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Stochastic Benjamin-Ono equation and its application
to the dynamics of nonlinear random waves
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The stochastic Benjamin-Ono equation is introduced, which models the propagation of nonlinear random
waves in a two-layer fluid system with and without uneven bottom topography. In the case of the flat bottom,
the effect of the external random flow field on the evolution of both soliton and periodic wave is investigated.
In particular, the mean value and the correlation function of these nonlinear wave fields are calculated exactly
under the assumption that the flow field obeys the Gaussian stochastic process with a white noise. It is found
that in the limit of large time, the mean value of an algebraic soliton approaches a Gaussian wave packet
whereas that of a periodic wave is represented by Jacobi’s theta function. In the case of the uneven bottom, a
perturbation analysis is performed to evaluate the mean value of an algebraic soliton under the influence of
random change of bottom topography. The large time asymptotic of the soliton is shown to exhibit a Gaussian
wave packet with a small amount of the phase shift caused by the interaction between the soliton and the
random bottom topographyS1063-651X96)05112-4

PACS numbgs): 47.55.Hd, 03.40.Kf, 05.48:j, 02.50—r

I. INTRODUCTION time evolution of interfacial waves in a two-layer fluid with
uneven bottom topograpHy]. The equation is written in a
The study of nonlinear wave propagation has made redimensionless form as follows:
markable progress owing to the development of various ex-
: : : : 3a AS aF?
act methods of solutions for solving nonlinear evolution Fe1)p— —— ~~%H _7 B
. \ . . . 7+ ( ) 7 7 7x Nxx= X

equations (NEE's). In particular, the inverse scattering 2 2 2
method has enabled us to solve the initial value problems of (1.19
a wide class of NEE’s including the Korteweg—de Vries
(KdV), nonlinear Schrdinger and sine-Gordon equations
[1]. While the soliton solutions of these physically important
NEE’s are essentially nonlinear objects that cannot be o
tained from the linear theory, they only give an idealized
descriptiorj of }Jnderlying physical phenomena. In most regl = p(y,t)
physical situations, however, the system is affected by vari- Hn(x,t)= Pl y—x
ous perturbations. These may be occasionally random func-

tipns in space and time variables. It is probable that the Me5nd the subscriptsandx appended to; andB denote partial
dium parameters such as the temperature and the density gfterentiation. The parametersand 5 measure the magni-

fluid have randomly fluctuating components. Furthermoreyde of nonlinearity and dispersion, respectively, and it is
the randomness may originate from external forces as well agssumed thas=0(«) in the derivation of Eq(1.1). When
initial and boundary conditions subject to the system. Oncehe fluid bottom is flat, i.e.B=0, Eq. (1.1) reduces to the
these characteristics are introduced in the system, the resulirell-known Benjamin-Ono(BO) equation[8,9]. Its math-
ing model equations would contain random variables an@égmatical structure has been studied extensi{g&ly11. Re-
hence they become so-called stochastic evolution equationsarkably, the soliton solution has been found to be of the
For instance, in the context of water wave problems, thelgebraic type unlike the usual soliton solution expressed in
constant flow field imposed on the system may have ranterms of exponential functions and hence it is sometimes
domly fluctuating components. Also, the irregular change ofcalled an algebraic soliton. If¥], the dynamics of an alge-
the bottom topography may act as a random force on theraic soliton have been investigated in detail on the basis of
wave dynamics. The problem of the propagation of nonlineaEq. (1.1) while employing a direct soliton perturbation
random waves is of current interest in the world of physicstheory. We showed that when the Froude number is close to
and engineering. As for the present stage of its developmenanity, the solutions to the dynamical equations for the soliton
some review papef2-4] and bookg5,6] are now available parameters exhibit a variety of phenomena, such as the cap-
that are mainly concerned with the dynamics of solitons unture and repulsion of the soliton by topography and the oc-
der various random perturbations. currence of solitonlike phase shift due to the interaction of
Recently, we have derived a model NEE describing thethe soliton with topography.
The purpose of the present paper is to study the dynamics
of nonlinear waves when the randomness comes into the sys-
*Electronic address: matsuno@po.cc.yamaguchi-u.ac.jp tem under consideration. To be more specific, we consider

Here, n=n(X,t) is the interfacial elevatiorB=B(x) repre-
sents the unevenness of the bottom topographys the
Froude numberA is the density ratio;y is a positive con-
stant,H is the Hilbert transform operator given by

dy, (1.1b
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the situation where the flow field imposed on the system is This equation may be called the stochastic BO equation since
close to the phase velocity of the linear wave. In addition, the coefficientl'(t) of u, is a random function of time. We
we assume thal) is a slowly varying random function of note that Eq(2.1) can be reduced to a standard form of the
time. In terms of the Froude number defined By U/c,, BO equation by a Galilean transformatiom=t and

these statements may be represented as X=x— [t (s)ds, implying that Eq.(2.1) is a completely
integrable NEE.
F=1+al'(at), (1.2 Let us now specify the nature of the random functlan

) ] o ) While various types of randomness appear in real physical
wherel is a random function whose characteristics will be prob|emS, we shall here confine ourselves to the Gaussian

specified later. At this stage, it is convenient to rescale thguhite noise defined by the averages
variables according tb— (A &/ a?)t, x— (8l a)x, n—(8/3)u,
and B—(16/3F2)B in which t is transformed into a slow

time due to the ordering=0(a). Then, Eq.(1.1) takes the E IKC(t)I'(t;)), n even

following form: (LT (ty)--T(ty))=
ollowing form 0. n odd.

U+ (tu,—4uuc—Hu,=yBy, u=u(xt). (1.3 (2.2a
While the above equation has been guessed simply from Eq. (I'(t))=0, (I(t)l(t))=2Ds(ti—t;)). (2.2b

(1.1, its exact derivation can be made along the same line as

that used in the derivation of E(L.1) [7]. In fact, itis only  Here, the ensemble average is denoted-by, the symbol
necessary for this purpose to change the upstream boundasyT means that we multiply/2 products(I'(t,)I'(t;)) and
condition for the external flow fieltl in the basic system of sum over thén—1)!! different combinationsD is a positive
hydrodynamic equations. It turns out that under the orderingonstant characterizing the strength of the correlation, and
6=0(a), the resulting evolution equation fop takes the  gt,—t,) is Dirac’s delta function. Relatiof2.20) shows that
same form as Eq(1.1), the only difference being that the the correlation time is negligibly short relative to other time
Froude numbeF (=U/c,) is not a constant but depends on scales. This is not essential in the following analysis and
time. introduced only for the purpose of simplifying the calcula-
In Eq. (1.3), the randomness may come from the fluctua-tion. Indeed, one can replace the delta function by an arbi-
tion I'(t) of the flow field and/or the irregular bottom topog- trary function f(Jti—t;|/t;) with t; being the correlation
raphy B(x). In this paper, we shall particularly investigate time. In calculating statistical quantities, the following for-
the following three cases separatelyi) I'a random func-  mulas are quite useful that follow with the use(@f2) [14]:
tion, B=0; (ii) I'=const, B a random function; (iii)
I'=const,B, a random function. In Sec. Il, we consider ¢ ,
case(i). We then easily observe that E(L.3) becomes a <eXp<ikf F(s)ds) > =e KDY,
completely integrable NEE. In view of this fact, various sta- 0
tistical quantities such as the mean value and the autocorre-

lation function for both soliton and periodic waves are cal- o[t ) "t
exp ik [ T'(s)ds+ik’ | TI'(s)ds
0 0

(2.33

culatedexactlyunder the assumption that the random fiEld
obeys the Gaussian process with a white noise. Subse-
quently, the large time asymptotics of these averages are
examined in some detail. In Sec. Ill, we consider cages

and (iii) where an exact treatment similar to that for cége

is impossible because of the presence of external random (ef>:e(1/2><f2>, (2.4
forces. Here, we shall perform an analysis based on a direct

soliton perturbation theory developed recenil®,13 to cal- 2

culate t?le mean value o%/an algepbraic solitogn under the as- (fe9)=(fg)e! ¥, 29
sumption of small external forces, i.ey<1 with B (B,)

being a Gaussian white noise in ca@@ [case(iii)]. The Here,f andg are linear functions of Gaussian random func-
asymptotic behavior of the averaged soliton field is also elutions with zero mean.

cidated. In Sec. IV, we summarize the results achieved in One advantage of introducing completely integrable sto-
this paper and refer to some prob|ems left for a future Work_ChaStiC NEE’s is that various statistical quantities can be cal-
In the Appendix, the formulas for certain integrals are pre-culated exactly without recourse to any approximation. We

sented that are useful in evaluating various mean values. shall now perform the calculation for both soliton and peri-
odic waves. In the case of the soliton, we shall calculate the

mean values ofi" (n=1,2,..), uHu,, andT'u? as well as the
equal-time autocorrelation function. For the periodic wave,
In this section, we shall focus our attention on the dynamwe shall restrict our consideration only to the mean value
ics of nonlinear random waves governed by Eg3) in the  and the equal-time autocorrelation function. We show that in
special case of the flat bottom topography. Equating) is  the long-wave limit, these quantities reduce to the corre-
now simplified as sponding ones for the soliton. The analysis developed below
is easily generalized to the case of multisoliton and multipe-
u+I'(t)u,—4uu,—Hu,=0, u=u(xt). (2.1 riodic wave solutions.

