuef Q

c as a power law with expo-
nentb,

fQ~ t !2 f Q
c 52CQusu1/2~ t/ts!b52CQ~ t/t!b, ~3!

where

t5t0usu2~1/2b11/2a!. ~4!

Expression~3! is the leading term in the expansion in powers
of tb. The leading term@Eq. ~3!# is often called the von
Schweidler law and its region of validity is often rather lim-
ited @21#.

The constantsf Q
c , BQ , andCQ in Eqs. ~2! and ~3! are

T independent, while the exponentsa and b are T andQ
independent. In real space, Eqs.~2! and ~3! express the pre-
dictions of a separation of space and time. Any space-
dependent correlation functionf(r ,t) in theb region can be
expressed as

f~r ,t !5F~r !1H~r !G~ t !, ~5!

whereG(t) is proportional tot2a or tb, depending on the
time scale, andF(r ) and H(r ) are related to the Fourier
transform off Q

c , andBQ or CQ , respectively.
The exponentsa andb are connected and both depend on

the specific point on the transition line crossed on moving
the system along theP-T plane. For example, cooling the
system along different isobars will produce crossing of the
transition line in different points, which will in the end imply
different values for thea andb exponents.a can be related
to b by the transcendental equation

@G~12a!#2

G~122a!
5

@G~11b!#2

G~112b!
, ~6!

where G is the gamma function and 0,a<0.5 and
0,b<1.

Equation ~3! describes the region wherefQ(t)2 f Q
c is

small. It states that curves for different values ofs can be
scaled onto a single master curve if plotted as a function of
t/t. MCT predicts that the dependence offQ on the scaled
time t/t is valid also in thea-relaxation regime. In other
words,fQ(t) does not depend onT and P explicitly, but
only via the P and T dependence oft. Thus one single
master curve describes entirely thea-relaxation regime. It
has been shown numerically that the shape of the master
curve in thea region is, within MCT, well represented by a
stretched exponential forme2(t/t)b. t plays the role of rel-
evant time in the system and diverges@see Eq.~4!# on ap-
proaching the transition line with a powerg,

g5
1

2a
1

1

2b
. ~7!

All characteristic times in the system are predicted to be
proportional tot. Thus MCT predicts that the inverse diffu-
sion coefficientD21 diverges asusu2g.
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We note in passing that Eqs.~6! and ~7! relate the expo-
nentsa, b, andg. Thus only one of these three exponent is
truly independent. In contrast to critical phenomena, the val-
ues ofa, b, or g are not universal and depend on the specific
point of the transition line approached, i.e., onTc(P). In
particular, along an isobaric path,D goes like (T2Tc)

g. Fig-
ure 1 shows the dependence ofg on b as predicted by MCT.

The idealized version of MCT deals with nonlinear inter-
actions of density fluctuations leading to a cage effect with a
tendency to produce an ideal glass state and results in a static
random configuration. The ideal MCT theory can be for-
mally extended to include also interactions between density
fluctuations and currents, leading to relaxation via phonon-
assisted hopping, i.e., via jumps over almost static potential
barriers @22#. The so-called hopping effects smear out the
ideal glass transition and allow for relaxation of density fluc-
tuations below the ideal glass line. Under certain conditions,
the relaxation times cross from a power-law behavior to an
activated Arrhenius behavior. As we show in the following,
hopping effects are not observed in our simulations even at
the lowest temperature, suggesting that it is appropriate to
compare the low-T dynamics of our system with the ideal-
ized version of MCT.

In this paper we focus on the comparison between our
MD data and MCT. For this reason we do not compare our
data with other~more heuristic! theories for supercooled liq-
uids based on assumptions on the microscopic self-molecule
dynamics, such as the so-called trapping model@23#. We
only note that an ideal kinetic glass transition is also pre-
dicted by this theory@24#.

III. COMPUTER SIMULATIONS

We have studied a system composed by 216 water mol-
ecules at constant volume. The effective potential used is the
extended simple point chargeSPC/E model@25#. This poten-
tial treats a single water molecule as a rigid set of point
masses with an OH distance of 0.1 nm and an HOH angle
equal to the tetrahedral angle 109.47°. The Coulomb charges
are placed on the atoms and their magnitudes are
qH50.4238 times the electron charge andqO522qH . Oxy-
gen atoms interact via a Lennard-Jones potential, with the

values ofs50.316 56 nm ande50.650 17 kJ mol21. The
interaction between pairs of molecules is calculated explic-
itly when their separation is less than a cutoff distancer c of
2.5s. The contribution due to Coulomb interactions beyond
r c is calculated using the reaction-field method, as described
by Steinhauser@26#. Also, the contribution of Lennard-Jones
interactions between pairs separated more thanr c is included
in the evaluation of thermodynamic properties by assuming a
uniform density beyondr c . The MD code used here to cal-
culated the SPC/E trajectories is the same as that used in Ref.
@27#, where further details are given. A heat bath has been
used to allow for heat exchange@28#. In our simulation pe-
riodic boundary conditions are used. The time step for the
integration of the molecular trajectories is 1 fs. Simulations
at low T have been started from equilibrated configurations
at higherT. Equilibration has been monitored via the time
dependence of the potential energy. In all cases the equili-
bration timeteq was longer than the time needed to enter in
the diffusive regime~see Fig. 8!, i.e., ^r 2(teq)& larger than
0.1 nm2.

