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Theory of acoustic radiation pressure for actual fluids
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A body irradiated by a sound field is known to experience a steady force that is called the acoustic radiation
pressure. This force plays an important role in many physical phenomena, such as cavitation, sonolumines-
cence, acoustic levitation, etc. The existing theory of acoustic radiation pressure neglects dissipative effects.
The present paper develops a theory that takes these effects into account, both dissipative mechanisms, viscous
and thermal, being considered. It is shown that, when they are no longer negligible, the dissipative effects
drastically change the radiation pressure. As a result, its magnitude and sign become different from those
predicted by the “classical” theory neglecting lossg81063-651X96)14411-1

PACS numbds): 47.55~t, 43.25+y, 47.90+a

[. INTRODUCTION relative to one another. The surrounding fluid is assumed to
be either a liquid or a gas, and the internal structure of the
When a body is subjected to a sound field, it experienceparticle to be any of a number of things, so that the particle
a mean force which is due to the nonlinear properties omay be a liquid drop, a gas bubble, a rigid or elastic sphere,
wave motion in fluids. This force, known as the acoustic@ Spherical shell, etc. The incident sound field is assumed to
radiation pressure, is an analog of the optical radiation pred?€ axisymmetric(sound fields of most interest in applica-
sure exerted by an electromagnetic wave on electrically ofions fall into this category In Sec. lll, to demonstrate the
magnetically responsive objects, but the acoustic force is ilissipative effects clearly, the general theory is applied to the
general much larger than its electromagnetic countefppart —case of a rigid sphere in a plane traveling wave field. Finally,
For this reason, the acoustic radiation pressure is found to b8 Sec. IV a summary of the results obtained in this paper is
useful in many applications. For example, it is used to levi-gven.
tate and position solid and liquid samples for the purpose of
containerless processing, which keeps them from contamina- Il. GENERAL THEORY
tion by physical contact with the walR,3]. This force also
plays an important role in the motion of bubbles undergoing
acoustic cavitation and sonoluminescefdk Let us consider an arbitrary particle immersed in a vis-
The theory of acoustic radiation pressure was first procous heat-conducting fluid and having the spherical shape at
posed by Lord Rayleigfs]. King [6] derived an expression rest. The fluid motion is governed by the following equations
for the radiation pressure on a rigid sphere, and Yosioka anbl4]:
Kawasima[ 7] extended his results to compressible spheres.

A. Problem formulation

Since then this subject has been investigated by many re- i N

searchergsee reviews i8—10). The majority of them, r?t(pv') (9Xk(0'k pUiLK). @)
following King and Yosioka and Kawasima, have assumed

the surrounding fluid and the medium inside the sphere to be ap n J ~0 5
ideal, i.e., inviscid and non-heat-conducting. Those few pa- ot a_xi(pvi)_ ' )
pers in which attempts have been made to examine dissipa-

tive effects on the radiation pressuigee a review if11]) s S dv; 9 oT

are not satisfactory from the standpoint of their generality, pT(EJrUia_xi = (ot P5ik)(9—)q<+{9—)(i( Ka_x,) ()

rigor, and completeness but predict new interesting phenom-

ena. This induced me to undertake a study that ségke in which o is the stress tensor, given by

obtain a general expression for the acoustic radiation pres-

sure exerted on a spherical particle in an actual, i.e., viscous v dug 2 dv; j

and heat-conducting, fluid under minimum limitations on pa- %k~ ~Pdik 7 Xy tox T3 ax Ok T 555““ S
rameters of this task, an@i) to investigate by comparison ' . .

