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A body irradiated by a sound field is known to experience a steady force that is called the acoustic radiation
pressure. This force plays an important role in many physical phenomena, such as cavitation, sonolumines-
cence, acoustic levitation, etc. The existing theory of acoustic radiation pressure neglects dissipative effects.
The present paper develops a theory that takes these effects into account, both dissipative mechanisms, viscous
and thermal, being considered. It is shown that, when they are no longer negligible, the dissipative effects
drastically change the radiation pressure. As a result, its magnitude and sign become different from those
predicted by the ‘‘classical’’ theory neglecting losses.@S1063-651X~96!14411-1#

PACS number~s!: 47.55.2t, 43.25.1y, 47.90.1a

I. INTRODUCTION

When a body is subjected to a sound field, it experiences
a mean force which is due to the nonlinear properties of
wave motion in fluids. This force, known as the acoustic
radiation pressure, is an analog of the optical radiation pres-
sure exerted by an electromagnetic wave on electrically or
magnetically responsive objects, but the acoustic force is in
general much larger than its electromagnetic counterpart@1#.
For this reason, the acoustic radiation pressure is found to be
useful in many applications. For example, it is used to levi-
tate and position solid and liquid samples for the purpose of
containerless processing, which keeps them from contamina-
tion by physical contact with the wall@2,3#. This force also
plays an important role in the motion of bubbles undergoing
acoustic cavitation and sonoluminescence@4#.

The theory of acoustic radiation pressure was first pro-
posed by Lord Rayleigh@5#. King @6# derived an expression
for the radiation pressure on a rigid sphere, and Yosioka and
Kawasima@7# extended his results to compressible spheres.
Since then this subject has been investigated by many re-
searchers~see reviews in@8–10#!. The majority of them,
following King and Yosioka and Kawasima, have assumed
the surrounding fluid and the medium inside the sphere to be
ideal, i.e., inviscid and non-heat-conducting. Those few pa-
pers in which attempts have been made to examine dissipa-
tive effects on the radiation pressure~see a review in@11#!
are not satisfactory from the standpoint of their generality,
rigor, and completeness but predict new interesting phenom-
ena. This induced me to undertake a study that seeks~i! to
obtain a general expression for the acoustic radiation pres-
sure exerted on a spherical particle in an actual, i.e., viscous
and heat-conducting, fluid under minimum limitations on pa-
rameters of this task, and~ii ! to investigate by comparison
with the theory for ideal fluids how the dissipative mecha-
nisms affect the radiation pressure. In previous papers I@11–
13# examined the viscous effects for various types of par-
ticles and sound fields. The present paper extends that work
by taking into account both dissipative mechanisms and per-
forming their comparative analysis. In deriving a general ex-
pression for the radiation pressure in Sec. II, the radius of the
particle is assumed to be arbitrary compared with the sound,
viscous, and thermal wavelengths which are also arbitrary

relative to one another. The surrounding fluid is assumed to
be either a liquid or a gas, and the internal structure of the
particle to be any of a number of things, so that the particle
may be a liquid drop, a gas bubble, a rigid or elastic sphere,
a spherical shell, etc. The incident sound field is assumed to
be axisymmetric~sound fields of most interest in applica-
tions fall into this category!. In Sec. III, to demonstrate the
dissipative effects clearly, the general theory is applied to the
case of a rigid sphere in a plane traveling wave field. Finally,
in Sec. IV a summary of the results obtained in this paper is
given.

II. GENERAL THEORY

A. Problem formulation

Let us consider an arbitrary particle immersed in a vis-
cous heat-conducting fluid and having the spherical shape at
rest. The fluid motion is governed by the following equations
@14#:
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in which s ik is the stress tensor, given by
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v is the fluid velocity,r is the fluid density,T is the absolute
temperature,s is the specific entropy,p is the fluid pressure,
k is the thermal conductivity,h is the shear viscosity,j is
the bulk viscosity,d ik is the Kronecker delta, and as usual
summation over repeated indices is implied. For this set of
equations to be complete, we add to it two thermodynamic
relations:

dr5~g/c2!dp2ardT, ~5!
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ds5~cp /T!dT2~a/r!dp, ~6!

whereg is the specific heat ratio,c is the sound speed,cp is
the specific heat at constant pressure, anda is the volume
thermal expansion coefficient of the fluid defined as
a52(1/r)(]r/]T)p .

Let us now assume that the host fluid is subjected to an
axisymmetric sound field, such as a plane-traveling or
-standing wave or a spherical wave, which varies with time
as exp(2ivt), wherev is the angular frequency. Then the
particle will experience the acoustic radiation force which is
represented as follows@11,12#:

Fi5E
S0

^s ik
~2!2r0v i

~1!vk
~1!&nkdS0 , ~7!

whereS0 is the particle surface at rest,r0 is the equilibrium
fluid density,n is the outward normal toS0, the superscript
( j ) ( j51,2) is used to denote quantities ofj th order in the
incident wave amplitude, and̂& means an average over the
incident wave period.

In an ideal fluid, the tensor̂s ik
(2)& is known to be ex-

pressed in terms of quantities of first order only, which con-
siderably expedites calculating the radiation force. In order
to find this tensor in an actual fluid, one must solve the
time-averaged equations of the fluid motion with accuracy
up to the second-order terms. Thus, to calculate the acoustic
radiation force in a viscous heat-conducting fluid, we must
first solve Eqs.~1!–~6! in the linear approximation and then,
after averaging over time, find their solutions in the second
approximation. These calculations are presented in the fol-
lowing two subsections.

B. Linear equations

After linearizing and eliminatingr (1) and s(1) by use of
Eqs.~5! and ~6!, Eqs.~1!–~3!, become
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where x0 is the thermal diffusivity defined as
x05k0 /(r0cp0), and the subscript 0 denotes the equilibrium
conditions. Eliminatingp(1) and considering that the first-
order quantities vary with time as exp(2ivt), this system
reduces to
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wheren05h0 /r0 is the kinematic viscosity.
The velocityv(1) can be represented as@15#

v~1!5“w~1!1“3c~1!, ~13!

wherew (1) andc(1) are the scalar and vorticity velocity po-
tentials of first order, respectively. Substituting Eq.~13! into
Eqs.~11! and ~12!, one obtains two combined equations for
w (1) andT(1):
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and an equation forc(1),

~D1k3
2!c~1!50, ~19!

where k35(11 i )/dv is the viscous wave number, and
dv5A2n0 /v is the depth of penetration of the viscous wave.
Note also that the quantitylv52p/Re(k3)52pdv ~where
Re denotes the real part! is called the viscous wavelength.

Taking into account that the problem involved is axisym-
metric about the direction of incident wave propagation, so-
lutions to Eqs.~14! and ~15! are written as follows@16#:
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Here

k1,25H 12 ~b11b2!F17A12
4ivb1

x0g0~b11b2!
2G J 1/2,

~22!

k1 relating to the negative root andk2 to the positive one,
zn is a spherical cylindrical function of ordern, