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The stochastic Benjamin-Ono equation is introduced, which models the propagation of nonlinear random
waves in a two-layer fluid system with and without uneven bottom topography. In the case of the flat bottom,
the effect of the external random flow field on the evolution of both soliton and periodic wave is investigated.
In particular, the mean value and the correlation function of these nonlinear wave fields are calculated exactly
under the assumption that the flow field obeys the Gaussian stochastic process with a white noise. It is found
that in the limit of large time, the mean value of an algebraic soliton approaches a Gaussian wave packet
whereas that of a periodic wave is represented by Jacobi’s theta function. In the case of the uneven bottom, a
perturbation analysis is performed to evaluate the mean value of an algebraic soliton under the influence of
random change of bottom topography. The large time asymptotic of the soliton is shown to exhibit a Gaussian
wave packet with a small amount of the phase shift caused by the interaction between the soliton and the
random bottom topography.@S1063-651X~96!05112-4#

PACS number~s!: 47.55.Hd, 03.40.Kf, 05.40.1j, 02.50.2r

I. INTRODUCTION

The study of nonlinear wave propagation has made re-
markable progress owing to the development of various ex-
act methods of solutions for solving nonlinear evolution
equations ~NEE’s!. In particular, the inverse scattering
method has enabled us to solve the initial value problems of
a wide class of NEE’s including the Korteweg–de Vries
~KdV!, nonlinear Schro¨dinger and sine-Gordon equations
@1#. While the soliton solutions of these physically important
NEE’s are essentially nonlinear objects that cannot be ob-
tained from the linear theory, they only give an idealized
description of underlying physical phenomena. In most real
physical situations, however, the system is affected by vari-
ous perturbations. These may be occasionally random func-
tions in space and time variables. It is probable that the me-
dium parameters such as the temperature and the density of
fluid have randomly fluctuating components. Furthermore,
the randomness may originate from external forces as well as
initial and boundary conditions subject to the system. Once
these characteristics are introduced in the system, the result-
ing model equations would contain random variables and
hence they become so-called stochastic evolution equations.
For instance, in the context of water wave problems, the
constant flow field imposed on the system may have ran-
domly fluctuating components. Also, the irregular change of
the bottom topography may act as a random force on the
wave dynamics. The problem of the propagation of nonlinear
random waves is of current interest in the world of physics
and engineering. As for the present stage of its development,
some review papers@2–4# and books@5,6# are now available
that are mainly concerned with the dynamics of solitons un-
der various random perturbations.

Recently, we have derived a model NEE describing the

time evolution of interfacial waves in a two-layer fluid with
uneven bottom topography@7#. The equation is written in a
dimensionless form as follows:

h t1~F21!hx2
3a

2
hhx2

Dd

2
Hhxx5

gaF2

2
Bx .

~1.1a!

Here,h5h(x,t) is the interfacial elevation,B5B(x) repre-
sents the unevenness of the bottom topography,F is the
Froude number,D is the density ratio,g is a positive con-
stant,H is the Hilbert transform operator given by

Hh~x,t !5
1

p
PE

2`

` h~y,t !

y2x
dy, ~1.1b!

and the subscriptst andx appended toh andB denote partial
differentiation. The parametersa andd measure the magni-
tude of nonlinearity and dispersion, respectively, and it is
assumed thatd5O~a! in the derivation of Eq.~1.1!. When
the fluid bottom is flat, i.e.,B50, Eq. ~1.1! reduces to the
well-known Benjamin-Ono~BO! equation@8,9#. Its math-
ematical structure has been studied extensively@10,11#. Re-
markably, the soliton solution has been found to be of the
algebraic type unlike the usual soliton solution expressed in
terms of exponential functions and hence it is sometimes
called an algebraic soliton. In@7#, the dynamics of an alge-
braic soliton have been investigated in detail on the basis of
Eq. ~1.1! while employing a direct soliton perturbation
theory. We showed that when the Froude number is close to
unity, the solutions to the dynamical equations for the soliton
parameters exhibit a variety of phenomena, such as the cap-
ture and repulsion of the soliton by topography and the oc-
currence of solitonlike phase shift due to the interaction of
the soliton with topography.

The purpose of the present paper is to study the dynamics
of nonlinear waves when the randomness comes into the sys-
tem under consideration. To be more specific, we consider*Electronic address: matsuno@po.cc.yamaguchi-u.ac.jp
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the situation where the flow fieldU imposed on the system is
close to the phase velocityc0 of the linear wave. In addition,
we assume thatU is a slowly varying random function of
time. In terms of the Froude number defined byF5U/c0,
these statements may be represented as

F511aG~at !, ~1.2!

whereG is a random function whose characteristics will be
specified later. At this stage, it is convenient to rescale the
variables according tot→(Dd/a2)t, x→(d/a)x, h→~8/3!u,
and B→(16/3F2)B in which t is transformed into a slow
time due to the orderingd5O~a!. Then, Eq.~1.1! takes the
following form:

ut1G~ t !ux24uux2Huxx5gBx , u5u~x,t !. ~1.3!