with the theory for ideal fluids how the dissipative mecha-v is the fluid velocity,p is the fluid densityT is the absolute
nisms affect the radiation pressure. In previous papgté+  temperatures is the specific entropyp is the fluid pressure,
13] examined the viscous effects for various types of par« is the thermal conductivityy is the shear viscosity is
ticles and sound fields. The present paper extends that wokke bulk viscosity,d; is the Kronecker delta, and as usual
by taking into account both dissipative mechanisms and persummation over repeated indices is implied. For this set of
forming their comparative analysis. In deriving a general ex-equations to be complete, we add to it two thermodynamic
pression for the radiation pressure in Sec. Il, the radius of theelations:

particle is assumed to be arbitrary compared with the sound,

viscous, and thermal wavelengths which are also arbitrary dp=(y/c?)dp— apdT, (5)
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ds=(cp/T)dT—(a/p)dp, (6) AT 4 lw T vo— 1 V~v(1), 12)
YoXo a0X070

wherey is the specific heat ratia, is the sound speed,, is
the specific heat at constant pressure, anig the volume  wherevy= 5/pg is the kinematic viscosity.
thermal expansion coefficient of the fluid defined as The velocityvt!) can be represented pE5]
a=—(1lp)(dplIT),.

Let us now assume that the host fluid is subjected to an V=V oM+ v x g, (13
axisymmetric sound field, such as a plane-traveling or

-standing wave or a spherical wave, which varies with timeWhere‘P(l) and /%) are the scalar and vorticity velocity po-

. : tentials of first order, respectively. Substituting E§d) into
as exptiwt), wherew is the angular frequency. Then the - . .
particle will experience the acoustic radiation force which isEqS'(ll) and(12), one obtains two combined equations for

represented as followd1,12: oM and T
(mo_ 9%
Fi= fso<¢7i(k2)_Povi(l)Uf<l>>”kd$), (7 (A+BJe Bs ™ (19
1_
whereS; is the particle surface at resty is the equilibrium (A+B2)T(l)=(aﬁ o, (15
fluid density,n is the outward normal t&,, the superscript 0X0Y0
(j) (j=1,2) is used to denote quantities j@h order in the in which
incident wave amplitude, and) means an average over the
incident wave period. B1=vow?/(CB3), (16)
In an ideal fluid, the tensofa{?) is known to be ex- _

pressed in terms of quantities of first order only, which con- B2=io(yo+ Bz—1)/(xoB3Y0), 17
siderably expedites calculating the radiation force. In order i )
to find this tensor in an actual fluid, one must solve the Bz=1—iwyo(&ot+4n0/3)/(poCh), (18)

time-averaged equations of the fluid motion with accuracy

up to the second-order terms. Thus, to calculate the acoustft!

radiation force in a viscous heat-conducting fluid, we must 2y ,p(1)

; ) . S ' A+k =0, 19

first solve Eqs(1)—(6) in the linear approximation and then, ( 3)¢,( (19

after averaging over time, find their solutions in the seconqynere k,=(1+i)/5, is the viscous wave number, and
v L]

app_roximation. The_se calculations are presented in the f°|3v= J2vlw is the depth of penetration of the viscous wave.
lowing two subsections. Note also that the quantity,=2m/Re(ks) =23, (where
Re denotes the real pait called the viscous wavelength.

B. Linear equations Taking into account that the problem involved is axisym-

metric about the direction of incident wave propagation, so-

d an equation fogt?,

After linearizing and eliminating® ands*) by use of

Egs.(5) and (6), Egs.(1)—(3), become lutions to Eqs(14) and(15) are written as follow$16]:
v 1 1 1) mze*‘“i [A1nZn(Kir) + Asnzi(Kor ) 1P, (COSH)
PO ==Vp' I+ oAVt 4 (ot 7o/ V(V- V), ¢ = LR 2neni 28 /1 n :
(8) (20)
op _ Copof T W T Ps e““"i [(B1—K2)Agnza(Kyr)
Faaieve ECara A | ©) wag T YU

+(B1—K3)Agnza(kor ) JP(COSH). 21)
AT 1 (9T<1)_ aoTo opV 10 (B1—K3)Asnzn(Kaor ) 1P (
Xo ot ko dt '

Here

where xo is the thermal diffusivity defined as Ky = E +
e . . 12={ 5(B1+B2)
Xo=Ko/(poCpo), and the subscript O denotes the equilibrium 2

- 112
1:\/1——2-4'°°B1 H
XoYo(B1+B2) ’

conditions. Eliminatingp® and considering that the first- (22)
Ségﬁgelugntltles vary with time as explwt), this system k, relating to the negative root arlg to the positive one,

z, is a spherical cylindrical function of order, P, is the
Legendre polynomial of degree, r and 6 are the coordi-

AvD + 1+ @+ 'Co )V(V.V(l))_’_ '_“’V(l) nates of the spherical coordinate systen¥(e) whose ori-
3 M Yowvo Vo gin is at the equilibrium center of the particle and thaxis
2 (the zero direction 0®) lies in the direction of incident wave
= vTD (12) propagation, and\,,, andA,, are arbitrary constants.