=exp(—[k®Dt+kk'D(t+t'—|t—t'|)+k'2Dt']), (2.3

Il. RANDOM FLOW FIELD



A. Soliton
1. Mean value

Equation(2.1) exhibits on a soliton solution of the form
[8,9]

u(x,t)= (2.6a

a

with

&= ftF(S)dS—at+§0, (2.6b
0
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Next, we shall evaluate the large time asymptotic of
(u(x,t)). Using the expansiofA8), the leading term of the
expansion is readily found to be as follows:

vz (x+at—&y)?
ex ant |

w

<U(X,t)>~ ( 4Dt

(2.13

Thus, we can see that the profile of the averaged soliton
tends to a Gaussian packet with velocity equal to the initial
velocity of the soliton and the amplitude decreases a&.
Since the width of the averaged soliton grows lik&, its
area is conserved, i.ef” (u(x,t))dx= in the present
case, which is obtained by integratif®9) with respect to.

The conservation of the area also follows directly from Eq.

wherea and ¢ are the amplitude and position of the soliton, (2.0).

respectively, andy is an initial value of¢. Note thaté be-

In the same way, we can calculate various mean values.

comes a stochastic variable through the dependence of t¥¥€ shall present only some of them:

random functionl’.

In order to calculate the mean value u(x,t), it is con-
venient to introduce the Fourier transform wfand its in-
verse transform by the relations

a(k,t):f u(x,tye~*xdx, 2.73
1 o .
u(x,t)=—f a(k,t)e’**dk. (2.7
27T —
It immediately follows from(2.6a and(2.73 that
G(k,t)= e iké-Ik/a, (2.9

By substituting(2.8) into (2.7b and taking the ensemble
average with the aid of the formul2.33, we arrive at the
following integral representation for the mean valueuof

(u(x,b))= fowe*D‘kZ*k’a cok(x+at—&)dk=1(\/p,z,b),
(2.99

with

b=Dt, (2.9

p=1/a?, z=x+at—¢g,

where we have introduced the integtatlefined by(Al) in

the Appendix. It is worthwhile to remark here that the above

mean value satisfies the diffusion equation

au(x,)) ¥ u(xb))

db 97> (210
subject to the initial condition
= 2 2.1
<U(X-t)>|b:0_(az)—2+1- (2.11

Owing to this fact, we can obtain a different form @f) as

_p2
e€

(u(x,t)>=i foo 2 dé
Jr J-= a%(z—2\b6)%+1

(2.12

] (-1t "t [1(Vp.zb)
<U (Xlt)>: (n_1)| 2 apnl|: \/B

(n=1,2,..), (2.19

# 1
(uHuX>=—(p a—p2+$)l(\/ﬁ,z,b), (2.15

923(\p,z,b)
—r (2.16

Here, the integrald and J are defined byAl) and (A2),
respectively.

Lastly, we remark that Eq(2.1) can be written in a
Hamiltonian form as

(T (t)u?(x,t))=2Dp

_d dlg 217
U= 5 Bu° (217
.3:f (3u+ fuHy,~ iTwddx. (217D

Hence, the mean value of the densityl fs easily evaluated
with the use of(2.14—(2.16 together with the formulas
(A12)—(A15). The resulting expression is, however, not writ-
ten down here.

2. Correlation function
The correlation function that we consider here is the fol-

lowing equal-time autocorrelation function:

C(X',t;x, 1) =(u(x’,t)u(x,t)) —(u(x’,1)){u(x,1)).
(2.18

The second term on the right-hand sidg®f18 has already
been given by2.9) and hence we shall now evaluate the first
term. We use the integral representati@7b) with (2.8) as
well as the formula2.39 to obtain

(u(x’,t)u(x,t))=%fw fm exfik'z' +ikz—Dt(k’ +k)?