While the above equation has been guessed simply from Eq.
~1.1!, its exact derivation can be made along the same line as
that used in the derivation of Eq.~1.1! @7#. In fact, it is only
necessary for this purpose to change the upstream boundary
condition for the external flow fieldU in the basic system of
hydrodynamic equations. It turns out that under the ordering
d5O~a!, the resulting evolution equation forh takes the
same form as Eq.~1.1!, the only difference being that the
Froude numberF (5U/c0) is not a constant but depends on
time.

In Eq. ~1.3!, the randomness may come from the fluctua-
tion G(t) of the flow field and/or the irregular bottom topog-
raphyB(x). In this paper, we shall particularly investigate
the following three cases separately:~i! G a random func-
tion, B50; ~ii ! G5const, B a random function; ~iii !
G5const,Bx a random function. In Sec. II, we consider
case~i!. We then easily observe that Eq.~1.3! becomes a
completely integrable NEE. In view of this fact, various sta-
tistical quantities such as the mean value and the autocorre-
lation function for both soliton and periodic waves are cal-
culatedexactlyunder the assumption that the random fieldG
obeys the Gaussian process with a white noise. Subse-
quently, the large time asymptotics of these averages are
examined in some detail. In Sec. III, we consider cases~ii !
and~iii ! where an exact treatment similar to that for case~i!
is impossible because of the presence of external random
forces. Here, we shall perform an analysis based on a direct
soliton perturbation theory developed recently@12,13# to cal-
culate the mean value of an algebraic soliton under the as-
sumption of small external forces, i.e.,g!1 with B (Bx)
being a Gaussian white noise in case~ii ! @case~iii !#. The
asymptotic behavior of the averaged soliton field is also elu-
cidated. In Sec. IV, we summarize the results achieved in
this paper and refer to some problems left for a future work.
In the Appendix, the formulas for certain integrals are pre-
sented that are useful in evaluating various mean values.

II. RANDOM FLOW FIELD

In this section, we shall focus our attention on the dynam-
ics of nonlinear random waves governed by Eq.~1.3! in the
special case of the flat bottom topography. Equation~1.3! is
now simplified as

ut1G~ t !ux24uux2Huxx50, u5u~x,t !. ~2.1!

This equation may be called the stochastic BO equation since
the coefficientG(t) of ux is a random function of time. We
note that Eq.~2.1! can be reduced to a standard form of the
BO equation by a Galilean transformationT5t and
X5x2* 0

t G(s)ds, implying that Eq.~2.1! is a completely
integrable NEE.

Let us now specify the nature of the random functionG.
While various types of randomness appear in real physical
problems, we shall here confine ourselves to the Gaussian
white noise defined by the averages

^G~ t1!G~ t2!•••G~ tn!&5H ( P^G~ t i !G~ t j !&, n even

0, n odd,
~2.2a!

^G~ t !&50, ^G~ t i !G~ t j !&52Dd~ t i2t j !. ~2.2b!

Here, the ensemble average is denoted by^•••&, the symbol
(P means that we multiplyn/2 products^G(t i)G(t j )& and
sum over the~n21!!! different combinations,D is a positive
constant characterizing the strength of the correlation, and
d(t i2t j ) is Dirac’s delta function. Relation~2.2b! shows that
the correlation time is negligibly short relative to other time
scales. This is not essential in the following analysis and
introduced only for the purpose of simplifying the calcula-
tion. Indeed, one can replace the delta function by an arbi-
trary function f (ut i2t j u/tc) with tc being the correlation
time. In calculating statistical quantities, the following for-
mulas are quite useful that follow with the use of~2.2! @14#:

K expS ikE
0

t

G~s!dsD L 5e2k2Dt, ~2.3a!

K expS ikE
0

t

G~s!ds1 ik8E
0

8t
G~s!dsD L

5exp„2@k2Dt1kk8D~ t1t82ut2t8u!1k82Dt8#…, ~2.3b!

^ef&5e~1/2!^ f2&, ~2.4!

^ f eg&5^ f g&e~1/2!^g2&. ~2.5!

Here, f andg are linear functions of Gaussian random func-
tions with zero mean.