Yovo Axisymmetric solution to Eq(19) is given by[15]
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Y=g X Byzo(kar)Pr(cost), (29 gfl=eT1 X Aannhf(kir) +agshyy (kor) JPo(cosd),

(31
whereg, is the unit vector of the spherical coordinate system

mentioned abovel?ﬁ is the associated Legendre polynomial " B % , "
of the first order and degree andB,, are arbitrary constants. TS =,.¢ e ZO Anl(B1— kD) agphy”(Kqr)
The total linear field consists of the incident field and the 0 "=
scattered field, so that we can write +(B1— k) azahi (kor)]Py(cosp), (32
eP=eV+eg, (24) =
PP =2.e 1Y az Ah P (ksr)Pi(cos), (33
TO=T+TY, (25 n=1
V= gDt g (26) where aq,, as,, and as, are dimensionless constants
| S

(which are usually referred to as the linear scattering coeffi-
cienty to be determined by the boundary conditions at the
article surface, namely, the conditions of continuity of the
elocity, stress, temperature, and heat flux. To apply these
conditions we must point out a specific internal structure of
the particle. However, the purpose of this section is to derive
a general expression for the radiation pressure applicable to
any type of dispersed particles. Therefore we now consider

where the subscript refers to the incident field, and the
subscriptS to the scattered field. Both fields are expressed b)e
Eqgs.(20)—(23) provided thatz, is replaced by an appropriate
specific function. For the incident field, we replageby the
spherical Bessel functiof,. We also assume the incident
field to be irrotational, so thatt")=0. As a result, we obtain

o the linear scattering coefficients to be known and proceed to
(Pfl):e—ith [Agnj n(KeF) + Agnj n(Kof )P (COS), solve the equations of second order.
n=0
(27) C. Time-averaged equations of second order
ig o By time-averaging Eqs(1)—(3) and keeping up to the
-|-§1>:_3 gmiot [(B1—k2)Aqnjn(Kqr) second order, we obtain

wag n=0

. 1A (VP) + (&0t 7o/ V(V-(v1P)) — V(p®)
+(B1=K3) Aznin(kar) IPr(cOSH). (28)

= po(VH(V V) (v V)vh), (34

The constant®\;, and A,, are determined by the type of

incident wave and assumed to be the given quantities in this 2 1 D)

study. The first term between the square brackets in(Zg. Vo (V&) =~ p—V'<P viY), (35
defines the elastic sound waves, which are due to the fluid 0

compressibility, and the second one defines the thermal PRED

sound waves, which occur through nonzero heat conductionKoA<T(2>>: < (pOT(1>+TOp<1>)_> + poTo(vV. VD)
of the fluid. It is known that the thermal sound waves die ot

down on passage through a fluid much more than the elastic e (12

ones. Therefore, they can play a distinct role only within a (60 270/3((V -V

thin layer with the thickness of the order éf=2xo/w n /[P awP\?

near the sound transducer. We will assume that the particle is ) X, + ax; , (36)

placed at such a distance from the sound transducer that the
thermal component of the incident sound field is negligiblewherep(l) ands® are defined by Eqg5) and (6). One can

This considerably simplifies calculations without the loss ofgqq that Eq(36), which describes a stationary temperature
their generality and practical significance. Then, sethdg gistribution in the fluid, is not related to Eq4) and (35),

equal to zero and writing\, for Ay, Egs.(27) and (28)  \yhich govern the stationary fluid motion, the so-called

become acoustic streaming. As the quantity®) in itself does not
o appear in the expression for the radiation pressure, there is

W= 10t A i (kir)P.(co¥) 29 no necessity to solve Eq36). The procedure for solving

@l n§=:0 nln(kaf)Pr(co), 29 Egs.(34) and(35) is described in detail ifi11] and therefore

will not be repeated here.