—(|k'|+|k)/a]dk’ dk, (2.193
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where time asymptotic ofC while keepingz’ andz finite values. It

immediately follows from(2.21), (A8), and(A9) that
z=x+at—§&, z'=x'"+at—§&. (2.19n

12 ~2'%/4Dt 4 o—2%/4Dt
After some manipulations, this double integral is trans- C(x’,t;x,t)~§( )

. . . Dt 2051 2
formed into the sum of two single integrals as Dt a’(z'—2)°+4

12 _ 2
1 7' +7z e ? /4Dt_e z°/4Dt

a oo
(u(x’",Hu(x,t))= m fo (cokz +cokz) + oDtz —z (Z'—Z)[aZ(Z'—Z)2+4]
% e~ Dtk2=Kaq _ T —(2'2+72)4Dt -3/2
Dt © +O(t7%?),  (2.29
2

+ = 2572 showing thatC decays liket ¥ ast—. This asymptotic

zZ'—2z)[a“(z2'—2)“+4

( ta ) ] behavior is the same as that{af(x,t)) as seen fronf2.13).

e DtC—Ka The second limiting case is when the distance between

x fo (sinkz’ —sirkz)e dk. and x becomes large. If we keep andt finite values and

take the limitx’'—o, we find with the use ofA10) and
(220  (A11) the following expression:

Whenx' = x, this expression reduces to E§.14) with n=2. 2
In terms of the integrals andJ defined in the Appendix, the C(x",t;x,t)~— 22 [azl(\/p,z,b)—I(\p,z,b)]x’ 3
autocorrelation function is expressed as follows:

+0(x' ~%). (2.29
XD = e [1 (P2’ b) +1(Vp,2,b
Cx',tx )= 227 —2)2+4 [I(Vp.2".b)+1(Vp,z,b)] Although we have dealt with the equal-time correlation
functions, we can calculate the general correlation functions
n 2 for different times in the same way. For instance, if we use
(2 —2)[a%(z' —2)°+ 4] Egs.(2.3b and(2.7), we obtain
X[JI(Vp,z',b)—I(\p,z,b 1 (= (=
[3(Vp.2',0)=3(Vp.2b)] (u(x’ t)u(x, )= — f f ug(x—2+/Dty,t)ug
—1(\p,2',b)I (\/p,z,b). (2.21) el
This is a convenient form in evaluating the asymptotic be- X (X' =2u\Dty =2Vt —tly",t")
havior as shown below. If there are no correlations between Xe—(y2+y’2)dy dy, (2.263

I'(t) andT'(t'), i.e.,, D=0, one can perform the integrals in
(220 and obtain the relation (u(x’',t)u(x,t))  where
=(u(x’,t)){u(x,t)). It then follows from(2.18 that C=0,

which provides a check of the present analysis. We also re- a
mark that(2.19 can be expressed in a form analogous to us(x,t)= aZ(x+at—Eg)2r1’ (2.260
(2.12 as
' t+t —|t—t’
(u(x",HHu(x,t)) w= 2—1' (2.260
1 (= a%e

- de. Since the investigation of the asymptotic behaviof226)
Vi J - [a®(z' —2'b6)2+ 1][a2(z—2\/50)2+ 1] is somewhat involved, the detailed analysis is not described
(2.22  here and will be reported elsewhere.

It is worthwhile to mention here that the-point equal-time B. Periodic wave
correlation function is given by the integral representation

1. Mean value

{Uxa, DUlxz, 1)+ Ulxn, 1)) Here, we shall develop an analysis for a periodic solution

1 (= ale? of Eg. (2.1). One interesting feature of the periodic solution
=— ; > > de, is that it can be expressed in terms of an elementary function
Vo J-= Ij_q[a (21_2\/5‘9) +1] unlike the periodic solution of the KdV equation, which is

(2.23 represented by Jacobi’s elliptic function. Explicitly, it reads
in the form[8]
wherezj=x;+at—§&; (j=1,2,...n). One immediately sees .
that the expression.12 and (2.22 are special cases of i _E sinh¢
(2.23. uxn=> cosp+ coshp’
Next, we shall investigate the asymptotic behavioiCof
We consider two interesting cases. The first case is the larggith

(2.273
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n=k(x—§&), ¢=tanh ‘(k/a) (¢>0), (2.27n  Wwith

wherek represents the wave number ahid given by(2.6b. B 2ak 232
Note that the above periodic wave reduces to the solitary Cl_a2+ k’—(a’—k®)cok(z' —z2)’ (2.32n
wave (2.6) in the long-wave limitk—0. Actually, if we re-
place&, by &+ w/k and take the limik—0 while keepinga K
a finite value, this result follows immediately. 2k2cot§ (/-2

To calculate the mean value of we first modify Eq. Co= - . (2.320
(2.27) in the form of an infinite series as 2 a?+k?—(a®—k?)cok(z' —2)