One advantage of introducing completely integrable sto-
chastic NEE’s is that various statistical quantities can be cal-
culated exactly without recourse to any approximation. We
shall now perform the calculation for both soliton and peri-
odic waves. In the case of the soliton, we shall calculate the
mean values ofun ~n51,2,...!, uHux , andGu2 as well as the
equal-time autocorrelation function. For the periodic wave,
we shall restrict our consideration only to the mean value
and the equal-time autocorrelation function. We show that in
the long-wave limit, these quantities reduce to the corre-
sponding ones for the soliton. The analysis developed below
is easily generalized to the case of multisoliton and multipe-
riodic wave solutions.
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A. Soliton

1. Mean value

Equation~2.1! exhibits on a soliton solution of the form
@8,9#

u~x,t !5
a

a2~x2j!211
, ~2.6a!

with

j5E
0

t

G~s!ds2at1j0 , ~2.6b!

wherea andj are the amplitude and position of the soliton,
respectively, andj0 is an initial value ofj. Note thatj be-
comes a stochastic variable through the dependence of the
random functionG.

In order to calculate the mean value ofu(x,t), it is con-
venient to introduce the Fourier transform ofu and its in-
verse transform by the relations

û~k,t !5E
2`

`

u~x,t !e2 ikxdx, ~2.7a!

u~x,t !5
1

2p E
2`

`

û~k,t !eikxdk. ~2.7b!

It immediately follows from~2.6a! and ~2.7a! that

û~k,t !5pe2 ikj2uku/a. ~2.8!

By substituting ~2.8! into ~2.7b! and taking the ensemble
average with the aid of the formula~2.3a!, we arrive at the
following integral representation for the mean value ofu:

^u~x,t !&5E
0

`

e2Dtk22k/a cosk~x1at2j0!dk[I ~Ap,z,b!,

~2.9a!

with

p[1/a2, z[x1at2j0 , b[Dt, ~2.9b!

where we have introduced the integralI defined by~A1! in
the Appendix. It is worthwhile to remark here that the above
mean value satisfies the diffusion equation

]^u~x,t !&
]b

5
]2^u~x,t !&

]z2
, ~2.10!

subject to the initial condition

^u~x,t !&ub505
a

~az!211
. ~2.11!

Owing to this fact, we can obtain a different form of^u& as

^u~x,t !&5
1

Ap
E

2`

` ae2u2

a2~z22Abu!211
du. ~2.12!

Next, we shall evaluate the large time asymptotic of
^u(x,t)&. Using the expansion~A8!, the leading term of the
expansion is readily found to be as follows:

^u~x,t !&;S p

4Dt D
1/2

expF2
~x1at2j0!

2

4Dt G . ~2.13!

Thus, we can see that the profile of the averaged soliton
tends to a Gaussian packet with velocity equal to the initial
velocity of the soliton and the amplitude decreases ast21/2.
Since the width of the averaged soliton grows liket1/2, its
area is conserved, i.e.,*2`

` ^u(x,t)&dx5p in the present
case, which is obtained by integrating~2.9! with respect tox.
The conservation of the area also follows directly from Eq.
~2.1!.

In the same way, we can calculate various mean values.
We shall present only some of them:

^un~x,t !&5
~21!n21

~n21!!
pn/2

]n21

]pn21 F I ~Ap,z,b!

Ap G
~n51,2,...!, ~2.14!

^uHux&52S p ]2

]p2
1

1

4pD I ~Ap,z,b!, ~2.15!

^G~ t !u2~x,t !&52Dp
]2J~Ap,z,b!

]p2
. ~2.16!

Here, the integralsI and J are defined by~A1! and ~A2!,
respectively.

Lastly, we remark that Eq.~2.1! can be written in a
Hamiltonian form as

ut5
]

]x

dI 3
du

, ~2.17a!

I 35E
2`

`

~ 2
3u

31 1
2uHux2

1
2Gu2!dx. ~2.17b!

Hence, the mean value of the density ofI 3 is easily evaluated
with the use of~2.14!–~2.16! together with the formulas
~A12!–~A15!. The resulting expression is, however, not writ-
ten down here.

2. Correlation function

The correlation function that we consider here is the fol-
lowing equal-time autocorrelation function:

C~x8,t;x,t !5^u~x8,t !u~x,t !&2^u~x8,t !&^u~x,t !&.
~2.18!

The second term on the right-hand side of~2.18! has already
been given by~2.9! and hence we shall now evaluate the first
term. We use the integral representation~2.7b! with ~2.8! as
well as the formula~2.3a! to obtain

^u~x8,t !u~x,t !&5 1
4 E

2`

` E
2`

`

exp@ ik8z81 ikz2Dt~k81k!2

2~ uk8u1uku!/a#dk8 dk, ~2.19a!
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where

z5x1at2j0 , z85x81at2j0 . ~2.19b!

After some manipulations, this double integral is trans-
formed into the sum of two single integrals as

^u~x8,t !u~x,t !&5
a

a2~z82z!214 E
0

`

~coskz81coskz!

3e2Dtk22k/adk

1
2

~z82z!@a2~z82z!214#

3E
0

`

~sinkz82sinkz!e2Dtk22k/adk.

~2.20!