H L2
T BBk ) (30) _ -

I wag P D. General expression for the radiation force
Substituting the first- and second-order solutions into Eq.
, after laborious but straightforward calculations, one ob-

tains

These expressions are what will be considered as a gener,
form of the incident field in this paper.

For the scattered field, we replaze by the spherical
Hankel functions of the first kinth(" . This results in F=F,+Fy4, (37)
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where wherek,=k,&,, & is the unit vector in the- z direction, and
r is the position vector. By expanding E@1) in the Leg-
3 * n+1 . o endre ponnomiaIs{_l?] and comparing the series obtained
Fr=§7TPon§O m(znAnAn+l+ ZiAL AN 1), with Eq. (29), one finds
(38) An=A(2n+1)i". (42)
3 3
- - - Substitution of Eq(42) into Eg. (38) yields
Zn:j:1 (FEOJ)aj*n+1+F$1]0)ajn+kzl I:E1Jk)0‘jn0"kcn+1 ) a(42) a.(38)y
(39 -
FiD=3mpol A2, (n+1)Im(Zy), (43
n=0
Fo=3mnoRo | (02 ingd i agi
d= 270 OJo (viz) R singdé where Im denotes the imaginary part.
Y]

An expression for(v(?) in a plane traveling wave is

* n+1 given by Eq.(5.11 of [11]. Substituting it along with Eq.
_37TPO|X1|220 m (42) into Eq. (40), one obtains
n=

Sin(Xy—X7)
X1~ X]

A A* 3 -
XRe{ ”Xz““[xz|j;,<x1>|2+x1|j;+1<xl>|2]]. FU"=— 5 mpol A2 2(0xa +x)ix;

3
(40) -
-2 (n+ 1)[|Jr’1(xl)|2+|Jr’1+1(X1)|2]] (44)
Here F is the total radiation force exerted on the particle, n=0
F, is the acoustic radiation pressuitis Eq. (38) that gives
the well-known expressions for the radiation pressure in B. Linear scattering coefficients for a rigid sphere
ideal fluids[6,7] when the dissipative effects tend to zgro
andF4 is the drag force caused by the stationary fluid flow 5
that is induced by the incident sound field in the absence oi

the particle(this force is an analog of Stokes’ drag force and,[ype of particle under consideration. For the rigid sphere,

vanishes in an ideal flujd The f””Ct'Or‘SFSwJ ) are given In - these coefficients are found from the following boundary
the Appendix, the asterisk indicates the complex conjugate;gnditions:

R, is the equilibrium radius of the particldp(?)) is the

The general formula for the radiation press{see Egs.
9) and (43)] is expressed in terms of the linear scattering
oefficientsay,, as,, andas, which are determined by the

projection of(v{?)) on thez axis,(v{?)) is the stationary fluid viV+vg)=u® at r=R,, (45
velocity as if the particle were absent,= kR, X3=KkzRy,
the prime denotes differentiation, and Re denotes the real Tl(l)+T(Sl)="F(l) at r=R,, (46)

part. The velocity(v(?)) is found from Eqs(34) and (35),
keeping only the incident field in their right-hand sides. But P
it is much easier to calculate this quantity for a specific type ko— (TH+TH) =%,
of incident field than for the general case determined by Eq. ar

(29). Expressions fofv{?) in sound fields of most interest
are given in[11-13.

T

at r=Rg, (47)

where u® is the first-order translational velocity of the
To summarize, Eq¥(37)—(40) allow us to calculate the s_pher_e, z_;md the tilde denotes quantities that concern the me-

radiation force on an arbitrary spherical particle in an arbj-dium inside the sphere. Note also that the equilibrium tem-
trary axisymmetric sound field, and consequently the purPerature of the sphef®, is assumed equal to that of the host
pose of this section is achieved. But these equations do nditlid To. The boundary conditions are supplemented with the
allow us to see the dissipative effects on the force clearlyquation of the translational motion of the sphere, which in
Therefore in the next section we apply the general theory tdnear approximation is written as
a specific case.