The SPC/E potential has been explicitly parametrized to
reproduce also the experimental value of the self-diffusion
constant at ambient temperature and density 1 g/cm3, and it
has been widely studied in recent years@29,30#. Moreover,
this potential is able to reproduce a pressure-dependent tem-
perature of maximum density~TMD! @7,27,30#. As shown in
Ref. @30# the SPC/E 1-bar isobar is characterized by a TMD
of 235 K and a corresponding density of 1.026 g/cm3. The
240-MPa isobar is instead characterized by a TMD of about
250 K and a corresponding density of 1.000 g/cm3 @27#, in
agreement with the experimental pressure dependence of the
TMD line. We have studied the280-MPa isobar. Seven
simulations have been performed at the state points indicated
in Table I, ranging from 35° above the TMD to 45° below,
thus covering both the normal and supercooled states of wa-
ter, for time periods ranging from a few hundred picoseconds
at highT to 50 ns at the lowestT.

Densities have been chosen on the basis of trial and error
preliminary runs. The corresponding pressures for the chosen
final densities are reported in Table I. We have preferred to
work at constant volume to avoid the interference of the
dynamics of the pressure bath with the dynamics of the sys-
tem. Note also that the density dependence of the diffusion
coefficient over the small range of densities studied
(0.96620.990g/cm3) is much smaller than the temperature
dependence@31,32#.

We also present the results of a simulation carried out for
hexagonal ice at the temperature ofT5194 K with proton
disorder. We studied a box of 2.732.332.2 nm3 containing
432 water molecules interacting via the same ESPC potential
used for the simulations of liquid water. We simulated a state
point laying along the same isobar studied for liquid water,
corresponding to a density of 0.9364 g/cm3, an average po-
tential energy of the system of256.2 kJ/mol, and a pressure
of 277.7 MPa.

IV. RESULTS

In this section we present the result of our simulations.
The discussion is divided into six subsections, from A to E.

FIG. 1. Full line, relation between the diffusivity exponentg
and the von Schweidler exponentb @Eq. ~3!# according to MCT
@14#; filled circle, estimated (g,b) point for SPC/E water along the
studied isobar.
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A. Static quantities

In order to define the thermodynamic states covered in
our simulation we begin by tabulating the temperature de-
pendence of the density, potential energy, and pressure in
Fig. 2. We note that the TMD is around 24065 K for the
ESPC model along this isobar. In order to compare the simu-
lation result with some real experiments in the future we use
the TMD as a convenient reference point to measure the
temperature distance. From Fig. 2 we note that the energy
does not show any significant change of slope at smallT,
consistently with the fact that all simulations are equili-
brated. The pressure of our simulations is constant within the
error bar.

Oxygen-oxygen radial distribution functionsg(r ) for
some selected temperatures are shown in Fig. 3. The figure
shows that on cooling the system, the first peak ofg(r )
increases, the first minimum decreases, and the second peak
also increases. This illustrates the fact that the nearest- and
next-nearest-neighbor shells become more and more well de-
fined. The number of nearest neighbors, calculated by inte-
grating g(r ) up to the position of the first minimum~0.32
nm!, decreases from 4.2 at highT to almost 4 at the lowest
temperature, supporting the progressive formation of a tetra-
hedral structure around each molecule. Still, the presence of
a non-negligible population around 0.35 nm is indicative of
the presence of five~or more! coordinated molecules, whose
role in the dynamical restructuring of the HB network has
been studied previously@31#.

TheT dependence of the oxygen-oxygen partial structure
factor SOO(Q) is shown in Fig. 4. The typical splitted first
peak of water, observed via x-ray experiments@33#, is recov-
ered. As forg(r ), the peak height increases and peaks be-
come better resolved. From Figs. 3 and 4 we see that no
dramatic changes in structure happen on cooling the system;
no sign of small wave-vector~critical! density fluctuations is
observed, in agreement with previous simulations and with
the basic idea of MCT. We note also that the position of the
maximum Qmax of SOO(Q) does not change significantly
with T. Since theT dependence ofQmax is weak, we neglect
it in the following and will compare data at differentT at the
same value ofQmax518 nm21.

B. Van Hove space-time self-correlation function

Self-dynamics may be studied in greater detail by com-
puting the space-time Van Hove self-correlation function
Gs(r ,t), which describes the evolution of a test particle from
an origin. For a system ofN moleculesGs(r ,t) is defined as

Gs~r ,t !5
1

N K (
i51

N

d„r1r i~0!2r i~ t !…L . ~8!

The precise physical interpretation of the Van Hove correla-
tion function is that 4pr 2Gs(r ,t)dr is the probability of
finding a test particle at distancer from the origin at timet
given that the same particle was at the origin at timet50. In
Figs. 5~a!–5~c! we show 4pr 2Gs(r ,t) at the lowestT for
three selected groups of times. Fort,0.25 ps, the ballistic
regime @Fig. 5~a!#, Gs(r ,t) changes rapidly in time. Mol-
ecules explore more and more space as the time increases, as
shown by the progressive extension of the tails ofGs(r ,t).
For times approximately between 0.25 and 130 ps, the cage

TABLE I. Simulated state points.

T ~K! rs ~g/cm3) E ~kJ/mol! P ~MPa! D (1025cm2/s)

284.5 0.984 248.1 273611 (1.360.1)3100

258.5 0.986 250.0 276612 (5.260.5)31021

238.2 0.987 251.6 280610 (1.460.1)31021

224.0 0.984 252.6 275615 (4.460.4)31022

213.6 0.977 253.4 278614 (1.160.4)31022

209.3 0.970 253.8 299618 (5.160.9)31023

206.3 0.966 254.2 290623 (1.861.1)31023

FIG. 2. Temperature dependence of the density~top!, potential
energy~PE! ~center!, and pressure~bottom!.