Whenx85x, this expression reduces to Eq.~2.14! with n52.
In terms of the integralsI andJ defined in the Appendix, the
autocorrelation function is expressed as follows:

C~x8,t;x,t !5
a

a2~z82z!214
@ I ~Ap,z8,b!1I ~Ap,z,b!#

1
2

~z82z!@a2~z82z!214#

3@J~Ap,z8,b!2J~Ap,z,b!#

2I ~Ap,z8,b!I ~Ap,z,b!. ~2.21!

This is a convenient form in evaluating the asymptotic be-
havior as shown below. If there are no correlations between
G(t) andG~t8!, i.e.,D50, one can perform the integrals in
~2.20! and obtain the relation ^u(x8,t)u(x,t)&
5^u(x8,t)&^u(x,t)&. It then follows from~2.18! thatC50,
which provides a check of the present analysis. We also re-
mark that~2.19! can be expressed in a form analogous to
~2.12! as

^u~x8,t !u~x,t !&

5
1

Ap
E

2`

` a2e2u2

@a2~z822Abu!211#@a2~z22Abu!211#
du.

~2.22!

It is worthwhile to mention here that then-point equal-time
correlation function is given by the integral representation

^u~x1 ,t !u~x2 ,t !•••u~xn ,t !&

5
1

Ap
E

2`

` ane2u2

P j51
n @a2~zj22Abu!211#

du,

~2.23!

wherezj5xj1at2j0 ( j51,2,...,n). One immediately sees
that the expressions~2.12! and ~2.22! are special cases of
~2.23!.

Next, we shall investigate the asymptotic behavior ofC.
We consider two interesting cases. The first case is the large

time asymptotic ofC while keepingz8 andz finite values. It
immediately follows from~2.21!, ~A8!, and~A9! that

C~x8,t;x,t !;
a

2 S p

Dt D
1/2 e2z82/4Dt1e2z2/4Dt

a2~z82z!214

1
1

2Dt

z81z

z82z

e2z82/4Dt2e2z2/4Dt

~z82z!@a2~z82z!214#

2
p

4Dt
e2~z821z2!/4Dt1O~ t23/2!, ~2.24!

showing thatC decays liket21/2 as t→`. This asymptotic
behavior is the same as that of^u(x,t)& as seen from~2.13!.

The second limiting case is when the distance betweenx8
and x becomes large. If we keepx and t finite values and
take the limit x8→`, we find with the use of~A10! and
~A11! the following expression:

C~x8,t;x,t !;2
2

a2
@azI~Ap,z,b!2J~Ap,z,b!#x823

1O~x824!. ~2.25!

Although we have dealt with the equal-time correlation
functions, we can calculate the general correlation functions
for different times in the same way. For instance, if we use
Eqs.~2.3b! and ~2.7!, we obtain

^u~x8,t8!u~x,t !&5
1

p E
2`

` E
2`

`

us~x22ADty,t !us

3~x822mADty22AmDut82tuy8,t8!

3e2~y21y82!dy dy8, ~2.26a!

where

us~x,t !5
a

a2~x1at2j0!
211

, ~2.26b!

m5
t1t82ut2t8u

2t
. ~2.26c!

Since the investigation of the asymptotic behavior of~2.26!
is somewhat involved, the detailed analysis is not described
here and will be reported elsewhere.

B. Periodic wave

1. Mean value

Here, we shall develop an analysis for a periodic solution
of Eq. ~2.1!. One interesting feature of the periodic solution
is that it can be expressed in terms of an elementary function
unlike the periodic solution of the KdV equation, which is
represented by Jacobi’s elliptic function. Explicitly, it reads
in the form @8#

u~x,t !5
k

2

sinhf

cosh1coshf
, ~2.27a!

with
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h5k~x2j!, f5tanh21~k/a! ~f.0!, ~2.27b!

wherek represents the wave number andj is given by~2.6b!.
Note that the above periodic wave reduces to the solitary
wave ~2.6! in the long-wave limitk→0. Actually, if we re-
placej0 by j01p/k and take the limitk→0 while keepinga
a finite value, this result follows immediately.

To calculate the mean value ofu, we first modify Eq.
~2.27! in the form of an infinite series as

u~x,t !5
k

2
1
k

2 (
n51

`

~21!n@en~ ih2f!1en~2 ih2f!#.

~2.28!

The convergence of this series is obvious becausef is a
positive quantity. Taking the ensemble average with use of
the formula~2.3a!, we obtain the following result:

^u~x,t !&5
k

2
1k(

n51

`

~21!ne2n2k2Dt2nfcos~nkz!.

~2.29!

One can observe that the above average also obeys the dif-
fusion equation~2.10! and reduces to the corresponding av-
erage~2.9! for the soliton in the long-wave limit. The asymp-
totic form of Eq.~2.29! for large time is readily derived as

^u~x,t !&;
k

2
1k(

n51

`

~21!ne2n2k2Dtcos~nkz!