4 . du? o

—WR0p0—=f o’ N dS (48

IIl. EXAMPLE 3 dat = Js

As an example we consider a rigid sphere subjected 10 g4 an equation describing heat propagation inside the
plane traveling wave. sphere for which we take the well-known Fourier equation,

A. Radiation force in a plane traveling wave gt

= AT
Let us apply Eqs(38) and(40) to a plane traveling wave at XoATH 49
given by
Substituting Egs(29)—(33) into Eq. (48), one obtains for
o\V=Aexpliky - r—iot), (41) @
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UD=(A;\,/Rp)&L ™ “[j1(x;) + ayhiV (X)) + aphP(xp) (X1 <[Xal|xs|,[X2[) and the radius of the sphere
(Ix1/<1). This limit, known as the long sound wavelength
+2a3:hP(x3)], (500 limit, is of most interest in applications. Further, remaining
) . ) within the above limit, we consider two opposite limiting

where\ ;= po/po and x,=Kk,R,. Axisymmetric solution t0  cases. In the first of these, the dissipative effects are assumed
Eq(49), which iS. alSO required tO- b6f|n|te at=0 and to weak, S0 that the fo”owing inequa"ty holds:
oscillate at the driving frequency, is given by Ix1|<1<|x,],|X5],[X5|. In the second case, the dissipative

effects are assumed strong, so that<|x,|, |Xs|,[Xs|<1.

T a-iwt ~ P
Tr=e nzo @nAnj n(Kar) Pn(COS), (5D 1. Weak dissipative effectdx,|<1<|x,|,|x3|,[X,|

~ o~ o~ — _ , , Passing to this limit in Eq(44), the expressions for
}Nherekz—(1+|)/b‘t, %=\2xo/o, anﬁ a are dimension- FUR (see the Appendixand Eqs(52), solving the latter for
ess constants to be determined by t © boundary cond|t|on%..n and substituting the obtained approximate expressions
Substituting Eqs(50) and (51) along with Eqs.(29)~(33) foJr FUY anda;, into Eq.(43), one finds the leading term of
into Eqgs.(45)—(47) and eliminatinge,,, one obtains a set of the t(gtal radi(;lt?on forcg' o b,e 9

three simultaneous equationsdn,,, a,,, andas,,

ai1a1n+ai2a2n+ai3a3n=bi s i=1,2,3, (52) F:27Tp0|A|2X30[3 1_)\P 2ﬁ+—y()_,3'_ﬁ
19712+N,] Ry 2(1+\,.6,/8,) Ro|’
where (54)
a13= (1=, 81,)nhY(xg) —x;h(Y 4 (xy), wherex;o=wRy/Ccy and 8, /Ry, 6;/Ry<<1. Let us compare
Eq. (54) with the well-known King’s formuld 6] which was
a12= (1=, 81,)nhY (xp) = Xoh(Y 1 (%2), derived without considering the dissipative mechanisms:

a;3=n(n+1)(1-\, 81, (x3), 6 9+ 2(1-1,)?

F= 27TPO|A|2X10W'
p

(55
ay=(1-X,81)hM(x,),

Equation(54) is seen to be quite different from E¢B5).

ag=(1—X,81,)h{(xp), This is explained as follows. In reality the total expansion of
the radiation force in the small parametgg involves both
az=(1—\,01)(n+ 1)h|(,11)(X3)_X3h£]]:2 1(X3), these equations. If we have assumed the dissipative effects to
be zero, then we would obtain King's formula, E§5), for
ag;=(1—ngy)h(x) +gnxh( 1 (xq), the leading term of the radiation force. We, however, have

considered the dissipative effects to be small but still finite.
,Bl—kg " (1) In this case, the leading term iq, is found to be given by
aBZ:m[(l_”Qn)hn (x2)+anX2hiZa(X2)],  @3=0,  Eq. (54), which is of lower order iy, and accordingly of
higher order ind, /Ry and 6; /R, than King's formula. Each

by=Xqjns1(X) = (L=\,81,)Nj(X), of thg above equa_tior)s can be dominant depepding on the
=Xl pom/MntXa magnitude of the dissipative effects. By comparing &)
bo=(\,810— 1)jn(X1), with Eq. (55), we can roughly estimate that the former be-

gins to predominate when
b3=(N0y—1)jn(X1) = AnX1jn+1(X1),

=N n(X)[Njn(X2) =X2j ns 1(X2)1, 53 o _ . .
An=Md () [Njn(X2) ~Xoln1(X2)] ®3 Specific examples show that in the majority of cases of in-