FIG. 3. Radial distribution functiong(r ) for the oxygen for
three selected temperatures.
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regime@Fig. 5~b!#, Gs(r ,t) changes very slowly in time. For
time longer than 130 ps, the diffusive regime@Fig. 5~c!#, the
tails of Gs(r ,t) progressively extend in time. We note that
only at the lowest temperature and for very long times is
there evidence for a very weak double-peak structure of
Gs(r ,t), suggesting that the hopping contribution to diffu-
sion is negligible in theT range studied.

The almost time-invariantGs(r ,t) in the b region @Fig.
5~b!# contains information on the shape of the confining po-
tential. If we assume that a molecule of massM is con-
strained to move in a three-dimensional harmonic potential
Mv2r 2/2, then the stationary solution forGs(r ,t) is given by

Gs~r ,t !5S Mv2

4kBTp D 3/2e2Mv2r2/4kBT, ~9!

i.e., by a Gaussian distribution. Figure 6 shows that indeed in
the time regime betweent51 and 8 ps~the center of theb
region! Gs(x,t), the one-dimensional analog ofGs(r ,t), is
rather well represented by a Gaussian distribution in space,
corresponding to a confining potential withv514.2 ps21,
i.e., with an oscillation period of 0.44 ps. This suggests that
the motion of water molecules in the cage at lowT has a
significant harmonic character. We will return to this point in
Sec. IV C.

The intermediate region in whichGs(r ,t) is slowly
changing in time corresponds to theb-relaxation region de-
scribed by MCT. In this regime a space-time factorization is

supposed to hold@see Eq.~5!#. Figure 7 intends to compare
how this prediction of MCT is borne out in our simulated
system. In Fig. 7 we show the probability that a molecule has
moved less thanr during timet,n(r ,t)5*0

r 4pr 2Gs(r ,t)dr,
as a function of time, in theb-relaxation region, for some
selectedr values. This representation, using the integral of
Gs , is less noisy thanGs itself. We show three differentr
values, corresponding to distances close to and larger than
the size of the cage. We expect from Eq.~5! thatn(r ,t) can
be well represented by the functional formf (r )2g(r )tb.
From fitting n(r ,t) in the b region with such a functional
form, we find that the resulting exponentb has an effective
value that depends onr . It decreases on decreasingr , in
apparent disagreement with MCT. However, if we fit all
curves simultaneously with an expansion in terms oftb up to
the second~or third! order, i.e., according to

f~r ,t !' f ~r !2g~r !tb1h~r !t2b1•••, ~10!

we obtain the singler -independent valueb50.5060.05.

FIG. 4. Structure factorSOO(Q) for the oxygen for three se-
lected temperatures.

FIG. 5. Self-part of the Van Hove distribution function for the
three time regions at the lowest temperature studied:~a! t,0.2 ps,
~b! b-relaxation region 0.2,t,120 ps, and~c! a-relaxation region
t.150 ps.

FIG. 6. Symbols,Gs(x,t) for times between 1 ps and 8 ps, full
line, Gaussian function with variance 0.000 95 nm2, describing the
behavior of a molecule diffusing in a harmonic potential with
v514.2ps21 ~see the text!.

FIG. 7. n(r ,t) as a function of time for three selectedr values in
the b-relaxation region:r50.17 nm (h), r50.11 nm (s), and
r50.07 nm (L). Full lines are fit according to a third-order expan-
sion in powers oftb with b50.5 @see Eq.~10!#.
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We note also in passing that a numerical calculation of
h(r ) as proposed in Ref.@34# would instead support, within
the noise, the validity of Eq.~3!. We thus suggest the use of
n(r ) as the quantity to look at when checking Eq.~3! via
simulations. The apparent dependence of the effectiveb on
r will be discussed in more detail in the following.

C. Mean-square displacement and non-Gaussian corrections

We show next the mean-square displacement~MSD! of
the oxygen atoms,̂r 2(t)&5^ur (t)2r (0)u2&, for all tempera-
tures studied, in Fig. 8. This is the second spatial moment of
Gs(r ,t). Curves have been plotted on a log-log scale in order
to better display the flattening-out behavior of^r 2& at inter-
mediate times. All curves have an initialt2 region, describ-
ing the ballistic regime. At highT, the ballistic region is
followed by the usual diffusive linear dependence int. How-
ever, as already suggested by the behavior ofGs(r ,t), for
low T an intermediate region develops where^r 2& remains
almost flat. Molecules appear to be trapped in a cage for a
considerable amount of time before starting to diffuse. In-
deed, for the lowest temperature,^r 2& becomes almost flat
for three decades in time. During this time, no significant
diffusion is present. Molecules vibrate and diffuse mainly
within the cage. From the value of^r 2& at the plateau, we
estimate the radius of the cage to be about 0.05 nm, very
slightly T dependent. Note that the onset of the cage effect
appears always at the same time, 0.25 ps, regardless of tem-
perature. This is completely analogous to the corresponding
result obtained by Kob and Andersen@15,16# for a binary
mixture of Lennard-Jones spheres close to the glass transi-
tion. While ^r 2& is constant, no significant structural changes
happen in the system. Thus, for a long time, the system is
frozen in a particular configuration. For longer times, the
onset of diffusion allows for structural relaxation.