5
k

2
u4S kz2 ,qD ~q5e2k2Dt!, ~2.30!

whereu4 is Jacobi’s theta function defined by@15#

u4~z,q!5112(
n51

`

~21!nqn
2
cos~2nz!

~q5eipt, Imt.0!. ~2.31!

We see from this expression that the average value of a pe-
riodic wave tends to a constant valuek/2 in the limit of
infinite time.

2. Correlation function

The calculation of the correlation function is performed
by following the similar procedure to that for the soliton.
Omitting the detail, we quote only the final result. It is given
by an infinite series of the form

^u~x8,t !u~x,t !&5
k2

4 F112c11c1(
n51

`

~21!ne2n2k2Dt2nf

3~cosnkz81cosnkz!

1c2(
n51

`

~21!ne2n2k2Dt2nf

3~sinnkz82sinnkz!G , ~2.32a!

with

c15
2ak

a21k22~a22k2!cosk~z82z!
, ~2.32b!

c25

2k2cot
k

2
~z82z!

a21k22~a22k2!cosk~z82z!
. ~2.32c!

In the long-wave limitk→0, one can easily confirm that this
expression reduces to the corresponding one for the soliton
~2.20!. Also the large time asymptotic of Eq.~2.32! with
fixed z8 andz is found to be as

^u~x8,t !u~x,t !&;
k2

4 F11c11
c1
2 H u4S kz82 ,qD

1u4S kz2 ,qD J 1c2(
n51

`

~21!ne2n2k2Dt

3~sinnkz82sinnkz!G . ~2.33!

III. RANDOM BOTTOM TOPOGRAPHY

In this section, we shall study the propagation character-
istic of an algebraic soliton under the influence of random
bottom topography. For the sake of simplicity, however, the
external flow field is assumed to be constant. The basic equa-
tion is now written in the form

ut1Gux24uux2Huxx5gBx , u5u~x,t !, ~3.1!

where G is defined by~1.2! but in the present case it is
independent of time. As seen from Eq.~3.1!, the effect of
random bottom topography acts as an external force where
the parameterg characterizes the magnitude of topography.
In the following analytical treatment of the problem, we elu-
cidate weak topographic effects on the dynamics of an alge-
braic soliton. In other words, we assumeg!1. This enables
us to apply a direct soliton perturbation theory for the per-
turbed BO equation developed recently@12,13#.

In order to proceed further with the analysis, we must
specify the nature of the random functionB(x). We shall
consider the following two cases separately. The first case is
that the bottom profile itself changes randomly while for the
second case, the gradient of the bottom profile, i.e.,Bx(x)
exhibits a random behavior. Both random functions are as-
sumed to be Gaussian white noise whose characteristics are
similar to those given by Eq.~2.2!. Although it is possible to
calculate various statistical quantities on the basis of the
Gaussian stochastic process, we shall restrict our consider-
ation to evaluate the mean value ofu and examine its asymp-
totic behavior for large time.

A. Random change of bottom topography

When the profile of bottom topography changes according
to the Gaussian white noise, the corresponding stochastic
process may be characterized by the relations
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^B~x!&50, ^B~x!B~y!&52Dd~x2y!, ~3.2!

together with the relation similar to~2.2a!. The procedure for
calculating the mean valuêu(x,t)& is precisely the same as
that which has been used in Sec. II for the case of random
flow field. In the present situation, however, the correspond-
ing calculation cannot be performed exactly because Eq.
~3.1! is no longer an integrable NEE even if the parameterg
is very small. To overcome this difficulty, we shall here em-
ploy a direct soliton perturbation theory which can be appli-
cable to a wide class of NEE’s including the forced BO
equation.

Let us first begin with a short summary of the perturbation
theory that relies upon the multiple time scale expansion
@12,13#. The problem under consideration is to solve the ini-
tial value problem of Eq.~3.1! under the initial condition

u~x,0!5
a0

a0
2~x2j0!

211
, ~3.3!

wherea0 andj0 are initial values of the amplitude and posi-
tion of the soliton, respectively. We first expandu in powers
of the small parameterg as

u5u01gu11••• . ~3.4!

Since the perturbation is very small, we can expect that the
leading termu0 would remain close to the soliton solution
~2.6! of the BO equation. However, the amplitudea and the
positionj would suffer slow modulation due to the action of
the perturbation. A direct substitution of Eq.~3.4! into ~3.1!
shows thatu0 yields a secular term proportional tot. In order
to avoid this unphysical behavior, we demand nonsecular
conditions, which in the present case turn out to be as fol-
lows @7#:

da

dt
52

4g

p E
2`

`

g2Bxdx[2
4g

p
~g2 ,Bx!, ~3.5a!

dj

dt
5G2a1

4g

p
~g1 ,Bx!, ~3.5b!

where

g15
x2j

a2~x2j!211
, ~3.6a!

g252
a

a2~x2j!211
. ~3.6b!