\,= Kol %o, and X,=k,R,. Equations(52) can be easily terest in applications condition&6) are well satisfied. It
solved by any of the conventional methods. Explicit eXpres_follows that the radiation force due to a plane traveling wave

sions for «;, are, however, extremely cumbersome andsh(_)uld be much larger than that predicted l_Jy King's theory.
therefore are not presented here. This fact has not been detected because King’s formula, Eq.

(55), has not been verified by experiment. The only experi-
ments in this field which have dealt with plane traveling
waves are due to Hasegawa and collaboraf@f§, who,
_ however, studied solid spheres of large sixg#1). In ad-
SubstitutingF U%) from the Appendix and the linear scat- dition, 8,/R, and 5,/R, were very small@about 10°%) in
tering coefficients from the preceding subsection into Eqthose experiments.
(43), we can obtain the radiation pressure for the most gen- Let us now analyze Eq(54) itself. It consists of two
eral case. The expression is, however, too complicated to séerms. The first is caused by viscosity, and the second by
dissipative effects clearly. Therefore we consider below twdheat conduction. Both terms are positive, so that the sphere
opposite limiting cases that allow this expression to be subwill be urged away from the sound transducer. To compare
stantially simplified. First we assume the sound wavelengtltontributions from viscosity and heat conduction in magni-
to be much larger than the viscous and thermal wavelengthside, consider a typical example, say, a dust particle in air.

X35<6,/Ry andlor x3,< 8 /Ry. (56)

C. Radiation force in the limits of weak and strong
dissipative effects
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Setting Ry,=100 wm and f=40 kHz, one obtains cases of interest the dissipative mechanisms are not negli-
X15~0.076 §&3,~4.4x10°%), 8,/Ry~0.11, and §/R, gible and radically modify the expression for the radiation
~0.15. It is seen that Eq$56) are satisfied. The ratio of the force from that given by the theory for ideal fluids: the ra-
thermal term of Eq(54) to the viscous term is about 0.36, diation force is substantially increased, and when the dissi-
showing that the thermal effects give a rather substantial copative effects are strong it can also reverse its direction.
rection. The ratio oF to F is about 837, supporting the fact Comparative analysis of the viscous and thermal effects has

that Eq.(54) is dominant. found that both mechanisms are in general of equal impor-
tance.
2. Strong dissipative effectgx,|<|x,|,|xs|, X <1
In this limit, the total radiation force becomes ACKNOWLEDGMENTS
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APPENDIX

It should be emphasized that E€7) cannot be compared
with King's formula, Eq.(55), since these equations describe
fundamentally different limiting cases. Let us analyze Eq. F(01)=£
(57). It shows that heavy particles, i.e., ones for which " 2
\,<1, will be urged away towards the sound transducer.
Recall that in the reverse limiting case the force is directed 1
from the sound transducer. To compare the viscous and ther- (02) _ Ty (1D) (21
mal contributions, consider, for example, a steel sphere in P =5 D 0xe) # X0 (X X0 ]
glycerin. To satisfy the required limiting conditions, we take
Ro=1 um andf=1 kHz. Then the ratio of the thermal term
of Eq. (57) to the viscous term is about 1.2. This shows that (03)_} (110 (210 *
both dissi H H H Fn - [Yn (Xl)+Yn (Xl)] ’
pative mechanisms are of equal importance. 2

Let us now consider light particles for whiat),>1. It is
seen that these can be urged away both from the sound trans-
ducer and towards it depending on whether the viscous or
thermal term is dominant in Eq57). For example, for a
sawdust particle in glycerin at the same valuesRgfand f
the thermal term predominates, causing the particle to move
to the sound transducer.