We note also that at lowT, ^r 2& shows a small bump for
times around 0.35 ps. Such a bump has been tentatively as-
sociated with the so-called boson peak@35,19# or with a
finite-size effect@15,36#. We recall that in a harmonic solid,
even for the simple Debye model with a single Debye fre-
quencyvD52p/TD ,^r

2(t)&;12sin(vDt)/vDt @37#, i.e., it

shows an overshoot att54.49/vD50.71TD . Thus, using
such a simple model for the distribution of modes one ob-
tainsTD50.49 ps, which is very close to the average period
estimated in Sec. IV B from the shape ofGs(r ,t) in the b
region. We believe that such agreement supports the view
that the overshoot in̂r 2& is a manifestation of significant
quasiharmonic motion in the cage. It would be very valuable
to perform a comparative analysis of the presence of an over-
shoot in^r 2& with the shape of the confining potential, cal-
culated fromGs(r ,t), in different systems. If the presence of
an overshoot in̂ r 2& is connected to the molecular harmonic
motion in the cage, and if this harmonic motion evidenced in
the single-molecule dynamics is the manifestation of a col-
lective harmonic oscillation in the disordered system, then
the overshot of̂ r 2& could be related to the presence of a
significant fraction of harmonic modes. The corresponding
signature in frequency may be related to the boson-peak fea-
ture, as proposed recently@35#. The study of the collective
dynamics of liquid water supported by a normal mode analy-
sis of the corresponding configurations will help in clarifying
this important issue.

In Fig. 9 we show the MSD for the oxygen atoms in ice
and in the liquid at three selected temperatures. As expected,
there is no diffusion for oxygen in ice. It is interesting to
observe that there is no substantial difference in the short-
time dynamics of water molecules up to 0.25 ps in the liquid
and in the solid. The plateau of the MSD of ice starts at a
slightly smaller cage of radius of 0.052 nm, as compared to
the 0.055 nm at the lowest temperature we studied in the
liquid state.

The values ofD extracted from the asymptotic behavior
of MSD are shown in Fig. 10 together with the fitted curve to
the power-law temperature dependenceD5D0(T/Tc21)g.
We also show the values ofD from @30#. For both isobars,
the temperature dependence ofD is well described by a
power law, as in real experiments@38#. Tc andg are pressure
dependent. We find the values 2.7 and 2.3 forg and 186 and
199 K for Tc for the two isobars. We find that on increasing
the pressure,Tc decreases, so that the ideal glass transition
line has the same slope inP-T as the TMD and the liquid-ice
equilibrium line. The difference betweenTc and the corre-
sponding TMD is always about 50 K. We note also that the

FIG. 8. MSD as a function of time forT5206.3 K (s),
T5209.3 K (h), T5213.6 K (L), T5224.0 K (n), T5238.2 K
(v), T5258.5 K (,), andT5284.5 K (x). The curves show the
cage effect, starting at 0.25 ps, followed by the eventual diffusion of
the molecule. Arrows indicate the time at which the non-Gaussian
parametera2(t) ~see the text! is maximum.

FIG. 9. MSD of oxygen atoms for hexagonal ice and liquid
water. x represent the liquid atT5284.5 K, n the liquid at
T5224.0 K,s the liquid atT5206.3 K, andL ice atT5194 K.
The line is a guide for the eyes.
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difference betweenTS and the TMD in real water is also
about 50 K. Henceforth, we suggest the possibility of inter-
pretingTS as the temperature of structural arrest. The differ-
ences ing between the two simulated isobars are consistent
with the experimentally observed sensitivity ofg on pressure
~see Ref.@38#! and with MCT. Indeed, according to MCT,
g depends on the specific point of the glass transition line
Tc(P) approached.

From Fig. 5 we see thatGs(r ,t) is apparently a Gaussian
function in space only for early times. To quantify the degree
of non-Gaussianity we calculate the so-called non-Gaussian
parametersan(t). an(t) are defined by

an~ t !5
3^r 2n~ t !&
cn^r

2~ t !&n
21, cn5

~2n11!!!

3n
. ~11!

We note that, as found in several previous simulations of
liquids close to the glass transition@36,39#, a2(t) increases
significantly in theb region and reaches its maximum when
diffusion starts to be significant. For longer times,a2(t) goes
back to zero. This is expected because for long times
Gs(r ,t) has to go back to a Gaussian shape whose variance
is controlled by the diffusion coefficientD. Figure 11 shows
the behavior ofa2(t) as a function ofT. The time at which
a2(t) is maximumtamax is also indicated by arrows in Fig. 8.

We note that in the case of SPC/E water,a2(t) increases
significantly in theb region, much more than it was ob-
served in some of the previous simulations of supercooled
liquids @36,39,40#. The increase ina2 observed here is com-
parable to the one calculated for a binary mixture of
Lennard-Jones by Kob and Andersen@15#. We also note that
tamax has a power-law dependence onT2T* , as shown in

the inset of Fig. 11. The apparent exponent of theT depen-
dence oftamax is 2.5, which is close to theg value of 2.7

found in theT dependence ofD. A slight change inT* or
the restriction of theT range to the five lowestT would
allow a fit of tamax with an exponent 2.7.tamax could be used
to locate the glass transition@23#.