With the solution of Eq.~3.5!, u0 is now represented by

u0~x,t !5
a

a2~x2j!211
. ~3.7!

The above expression is valid for large time up to orderg21.
Beyond this time, one must take into account the next-order
term u1. In the following discussion, we shall confine our-
selves to the leading-order analysis. Thus, the problem re-
duces to solve a system of equations~3.5!. For a special
functional form ofB, for example,B(x)5lb/[(bx)211]
~b, l are const!, we have found that it becomes a completely

integrable system@7#. Since in the present problemB(x) is
not specified except its ensemble average~3.2!, one cannot
solve Eq.~3.5! exactly. Therefore, we employ a successive
approximation by expandinga andj in powers ofg as

a~ t !5a01ga1 , ~3.8a!

j~ t !5 j̄1gj1 , ~3.8b!

wherej̄5(G2a0)t1j0 . Substituting Eq.~3.8! into ~3.5!, we
obtain, after integrating the resultant equations witht, the
explicit expressions ofa1 andj1 as follows:

a152
4

p E
0

t

~g2
~0! ,Bx!dt8, ~3.9a!

j15
4

p E
0

t

dt8E
0

t8
~g2

~0! ,Bx!dt91
4

p E
0

t

~g1
~0! ,Bx!dt8.

~3.9b!

Here

g1
~0!5g1ug505

x2 j̄

a0
2~x2 j̄ !211

, ~3.10a!

g2
~0!5g2ug5052

a0

a0
2~x2 j̄ !211

. ~3.10b!

We are now in a position to calculate the mean value of
u0 that is given by Eq.~3.7! together with Eqs.~3.8! and
~3.9!. If we use Eqs.~2.7!, ~2.8!, and~3.8!, it can be written
within the approximation correct up toO~g! as

^u0~x,t !&;
1
2 K ~a01ga1!E

2`

`

exp„i k̃@a0~x2 j̄ !

1g$a1~x2 j̄ !2a0j1%#2uk̃u…dk̃L , ~3.11!

where we have introduced a new integration variablek̃[k/a.
To evaluate the above ensemble average, we note thata1 and
j1 are linear functions of the Gaussian random functionB
with zero mean as seen from Eq.~3.9! and hence we can use
the formulas ~2.4! and ~2.5!. In view of the formula
(11g]/]x) f (x)5 f (x1g)1O(g2), the final result is ex-
pressed compactly in a form analogous to Eq.~2.9! as fol-
lows:

^u0~x,t !&;E
0

`

e2~1/2!g2b1k
22k/a0cosk~x01g2x1!dk,

~3.12a!

with

b15
^a1

2&~x2 j̄ !2

a0
2 22

^a1j1&~x2 j̄ !

a0
1^j1

2&, ~3.12b!

x05x2 j̄, ~3.12c!
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x15
^a1

2&

a0
2 ~x2 j̄ !2

^a1j1&
a0

. ~3.12d!

The averageŝa1
2&, ^a1j1&, and ^j1

2& in the expressions ofb1
andx1 are easily computed with the use of Eqs.~3.2!, ~3.9!,
and ~3.10!. The results are given by

^a1
2&5

32D

p

a0
~G2a0!

2

t2

t214
, ~3.13a!

^a1j1&52
16D

p

1

~G2a0!
3

t3

t214
, ~3.13b!

^j1
2&5

32D

p

1

a0~G2a0!
2 F12 t2

~G2a0!
2 1

2~G22a0!

a0~G2a0!
2

3 lnS 11
t2

4 D 1
G23a0

a0
2~G2a0!

t2

t214G , ~3.13c!

wheret5a0(G2a0)t.
We now investigate the limiting behavior of various av-

erages obtained above in some detail. First, we consider the
casea0ÞG. In the limit of t→0, the expressions~3.13! re-
duce to

^a1
2&;

8Da0
3

p
t2, ~3.14a!

^a1j1&;2
4Da0

3

p
t3, ~3.14b!

^j1
2&;

8D

pa0
t2, ~3.14c!

whereas in the limit oft→`, they behave like

^a1
2&;

32D

p

a0
~G2a0!

2 , ~3.15a!

^a1j1&;2
16D

p

a0
~G2a0!

2 t, ~3.15b!

^j1
2&;

16D

pa0~G2a0!
2 t

2. ~3.15c!

The asymptotic behavior of^u0(x,t)& for large t~;g21! and
largex such thatx0 is fixed is now found from Eqs.~3.12!
and~3.15! with the aid of Eq.~A8!. The result is represented
by a Gaussian packet of the form

^u0~x,t !&;
1

g
S p

2b̃1
D 1/2 expF2

~x01g2x̃1!
2

2g2b̃1
G ,

~3.16a!

with

b̃15
16D

pa0~G2a0!
2 t

2, ~3.16b!

x̃15
16D

p~G2a0!
2 t. ~3.16c!