X (xq,%q) + XV (X1,%) ],

1
R0 =S I (X0 x0) + X2 (¢, x0)],

1
I:(nzo) :E[Xgll)(xz X1)+ Xﬁm(xz X1,
IV. CONCLUSIONS

In this paper, a general theory has been developed for the
acoustic radiation pressure exerted by a sound field on a
spherical particle, which takes account of the viscous and
thermal effects in the surrounding fluid. Restrictions imposed
on the incident field are as followsi) the incident field is FI =Xy, xp), FE=X(x,,x,),
axisymmetric(a plane-traveling and -standing wave and a
spherical wave, which are of most interest in applications,
fall into this category, (ii) the thermal component of the FPP=XM(x; x,), FE=XM(x,,x,),
incident field is negligiblgthis can result from an appropri-
ate method of sound generation or, as is usually the case in
practice, because the particle is far enough from the sound FO=IYMOx)T*, FE=[YM(xx)]*,
transducer No restrictions have been imposed on the size
and the internal structure of the particle. This means that the
particle can have an arbitrary radius with respect to the FOV=Y%(xy),  F2=Y{1%xy),
sound, viscous, and thermal wavelengths and be any of the
following types: a liquid drop, a gas bubble, a rigid or elastic
sphere,gaysppherica? shell, gtc. 9']I'he general fo?mula for theFn > =n(n+2){(n+1)XE[H (X3, X3) —Himti(Xs,X3)]
radiation pressure is expressed in terms of the linear scatter- .20 (011 211)
ing coefficients which are determined by a specific type of FIXEH (X Xa) ~HRTn(Xs Xa) T+ (N +1)
particle under consideration. To demonstrate the dissipative XD (x5) (N1 (x5))* + (h'D , (xa)* N4 (x3) T}
effects on the radiation pressure clearly, the general theory
has been applied to the case of a rigid sphere subjected to a
plane traveling wave field. It has been shown that in manyHere

1
FEO=SIYEO (x) + Y2 (x)],
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1
X (xy) = 5[ny?* = (n+ 22 HED (6 Y) — HEEE 06Y) 14+ xy* THZ(Y) — HEZ (6 y)]
2%

y2* —
Tz [ny HED (¢, y) —xy* HD (x,y) + (n+2)xHED, L1 (x,y)]
3

[y he” G0 (" ()* + XML (YA (Y)* ], k=12,

and
Y(jk')(x)—LZI({[(n+1)x2*—(n+2|)x2][H(°1j) (X3,%) — HE 41 (3,0 ]+ 5 X3 H ) (x5,%) — HEH 4 k(X3,%) ]
n ) 3 n+kn+1{A3» n+kn+| 31 3 n+kn+k( 3 n+kn+k\ "3

—xZ*xa[ H ) (x3,%) — HETH 1 (g, 0 1+ 2x* Y (x3) (W) (X)) * }+ (n+ 2K) (— 1)

(n+ 1)x2*

. [ X X3[HE10J}{21+|<(X3,X) H<21ln+k(x3a x)]+ h(l)k(xs)(h(J+k(X))

2%
—[(n+)x*HEY (X3, %) —(n+2D)xgHEY (x5, 11,  j=1,2; k,I=0,1
3

in which

HUK (x,y) = j TThF(x2)[h{(y2)]*dz

n m
=2 2 Dg"x PRy ) T EVE ol (- DM =i (- D'y* 18T (D, j=-1,0,1,2k,1=1,2
p=0 gq=0

DO _ —i""™(n+p)!(m+q)!
P4 (21)P 9l (n—p)!q! (m—q)!”’

6(pram)(1’1) — ( _ 1)n+ p+ 1, 5:)[:;“)(1'2) — ( _ 1)n+m+p+q,

5(pr:qm)(2,1) =1, 5(pr:1m)(2,2) =(—1)mtatl

h(® is the spherical Hankel function of theth kind, andE,[x] is the integral exponent of order[17].
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