Note that on cooling the system the dynamics becomes
more and more nonergodic. The increase ofa2(t) is ob-

served in the region wherêr 2& is almost flat, suggesting that
tamax could be used to define theb-relaxation region.a2(t)

for the three lowestT is reported in Fig. 12 on a log-log
scale. The rise ofa2(t) can well be represented by a power
law in time, i.e.,a2(t);t0.4, although the small variation of
a2(t) does not allow a definitive conclusion on this point.
Analysis of the behavior ofa2(t) for different systems
would be very valuable. In particular, it has been proposed
that the initial rise ofa2(t) at differentT obeys a master
curve in time@16#. Data in Fig. 11 support this finding.

To continue testing the space-time decomposition, we
study the behavior of̂r n(t)& in theb region.^r n(t)& are the
n moments ofGs and should thus also follow a von Sch-
weidler law @Eq. ~3!# exactly asGs(r ,t). We find that the
moments are well described by Eq.~3!, with a b exponent
that isT independent for all thenth moments ofGs(r ,t) with
an apparent exponentb varying from 0.7 for^r 2& to 1.1 for
^r 4& and 1.4 for ^r 6&. Because different moments weight
different r regions, this finding supports the hypothesis that
the apparentb exponent isr dependent. In this case too using

FIG. 10. Temperature dependence of the diffusion coefficient
D for two isobars.h are from Table I ands from @30#. Full lines
are power-law fits, respectively, given byD513.93(T/
198.721)2.73 andD57.39(T/186.321)2.29, whereD is in cm2/s
andT is in K.

FIG. 11. Non-Gaussian parametera2(t) as a function of time
for all temperatures studied. The inset shows theT dependence of
the position of the maximumtamax

to highlight the power-law de-
pendence onT/Tc21. The full line is a power law with exponent
2.5.

FIG. 12. a2(t) as a function oft/tmax in log-log scale, for the
three lowestT studied. Note the apparent power-law region for
t,tmax with slope 0.4.
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a second- or third-order expansion intb as in Eq.~10!, we are
able to fit simultaneouslŷr 2&,^r 4&, and ^r 6&, with a single
value b50.5060.05. In Fig. 13 we shoŵ r 2&,^r 4&, and
^r 6& and the best fit for the lowestT.

D. Intermediate scattering function

We now move to the incoherent intermediate scattering
function Fs(Q,t), the spatial Fourier transform of the Van
Hove self-correlation functionGs(r ,t). Fs(Q,t) can be mea-
sured by incoherent neutron-scattering experiments. Previous
works on the behavior ofFs(Q,t) in simulated water@41–
43#, although based on a rather limited simulated time scale
~up to 10 ps at most! and limited temperature range, have
shown that~i! the intermediate scattering function for the
center of massFs(Q,t) is non-Gaussian except at short times
@41#, ~ii ! at room temperature the diffusive behavior of water
molecules is not describable by a discrete jump diffusion
@41,43#, and~iii ! the decay ofFs(Q,t) has a fast and a slow
component, the time scale of which becomes increasingly
disparate upon supercooling@43#.

Figure 14 shows theT dependence ofFs(Qmax,t). Note

that for all T investigated,Fs(Qmax,t) decays to zero in the
long-time limit. This confirms that the simulations were long
enough to guarantee the complete decay to zero of the test
particle thermal fluctuations, i.e., that all simulations were in
the liquid state and in equilibrium.Fs(Qmax,t) also shows the
presence of three different regimes, the initial one character-
ized by a fast decay, followed by a plateau region and by a
final decay to zero. Figure 15 shows theQ dependence of
Fs(Q,t) at one selected temperature.

For very early times,Fs(Q,t) decays following a qua-
dratic dependence on time, characteristic of the ballistic mo-
tion. The initial part of the decay~time shorter than 0.25 ps!
is well represented~see below! by

Fs~Q,t !5@12A~Q!#e2~ t/ts!
2
1A~Q!. ~12!

This is not surprising because we have seen already that
a2(r ,t) is very small in this time range. Moreover,
Fs(Q,t), both for ballistic motion and for vibrations in a
harmonic potential, is described by a Gaussian function in
space@20#.

At intermediate times,Fs(Q,t) is slowly varying, con-
firming the existence of a time region where no significant
structural changes are observed. In this time region, mol-
ecules have already explored all the space in their cages, but
the very slow cage rearrangement prevents the exploration of
space outside the cage.

For long times,Fs(Q,t) decays in a nonexponential fash-
ion. We fit the whole curve rather well by the equation

Fs~Q,t !5@12A~Q!#e2~ t/ts!
2
1A~Q!e2~ t/t l !

b
, ~13!

in which the initial decorrelation associated with the motion
in the cage is followed by a stretched exponential decay.

Full lines in Figs. 14 and 15 are fit to the data according to
Eq. ~13!. From the fitting procedure we find thatts is rather
constant and of order 0.15 ps. It has a very weakT depen-
dence as expected.A(Q) is well described bye2a2Q2/3,
wherea is of the order 0.05060.003 nm, slightly increasing
on increasingT. Figures 16 and 17 show the values obtained

FIG. 13. Behavior of the first three even moments ofGs(r ,t) as
a function of time in theb region for T5206.3 K. Full curves
describe a third-order expansion in powers oftb @see Eq.~10!# with
b50.5.

FIG. 14.Fs(Qmax,t) vs time~symbols are the same as in Fig. 8!.
Solid lines are calculated according to Eq.~13!.