Thus, the amplitude of the averaged soliton decays ast21

and the width grows ast so that the area*2`
` ^u0(x,t)&dx is

conserved. The latter result also follows directly from Eq.
~3.1!. The functional form of Eq.~3.16! is exactly the same
as the asymptotic form~2.13! obtained for the random flow
field. However, in the present case, the expression~3.16!
exhibits a small amount of the phase shiftg2x̃1 caused by the
interaction between the soliton and the random bottom to-
pography.

Next, we shall briefly discuss the behavior of^u0(x,t)&
when the conditiona05G holds. This situation occurs pro-
vided that the fluctuating component of the external flow
from the phase velocity of the linear wave just coincides
with the initial velocity of the soliton. It then turns out that
Eqs.~3.13! reduce to the expressions

^a1
2&5

8Da0
3

p
t2, ~3.17a!

^a1j1&52
4Da0

3

p
t3, ~3.17b!

^j1
2&5

8D

pa0
S t21 a0

4t4

4 D . ~3.17c!

The large time asymptotic of̂u0& corresponding to Eq.
~3.16! takes the form

^u0~x,t !&;
1

g
S p

2b̃1
D 1/2 expF2

~ x̃01g2x̃1!
2

2g2b̃1
G ,

~3.18a!

with

b̃15
2Da0

3

p
t4, ~3.18b!

x̃05x2j0 , ~3.18c!

x̃15
4Da0

2

p
t3. ~3.18d!

This profile shows a Gaussian packet decaying ast22. How-
ever, when compared with the first case~3.16!, the center
position of the packet initially located atx5j0 moves to the
left direction more slowly with a velocity proportional to
(gt)2.

B. Random change of the gradient of bottom topography

Finally, we shall consider the evolution of an algebraic
soliton when the source of randomness lies in the gradient of
bottom topography. Its statistical properties corresponding to
~3.2! are now characterized by the relations

^Bx~x!&50, ^Bx~x!By~y!&52Dd~x2y!. ~3.19!
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Since the calculation of the mean value ofu0 parallels that of
the previous one for the random bottom topography, we shall
describe only the main results.

The mean valuêu0(x,t)& takes the same form as Eq.
~3.12! where the averages corresponding to Eq.~3.13! are
now written as

^a1
2&5

32D

pa0~G2a0!
2 Ft tan21

t

2
2 lnS 11

t2

4 D G ,
~3.20a!

^a1j1&52
32D

pa0
2~G2a0!

3 Ft2tan21
t

2
2t lnS 11

t2

4 D G ,
~3.20b!

^j1
2&5

32D

pa0
3~G2a0!

4 F43 t21
2

3
~t323t!tan21

t

2

2~t22 2
3 !lnS 11

t2

4 D2
2a02G

a0
t2

12S 2a02G

a0
D 2H t tan21

t

2
2 lnS 11

t2

4 D J G .
~3.20c!

We now investigate the asymptotic behavior of^u0& for
two cases,a0ÞG and a05G, separately. For the first case
a0ÞG, Eqs.~3.20! reduce, in the limit oft→0, to

^a1
2&;

16a0D

p
t2, ~3.21a!

^a1j1&;2
8a0D

p
t3, ~3.21b!

^j1
2&;

16D

pa0
3 t

2, ~3.21c!

and in the limit oft→`, they behave like

^a1
2&;

16D

uG2a0u
t, ~3.22a!

^a1j1&;2
16D

uG2a0u
t2, ~3.22b!

^j1
2&;

32D

3uG2a0u
t3, ~3.22c!

Hence, the large time asymptotic is exactly the same as
~3.16a! with b̃1 and x̃1 given by

b̃15
32Da0

2

3uG2a0u
t3, ~3.23a!

x̃15
16D

a0uG2a0u
t2. ~3.23b!

Thus, the initial profile of algebraic type approaches asymp-
totically a Gaussian packet whose amplitude decays ast23/2.

For the second casea05G, on the other hand, one obtains
from Eq. ~3.18! the exact expressions

^a1
2&5

16Da0
p

t2, ~3.24a!

^a1j1&52
4Da0

p
t3, ~3.24b!

^j1
2&5

16D

pa0
3 S t21 a0

4t4

8 D . ~3.24c!

The asymptotic form of̂u0(x,t)& for large time is found to
coincide with Eq.~3.18! exceptb̄1 and x̄1, which are now
given by

b̃15
2Da0

p
t4, ~3.25a!

x̃15
8D

p
t3. ~3.25b!

The above analysis implies that the profile of^u0(x,t)& ap-
proaches a Gaussian packet with the decreasing amplitude as
t22.