K k= _ _ In the long-wave limitkk—0, one can easily confirm that this
u(x,t)y= §+ > Z (—1)"[e"i7= ) 4 en(=in=¢)] expression reduces to the corresponding one for the soliton
n=1 (2.20. Also the large time asymptotic of E@2.32 with
(228 fixed z' andz is found to be as

The convergence of this series is obvious becafiss a 2

positive quantity. Taking the ensemble average with use of (u(x',t)
the formula(2.33, we obtain the following result: '

k (o) kz'
u(x,t)>~z 1+cl+5 0,4 T,Q

K cc kz - _n2k2
<U(X,t)>:§+k2 (—1)ne_n2k2Dt_n¢CO$nkZ). +6, 7,(] ]+C2n§—:1 (=1)"e™ " k-Dt
n=1 =
(2.29
One can observe that the above average also obeys the dif- X (simkz —smnkz)}. (2.33

fusion equation2.10 and reduces to the corresponding av-
erage(2.9) for the soliton in the long-wave limit. The asymp-

totic form of Eq.(2.29 for large time is readily derived as Ill. RANDOM BOTTOM TOPOGRAPHY
‘ - In this section, we shall study the propagation character-
K _ 1\na—n2k2Dt istic of an algebraic soliton under the influence of random
{utx.t)) 2 +k,§1 (=1 cognk?) bottom topography. For the sake of simplicity, however, the
‘ . external flow field is assumed to be constant. The basic equa-
z K2 tion is now written in the form
=5 04(7,q) (g=e kDY, (2.30

ui+Tug—4uu—Hu,,=yBy,, u=u(xt), (3.1
where 6, is Jacobi’s theta function defined p¥5]
whereI" is defined by(1.2) but in the present case it is

i ) independent of time. As seen from E®.1), the effect of
94(Z,Q)=1+22 (—1)"g" cog2nz) random bottom topography acts as an external force where
=t the parametety characterizes the magnitude of topography.
In the following analytical treatment of the problem, we elu-
cidate weak topographic effects on the dynamics of an alge-

. : braic soliton. In other words, we assume&l. This enables
We see from this expression that the average value of a pe- X

S . - s to apply a direct soliton perturbation theory for the per-
ir:g%li(ievgi?r\\/: tends to a constant vall#2 in the limit of turbed BO equation developed recerth2,13.

In order to proceed further with the analysis, we must
specify the nature of the random functi@(x). We shall
consider the following two cases separately. The first case is

The calculation of the correlation function is performed that the bottom profile itself changes randomly while for the
by following the similar procedure to that for the soliton. second case, the gradient of the bottom profile, Bg(x)
Omitting the detail, we quote only the final result. It is given exhibits a random behavior. Both random functions are as-
by an infinite series of the form sumed to be Gaussian white noise whose characteristics are
similar to those given by Ed2.2). Although it is possible to

(q=€"", Imr>0). (2.3)

2. Correlation function

, G - e n2K2Dt—ng calculate various statistical quantities on the basis of the
(ux", Hux,t))= o 1+2C1+01HZ1 (=1)% Gaussian stochastic process, we shall restrict our consider-
ation to evaluate the mean valuewénd examine its asymp-
X (comkZ +comkz) totic behavior for large time.
+c22 (—1)"e” n’k?Dt-n¢ A. Random change of bottom topography
n=1

When the profile of bottom topography changes according
to the Gaussian white noise, the corresponding stochastic

X (sinnkZ' —sinnkz) |, (2.329  process may be characterized by the relations
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(B(x))=0, (B(x)B(y))=2Ds(x—y), (3.2)  integrable system7]. Since in the present probleBy(x) is
not specified except its ensemble aver&ge), one cannot
together with the relation similar t@.23. The procedure for solve Eq.(3.5 exactly. Therefore, we employ a successive
calculating the mean valugi(x,t)) is precisely the same as approximation by expanding and ¢ in powers ofy as
that which has been used in Sec. Il for the case of random

flow field. In the present situation, however, the correspond- a(t)y=ap+ yaq, (3.89
ing calculation cannot be performed exactly because Eg. o
(3.2) is no longer an integrable NEE even if the parameter E(t) =&+ vEy, (3.8

is very small. To overcome this difficulty, we shall here em- L
ploy a direct s_oliton perturbation theory yvhich can be appli-where¢=(I' —a,)t+ £,. Substituting Eq(3.8) into (3.5), we
cable to a wide class of NEE’s including the forced BO gbtain, after integrating the resultant equations wittthe

equation. explicit expressions o0&, and ¢; as follows:
Let us first begin with a short summary of the perturbation

theory that relies upon the multiple time scale expansion 4 [t .
[12,13. The problem under consideration is to solve the ini- a=-— fo(gz ,Bydt’, (3.9a
tial value problem of Eq(3.1) under the initial condition

do

O gL

A (Y o A AP )
(33) gl_; Odt 0(92 1Bx)dt+; O(gl er)dt-

(3.9
wherea, and &, are initial values of the amplitude and posi-
tion of the soliton, respectively. We first expandn powers  Here
of the small parametey as