FIG. 15. Fs(Q,t) vs time for differentQ values atT5209.3 K
~from top to bottom, integer multiples of 3.3 nm21). Solid lines are
calculated according to Eq.~13!.
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from the fit, in bothT andQ, for the two most interesting
parametersb andt l . We note thatb starts from 1 at small
Q and goes to 0.5 at highQ vectors. There is also a weaker
dependence onT, suggesting thatb increases on increasing
T. ThisQ andT dependence ofb is what one would expect
for a phenomenon that happens on a well-defined length
scale. When the inverse of theQ vector is much bigger than
the cage size, the slow dynamics evidenced by the stretched
exponential ceases to be relevant. On large distances, com-
pared to the cage dimension, diffusion is normal and the
decay of self-density fluctuations goes back to the usual ex-
ponentiale2DQ2t form ~i.e., b51). Similarly, on increasing
the temperature, cages break and reform on a faster rate and
the convergence of the stochastic process to a Gaussian is
faster. We look next tot l . t l indicates the time it takes for a
self-density fluctuation to die out over length ofQ21, i.e.,
the time it takes a molecule to diffuse over distances of order
Q21. For large distances and allT, the leading propagation
mechanism is diffusion, which implies thatt l5(DQ2)21.
For small distances, at highT, we still observe theQ2 be-
havior, in agreement with the fact thata2(t) is not very
large. From Fig. 17 we observe thatt lDQ

251 at lowQ and
high T, while at highQ and lowT significant deviations are

present.t l
21 seems to cross from aQ2 to aQ behavior. Note

that aQ2 dependence has been observed for glycerol close to
its glass transition@44#. At low T, t l is bigger than one
would expect if diffusion were the only mechanism. This
suggests that on short length scales diffusion is slower than it
would be, suggesting the presence of anomalous diffusion
over small scales. It should be noted that we do not find
t l;Q22/b at largeQ and smallT, as was observed, e.g., in
glass forming microemulsions and polymer melts@45,46#.
This difference probably stresses the highly non-Gaussian
behavior of the dynamics in SPC/E water. Indeed, the behav-
ior t l;Q22/d is expected whenGs(r ,t) is a Gaussian in
space with a variance growing astd.

To complete the picture of self-motion in water, we dis-
cuss the role of the non-Gaussianity in the decay of
Fs(Q,t), which can be formally expanded as@20#

Fs~Q,t !5e2Q2r1~ t !F11
1

2!
a2~ t !@Q

2r1~ t !#
2

2
1

3!
@a3~ t !23a2~ t !#@Q

2r1~ t !#
3G1•••, ~14!

wherer1(t)5^r (t)2&/6 andan are given in Eq.~11!. In Eq.
~14! the leading term is a Gaussian function inQ. The lead-
ing term at differentQ vectors is shown in Fig. 18 and com-
pared with the actualFs(Q,t). As discussed above, we see
that the Gaussian approximation represents the data well at
smallQ for all times. At largerQ the decay deviates more
and more from the Gaussian behavior, starting from theb
region. In Fig. 19 we show the first four approximations in
the expansion of Eq.~14!. We note that the convergence is
very slow and nonmonotonic, preventing the possibility of
measuring unambiguouslya2(t) from theQ dependence of
Fs(Q,t) @23#.

We also note that the bump inFs(Q,t) observed around 1
ps comes from the presence of a minimum in^r 2(t)& at the
same time. Oscillations in̂r 2(t)& are thus responsible for the
oscillations observed inFs(Q,t). A bump in Fs(Q,t) was

FIG. 16. Results from the fitting procedure for the parameter
b. Left panel,b as a function ofQ at two different temperatures;
right panel,b as a function ofT at Q5Qmax and at the smallest
availableQ53.3 nm21.

FIG. 17. Results from the fitting procedure for the parameter
t l . The left panel shows theQ dependence oft l at all temperatures
~symbols are the same as in Fig. 8!. The right panel showsDQ2t l
as a function ofQ. Note that at lowT and highQ,DQ2t l increases
linearly, suggesting thatt l;Q21.

FIG. 18. Comparison between the time dependence ofFs(Q,t)

and the Gaussian approximatione2Q2^r2(t)&/6 at T5206.3 K, forQ
equal to odd multiples of 3.3 nm21. Note how the Gaussian ap-
proximation is worse on increasingQ.
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observed in recent simulations of orthophenil@36#, Lennard-
Jones@15#, and others deeply supercooled liquids@47,34#. As
discussed in Secs. IVB and IVC, we attribute oscillation in
Fs(Q,t) to the almost harmonic motion of molecules in the
cages.

We now come to a more detailed study of the behavior of
the correlatorFs(Q,t) in the lateb region. As discussed in
Sec. II, all correlators are supposed to decay as a power law
with the von Schweidler exponentb @Eq. ~3!#. Figure 20
shows that, for all low temperatures such that ab region is
clearly established, the fit with a power law is superior to the
stretched exponential form. TheQ dependence ofb is in-
stead at odds with the predictions of MCT. We find that the
apparent exponentb, as calculated from fitting the time de-
pendence ofFs(Q,t) in the b region, apparently decreases
on increasingQ. It goes from the value 0.7 at the smallest
Q down to about 0.3 at highQ. At Qmax the value of the
effective b consistently is given byb50.5060.05. Again,
using a three-term expansion, a simultaneous fit of all curves
gives a single valueb50.5060.05, independent onQ, as
shown in Fig. 21. The decrease of the apparentb on decreas-
ing Q was also detected in a previous calculation of
Lennard-Jones mixtures close to the glass transition@15#.