IV. SUMMARY AND OUTLOOK

In this paper, we have introduced the stochastic BO equa-
tion that models the propagation of nonlinear random waves
in a simple two-layer fluid system with uneven bottom to-
pography and studied the effect of randomness on the dy-
namics of soliton and periodic wave. Under the assumption
of the Gaussian stochastic process for the random field, ana-
lytical calculations have been performed for obtaining vari-
ous statistical quantities.

In the case of the flat bottom topography, the basic equa-
tion turns out to be completely integrable. Thanks to this
fact, we were able to evaluate exactly various mean values as
well as the correlation functions for both soliton and periodic
wave. It was found that the large time asymptotic of an al-
gebraic soliton approaches a Gaussian wave packet with de-
caying amplitude and growing width and that of a periodic
wave is represented by Jacobi’s theta function. The latter is
of particular interest because the existing literatures are
mainly concerned with the calculation of the mean value of
the soliton field. See, for example, Ref.@16# for the analysis
based on the stochastic KdV equations.

When the bottom topography changes randomly, on the
other hand, we have employed a direct soliton perturbation
theory to obtain the mean value of an algebraic soliton under
the assumption of small topographic effect. The asymptotic
behavior of the soliton was found to be the same as that of
the integrable case, but in the present situation the Gaussian
packet suffers a small amount of the phase shift caused by
the interaction between the soliton and the random bottom
topography.

The generalization of the present work to the case in
which the field is composed of many solitons is an interest-
ing problem. In particular, the effect of randomness on the
interaction process of solitons is worth studying. In this re-
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spect, we remark that the effect of higher-order nonlinearity
and dispersion on the interaction of two algebraic solitons
was investigated recently while applying a direct multisoli-
ton perturbation theory to a higher-order BO equation
@12,13#. In the present research, we have performed the per-
turbation analysis only for a soliton. However, the corre-
sponding one for a periodic wave is important in connection
with the modulation phenomenon of the wave.

Although the stochastic BO equation seems to be rather
model specific, we may introduce more general stochastic
NEE’s. One example is the stochastic version of the interme-
diate long-wave equation@17# that reduces to the stochastic
BO equation in deep-water limit and to the stochastic KdV
equation in shallow-water limits. The approach described in
the present paper can be applied to the above equation.

APPENDIX

In this appendix, we shall describe some properties of the
integrals often used in evaluating various statistical quanti-
ties. Let us first define the integralsI andJ by

I ~a,b,g!5E
0

`

e2gk22akcosbkdk, ~A1!

J~a,b,g!5E
0

`

e2gk22aksinbkdk, ~A2!

wherea andg are positive parameters andb is a real param-
eter. These integrals are expressed in terms of the error func-
tion as@18#

I ~a,b,g!5
1

4 S p

g D 1/2FexpF ~a2 ib!2

4g G H 12erfS a2 ib

2Ag
D J

1expF ~a1 ib!2

4g G H 12erfS a1 ib

2Ag
D J G , ~A3!

J~a,b,g!52
i

4 S p

g D 1/2FexpF ~a2 ib!2

4g G H 12erfS a2 ib

2Ag
D J

2expF ~a1 ib!2

4g G H 12erfS a1 ib

2Ag
D J G . ~A4!

The error function defined by

erf~z!5
2

Ap
E
0

z

e2s2ds, ~A5!

has a Taylor series expansion forz→0

erf~z!5
2

Ap
(
n50

`
~21!nz2n11

n! ~2n11!
, ~A6!

and an asymptotic expansion forz→`

erf~z!;12
1

Ap

e2z2

z F11 (
n51

`

~21!n
~2n21!!!

~2z2!n G .
~A7!

When the conditionsa!Ag and ubu!Ag hold, I andJ are
expanded as

I ~a,b,g!;
1

2 S p

g D 1/2e2~b22a2!/4gF12
a

Apg
1O~g21!G ,

~A8!

J~a,b,g!;
1

2 S p

g D 1/2e2~b22a2!/4g

3F b

Apg
2

ab

2g
1O~g23/2!G , ~A9!

whereas forb@Ag, they take the forms

I ~a,b,g!;
a

a21b2 F12
2~a223b2!

~a21b2!2
g1O~g2!G ,

~A10!

J~a,b,g!;
a

a21b2 F12
2~3a22b2!

~a21b2!2
g1O~g2!G .

~A11!

The following formulas are also useful for calculating
various mean values ofu:

]I

]a
5

a

2g
I1

b

2g
J2

1

2g
, ~A12!

]J

]a
5

a

2g
J2

b

2g
I , ~A13!

]2I

]a2 5
1

4g2 ~a22b212g!I1
ab

2g2 J2
a

4g2 , ~A14!

]2J

]a2 52
1

4g2 ~a21b222g!J1
b

4g2 . ~A15!
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