U=Ug+ YU+ . (3.4 N S (3.108
PO -

Since the perturbation is very small, we can expect that the
leading termug would remain close to the soliton solution a
(2.6) of the BO equation. However, the amplitudeand the g(20)=gz|y=o: - 2—0—. (3.10h
position ¢ would suffer slow modulation due to the action of ag(x—§)°%+1
the perturbation. A direct substitution of E@.4) into (3.1
shows thati, yields a secular term proportional toln order We are now in a position to calculate the mean value of

to avoid this unphysical behavior, we demand nonsecula¥o that is given by Eq(3.7) together with Eqs(3.8) and
conditions, which in the present case turn out to be as fol(3.9. If we use Eqs(2.7), (2.8), and(3.8), it can be written

lows [7]: within the approximation correct up ©(y) as
da 4y (= 4y . o ~ —
P fﬁmngxdxz—; (92,80, (353 (Uo(x,1)~ 3{ (a0+ yay) f exp(ik[ao(x—£)
ae 4y +yfay(x—8) - gt} - [K)dk), (31D
gr=T—a+— (91,80, (3.5 NA(X= )~ aoty)] - 8
where where we have introduced a new integration varikisik/a.
To evaluate the above ensemble average, we notajteatd
- , are linear functions of the Gaussian random funct®n
X—§ (3.69 £ li f i f the G i dom functi®

R P S :
9 a(x—§&°+1 with zero mean as seen from H§.9) and hence we can use

the formulas (2.4 and (2.5. In view of the formula

a (1+ yal 9x)f(x) =f(x+ y) +O(¥?), the final result is ex-
9=~ aZ(x—&)2+1° (3.60 pressed compactly in a form analogous to Ej9 as fol-
lows:

With the solution of Eq(3.5), ug is now represented by
a (Uo(X, 1))~ f e~ (V2701 Waocod(yo+ y2x1)dk,

Up(X,t) = 75— 3. 0
o= =7+ 1 39 (3.123

The above expression is valid for large time up to orget.  \ith
Beyond this time, one must take into account the next-order

termu;. In the following discussion, we shall confine our- a2 (x—£)2 a X—£&)
selves to the leading-order analysis. Thus, the problem re- b1=< V) 5 o 2< 1b)(x=4) +(&D), (3.12p
duces to solve a system of equatiof¥5). For a special ) 4o

functional form of B, for example,B(x)=\b/[(bx)?+1] _
(b, \ are const we have found that it becomes a completely Xo=X—§&, (3.129
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_<ai> — (&) ~ __ 16D
Xl_—ag—(x—g)— e (3.1209 Xl_ﬂ_(l—w—_ao)it- (3.169

The averagesa?), (a,&), and(£)) in the expressions df, ~ Thus, the amplitude of the averaged soliton decay$*.és
and y, are easily computed with the use of E¢3.2), (3.9,  and the width grows asso that the ared”..(uy(x,t))dx is

and(3.10. The results are given by conserved. The latter result also follows directly from Eq.
(3.1). The functional form of Eq(3.16 is exactly the same
5 32D ag 7 as the asymptotic forni2.13 obtained for the random flow
(ap)= 7 ([—ag)? 7°+4 (3133 field. However, in the present case, the expressRii6
exhibits a small amount of the phase shifi; caused by the
16D 1 3 interaction between the soliton and the random bottom to-
(ané)=—— T—ay)? 214’ (3.13h  pography.