As discussed in Sec. II, the exponentsb andg are related
by MCT. We measure independently both exponents, one

from thet dependence of the correlators in theb region and
one from theT dependence ofD. The resulting (b,g) pair
obtained for SPC/E water is shown in Fig. 1. The agreement
between our calculated value and the theory is surprisingly
good. We note in passing that the value ofb calculated from
a third-order fit in power oftb of the time dependence of
several correlators in the lateb region coincides with the
apparentb obtained by fitting according to the von Sch-
weidler law whenQ5Qmax. The choice of the value ofb at
Qmax in comparing the MCT relation Eq.~6! and the numeri-
cal or experimental results often has been assumed implicitly
in several previous studies.

E. Rotational dynamics

In the previous subsections we have presented the trans-
lational properties looking at the motion of the oxygen at-
oms, very close to that of the center of mass of a water
molecule. In this subsection we analyze some aspects of ro-
tational motions of the molecule. We focus our attention on
the motion of the dipole vectorm, i.e., on the time evolution
of the angleu(t)5cos21@^m(t)•m(0)&/^m(0)•m(0)&#. The
first two angular correlation functions

Cl~ t !5^Pl@cosu~ t !#&, ~15!

wherePl is thel -order Legendre polynomial, are experimen-
tally measurable quantities. In particular,C1(t) can be mea-
sured by dielectric relaxation experiments andC2(t) can be
measured by NMR.

The time evolution ofCl(t) for supercooled SPC/E water
shows also a two-step relaxation scenario. The initial relax-
ation (t,1 ps! is modulated by the librational motion of the
water molecules. The initial decay is followed at lowT by a
plateau region and in the end by thea relaxation decay.
Figures 22 and 23 show the behavior ofC1(t) andC2(t) as
a function of time for allT. We find that the slow relaxation
can be well described by a stretched exponential decay. The
exponentb increases on increasing temperature. The results
of the fit to a stretched exponential behavior fort.1 ps are

FIG. 19. Comparison betweenFs(16 nm21,t) and the first four
approximations in the expansion of Eq.~14! at T5206.3 K.

FIG. 20. Comparison between the stretched exponential and the
von Schweidler law in theb region. Full curves are compared with
Fs(Qmax,t) at the three lowest temperatures.

FIG. 21. Fit in the lateb region of Fs(Q,t) for different Q
values~from top to bottom, integer multiples of 3.3 nm21) for the
smallest temperature studied. Lines are a simultaneous fit to all
curves according to a third-order expansion ofFs(Q,t) in powers of
tb @see Eq.~10!# with b50.5.
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reported in Table II. We note that the decay time ofC1(t) is
close to the decay time ofF(Qmax,t). This suggests that an-
gular decorrelation happens on the same time scale of diffu-
sion over distances of the orderQmax

21 i.e., over nearest-
neighbor distances. The breaking and reforming of cages is
the bottleneck for both rotational and translational diffusion.
The fact thatC1(t) follows the same pattern asFs(Q,t)
suggests also that molecules in cages perform hindered rota-
tions ~librations!. Rotations within the cage would indeed
require the breaking of at least three hydrogen bands, which,
due to the HB strength, is a process with a very low prob-
ability @31#.

V. DISCUSSION AND CONCLUSIONS

We have presented evidence that SPC/E water undergoes
a kinetic glass transition 50° below the TMD. The molecular
dynamics is well accounted for by the idealized MCT of
supercooled liquids, suggesting an interpretation of the so-
called Angell temperature as the critical temperature of MCT

@17#. In this regard, the apparent power-law increase of the
transport coefficient in liquid water on supercooling is traced
to the formation of cages and to the associated slow dynam-
ics resulting from the presence of long-lived cages. In other
words, the divergence of transport coefficients does not need
to rely on a thermodynamical instability, either connected to
the reentrance of the gas-liquid spinodal or to the presence of
a critical point at high pressure and low temperature. The
SPC/E behavior described in this work thus supports the re-
cently presented thermodynamic analysis of liquids with a
negatively sloped TMD in the absence of singularities@9#.

It is important at this point to stress that the finding of this
work could easily be tested by performing QENS experi-
ments. Indeed we found that the detailed shape of the slow
relaxation part of theFs(Q,t) can be described very accu-
rately by a stretched exponential decay around and above
Qmax. It is remarkable to observe that atQmax the slow re-
laxation is already clearly visible at 12° below the TMD,
which is easily realizable in a QENS experiment of bulk
water. Unfortunately, in a previous QENS experiment of su-
percooled bulk water the instrumental resolution used was
84 m eV, which did not allow one to clearly see the line
shape characteristic of the stretched exponential relaxation~a
Cole-Cole dispersion function! @48#. The T dependence of
b atQmax can also be tested, as well as theQ dependence of
t l and its crossing from aQ2 behavior at smallQ to a Q
behavior at highQ at low T.

The scenario described above bears a strong resemblance
to the results of MD simulation for the mixed Lennard-Jones
spheres carried out recently to test the MCT of kinetic glass
transition. In this respect, the prediction of the idealized
MCT seems to be robust, and able to describe fragile liquids
@49#, for molecules interacting via spherical as well as highly
directional potentials. It is indeed surprising that a simple
Lennard-Jones system, in which molecules are confined in
cages with a large coordination number, behaves, close to its
glass transition, similarly to a tethrahedrally coordinated sys-
tem, like SPC/E water, in which the cages are formed more

TABLE II. Stretched exponential (Ae2(t/t)b) fitting parameters
of the dipole moment autocorrelation functionsC1(t) andC2(t).

T ~K! A b t ~ps!