Next, we shall briefly discuss the behavior (@fjy(x,t))
when the conditioray=1I" holds. This situation occurs pro-

2 _
<§2>: 32D 1 } T n 2(I'—2ap) vided that the fluctuating component of the external flow
Vo m ag(l—ag)? |2 (F—ag)®  ag(l'—ap)” from the phase velocity of the linear wave just coincides
2 [—3a 5 with the initial velocity of the soliton. It then turns out that
r —9%d T Egs.(3.13 reduce to the expressions
XIn| 1+ 7 +a§(l‘—ao) 22 (3.130
. 8Day
where r=ay(I" — ag)t. (ap)=——1t5 (3.173
We now investigate the limiting behavior of various av-
erages obtained above in some detail. First, we consider the 4Da3
giitéat%il“. In the limit of t—0, the expressioné3.13 re- (1é1)=— - St (3.17b
8Daj 8D agt*
2 0.2 2\ _ 2, 70
a3)~ t?, 3.14 = bt _
(ap~— (3.143 (&1) e L ) (3.179
4Dad The large time asymptotic ofuy) corresponding to Eq.
(a6 ~—— 2, (3.14B  (3.16 takes the form °
2, 8D , (ug(x t)>~l l) 1/2 expg — —(;O-‘- X’
<§l>~ 77_3-0 t ’ (3140 (S Y 2b1 2,),2b1
(3.183
whereas in the limit of —«, they behave like
with
(a?) 32D  ag (3.153
ay)~— T2 . ~ 2Dad
7 (I'-a) by="— %4, (3.18
1D _% 3.15
<a1§1> ar (F_ao)z ’ ( . b ’)‘(‘O:X_fo, (318()
16D 4Da3
2y 2 ~ _ 0.3
(&1) mzt : (3.159 Xi=——t. (3.189

The asymptotic behavior dig(x,t)) for larget(~y™*) and  This profile shows a Gaussian packet decaying 4sHow-
large x such thaty; is fixed is now found from Eqs3.12  ever, when compared with the first ca16), the center
and(3.15 with the aid of Eq.(A8). The result is represented position of the packet initially located at=&, moves to the

by a Gaussian packet of the form left direction more slowly with a velocity proportional to
(712
1/2
(ug(x t)>~} T ] - Yot X0’
o 0% 261 2y251 ' B. Random change of the gradient of bottom topography
(3.163

Finally, we shall consider the evolution of an algebraic
soliton when the source of randomness lies in the gradient of

with bottom topography. Its statistical properties corresponding to
_ 16D (3.2) are now characterized by the relations
bl:m t2, (3.16H _ _
ol =2, (Bu(X))=0, (By(X)By(y))=2Dd(x~y). (3.19
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Since the calculation of the mean valueugfparallels that of
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For the second casg=TI", on the other hand, one obtains

the previous one for the random bottom topography, we shafrom Eq. (3.18 the exact expressions

describe only the main results.

The mean valudugy(x,t)) takes the same form as Eq.

(3.12 where the averages corresponding to Ej13 are
now written as

_ 32D a1 T nl 1+
(ap)= magT—ag?| & 2 M+t 7 7
(3.203
B 32D 2t T il 14 7
(agﬁ——m T77lan E_T n Z ,
(3.20n
32D T
2 1
+_ J— —
(&)= 7T —ap? |3 72 (r*—37)tan” 5
2\ 2a,-T
_(2_2 JR 2
(°—3%)In 1+4 a T
+2 2801 ° tan? ——In 1+ -
o 7 tan > n 2 .
(3.200

We now investigate the asymptotic behavior(af) for

two casesag#I" and ap,=I", separately. For the first case

ap#I', EQs.(3.20 reduce, in the limit ot —0, to

16a,D ,
(a 1>~— , (3.213
8aOD 3
(ré1)~— t7, (3.21b
16D
(&)~ —0 ; (3.219
and in the limit oft—oo, they behave like
(ad)~ |F ag b (3.223
16D,
(aqé)~— T—ag ©" (3.22h
32D
()~ 3r—ag (3.229

16eDa, ,

(a?)= — t, (3.243
4Da,
(ayép)=— 2043, (3.24h
16D , apt*
(&)= 5 (3.249

The asymptotic form ofug(x,t)) for large time is found to
coincide with Eq.(3.18 exceptb, and x;, which are now
given by

~ 2Da
by=—— t4, (3.259

e
_8b t3. 3.25
Xl— p (3.25h

The above analysis implies that the profile(of(x,t)) ap-
prgaches a Gaussian packet with the decreasing amplitude as
-

IV. SUMMARY AND OUTLOOK

In this paper, we have introduced the stochastic BO equa-
tion that models the propagation of nonlinear random waves
in a simple two-layer fluid system with uneven bottom to-
pography and studied the effect of randomness on the dy-
namics of soliton and periodic wave. Under the assumption
of the Gaussian stochastic process for the random field, ana-
lytical calculations have been performed for obtaining vari-
ous statistical quantities.

In the case of the flat bottom topography, the basic equa-
tion turns out to be completely integrable. Thanks to this
fact, we were able to evaluate exactly various mean values as
well as the correlation functions for both soliton and periodic
wave. It was found that the large time asymptotic of an al-
gebraic soliton approaches a Gaussian wave packet with de-
caying amplitude and growing width and that of a periodic
wave is represented by Jacobi’'s theta function. The latter is
of particular interest because the existing literatures are
mainly concerned with the calculation of the mean value of
the soliton field. See, for example, Rg16] for the analysis
based on the stochastic KdV equations.

When the bottom topography changes randomly, on the
other hand, we have employed a direct soliton perturbation

Hence, the large time asymptotic is exactly the same agheory to obtain the mean value of an algebraic soliton under

(3.163 with b, and’y, given by

B ﬂ 3 (3.23a
173Ir- ao| :
16D
Y1=— o t2 3.23
X ao|l' —ay| ( b

the assumption of small topographic effect. The asymptotic
behavior of the soliton was found to be the same as that of
the integrable case, but in the present situation the Gaussian
packet suffers a small amount of the phase shift caused by
the interaction between the soliton and the random bottom
topography.

The generalization of the present work to the case in
which the field is composed of many solitons is an interest-

Thus, the initial profile of algebraic type approaches asymping problem. In particular, the effect of randomness on the

totically a Gaussian packet whose amplitude decays #%

interaction process of solitons is worth studying. In this re-
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spect, we remark that the effect of higher-order nonlinearityhas a Taylor series expansion or0

and dispersion on the interaction of two algebraic solitons .

was investigated recently while applying a direct multisoli- 2 2 (—1)nz2n+t

ton perturbation theory to a higher-order BO equation erf(z)= Jm & ni(2nt1) (A6)

[12,13. In the present research, we have performed the per-

turbation analysis only for a soliton. However, the corre-and an asymptotic expansion fpeo

sponding one for a periodic wave is important in connection

with the modulation phenomenon of the wave. 1 e? * (2n—1)!!
Although the stochastic BO equation seems to be rather ~ erf(z)~1——=——|1+ > (—1)" 2

model specific, we may introduce more general stochastic Vm =1 (A7)

NEE’s. One example is the stochastic version of the interme-
diate long-wave equatiofi7] that reduces to the stochastic \yhen the conditions:< Jy and|g|<\/y hold, | andJ are
BO equation in deep-water limit and to the stochastic KdVexpanded as
equation in shallow-water limits. The approach described in
the present paper can be applied to the above equation. 1 [ 7\ Y? S aia a )

~ | — - —a Y| _— -
I(a,B,7) 2(y> e {1 \/—+0(7 )1,

APPENDIX Y (A8)
In this appendix, we shall describe some properties of the 12
integrals often used in evaluating various statistical quanti- 17 (B a?)ly
ties. Let us first define the integrdlsandJ by ‘](“’B'V)“E y e
I(a,B,y)= fxe* - akeoggkdk, Al B apB _
NTY Y
Ja,B,y)= Jwef szfaksinﬁkd K, (A2)  Whereas foig> J7, they take the forms
0
- @ 2(a®—3pB2%) ) ]
wherea andy are positive parameters agds a real param- I(a,B,y)~ 21 B2 | 1T (a71 g2 y+0(y9)|,
eter. These integrals are expressed in terms of the error func- : (A10)
tion as[18]
[ 2(3a®—pB?) ]
1/2) . . @ 2
1w a—i a—i J(a,B,y)~ 1- +0O(y9)|.
(a,B,7)=~ —) ex (e 1B) 1—erf il By BT (g7 VT
4\ y 4y 2y (A11)

The following formulas are also useful for calculating
, (A3)  various mean values af:

(a+iB)? a+ip
+ex;{ 4y Hl erf( 2\/;)

J
|

al a B
o\ 12 _ig)2 i e ) (A12)
I I I 1
Ja,B, 7)== ) ex Gl 1-erf & A da 2y 2y 2y
4\y 4y 2.y
N_a B (A13)
+ip)? +i =53 51,
—ex —(a A) 1—erf(a B) . (A4) da 2y 2y
4y 2\y ,
ol _ 1 > apf @
The error function defined by W—ryz(a B +27’)|+2_723—4—72, (A14)
2 zZ 2 3% 1 B
erfz=—fe5ds, A5 i P Ty -
(2) 7 Jo (A5) —— 4y2(a +8 2)/)\]-1—472. (A15)
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