C1(t)
284.5 0.884 0.957 0.8513101

258.5 0.903 0.918 0.2163102

238.2 0.916 0.907 0.7453102

224.0 0.922 0.877 0.2433103

213.6 0.928 0.841 0.1223104

209.3 0.933 0.816 0.2983104

206.3 0.941 0.776 0.7553104

C2(t)
284.5 0.690 0.904 0.3643101

258.5 0.769 0.826 0.8533101

238.2 0.808 0.763 0.3113102

224.0 0.814 0.755 0.1063103

213.6 0.827 0.714 0.5973103

209.3 0.838 0.702 0.1463104

206.3 0.845 0.677 0.4253104

FIG. 22. Dipole moment autocorrelation functionC1(t) as a
function of time for allT studied~symbols are the same as in Fig.
8!. Full lines are fit to a stretched exponential form, fort.1 ps.
Fitting parameters are given in Table II.

FIG. 23. Dipole moment autocorrelation functionC2(t) as a
function of time for allT studied~symbols are the same as in Fig.
8!. Full lines are fit to a stretched exponential form, fort.1 ps.
Fitting parameters are given in Table II.
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by the deep hydrogen-bonding potential than by the
excluded-volume constraint.

The dynamics in SPC/E water is seen to be characterized
by ~i! a fast and a slow relaxation process,~ii ! the presence
of a time region in which dynamics is self-similar in time.
@In this region, correlations decay as a power law whose
range of validity isr dependent. The range of validity of the
von Schweidler law is maximum for distances close to the
first neighbors shell orQ values close to the maximum of the
S(Q)#, ~iii ! a late-time region whereC(t) decays as a
stretched exponential~the value of the stretching exponent
b is T and Q dependent!, and ~iv! the divergence of the
small-Q relaxation times as a power law inT with an expo-
nent g that is the same as that of the diffusion coefficient.
Furthermore, the relation betweeng and the exponentb,
calculated in the self-similarb-relaxation region, is in agree-
ment with MCT predictions.

As noted in Ref.@44#, points ~i!–~iii ! by themselves are
not sufficient for validating MCT. Glycerol has indeed a
two-step relaxation, characterized by aT-independent short-
time decay followed by a stretched exponential decay, but
relations betweeng andb are clearly not fulfilled. We thus
consider particularly interesting the finding of point~iv!.

The picture we get from this study is that the system goes
back to a ‘‘normal’’ behavior for distances much bigger than
the cage size. Indeed, we find that for smallQ, the stretched
exponential behavior tends to the usual simple exponential
behavior, diffusion becomes normal,t l

21 scales asQ2, and
the Gaussian approximation forFs(Q,t) becomes suffi-
ciently good to represent the data. At a small-Q vector, the
presence of a nearby ideal glass transition appears only via
theT dependence ofD andt l .

Studying the shape of the self–Van Hove correlation
function in theb region, we have found that molecules un-
dergo harmonic motion within the cage or, in other words,
the shape of the confining potential is significantly harmonic.
We have shown that such harmonic motion manifests itself
in an overshot in̂ r 2(t)& and in oscillations inFs(Q,t) for
early times (t,1;3 ps!. In this regime, the dynamics is
significantly Gaussian, as expected for ballistic motion, har-
monic oscillations, and diffusion in a harmonic potential
@37#. This kind of analysis may offer a way of testing the
proposed relation between the effective shape of the cage
potential and the so-called boson peak@35#.

We also note that the system studied in the present work
is composed of only 216 water molecules; the larger system
we managed to study due to the very long simulation needed
to equilibrate the system and to produce uncorrelated events.

A size-dependent study would be very valuable. This not-
withstanding, we would like to stress that even such a small
system shows all the characteristics predicted by MCT, as
discussed in the previous sections. In particular, the
b-relaxation region is very clearly observable. All the quan-
tities studied show the predicted power-law behavior in time.
Thus, even such a small system is able to generate the self-
similar dynamics characteristic of theb region. This could
suggest that the relevant length scale in the glass transition
phenomenon does not extend beyond one or two coordina-
tion shells, at least for water.

Before concluding we wish to review the results of a re-
cent MD study on single-particle diffusion in water@50# per-
formed using the ST2 model potential. The studied region is
theP580 MPa isochore forT between 250 and 350 K~cor-
responding to densities 0.87–1.0 g/cm3). Along such an iso-
chore, the TMD is 310610 K. For T larger than 260 K
~again 50 K below the TMD! the diffusion process was
found to be continuous, but controlled by hopping below 260
K. In the ST2 model, at lowT, D follow an Arrhenius law,
with an activation energy of about 115 kJ/mol, a value close
to the breaking of four hydrogen bands. AboveT5260 K,
D seems to increase almost linearly withT. It is well known
that the ST2 potential gives a much more structured liquid
than SPC/E, so that similar structural and thermodynamic
quantities are observed byshifting the state point by more
than 50 K@7#. One possible explanation of such a difference
is that when cages start to form in ST2,kT is still large
enough to activate a significant fraction of molecular jumps,
preventing the possibility of observing the approach of the
kinetic glass transition, and to observe both the power-law
behavior of D and the stretched exponential decay of
Fs(Q,t). Indeed, atT5260 K, where dynamics change in
ST2,D is rather large (0.13102ccm2/s). If this is the case,
a detailed comparative study of the dynamics in these two
models could shed light on the origin in the differences be-
tween strong and fragile liquids@49# and on the proposed
transition between these two behaviors on supercooling wa-
ter @51#.
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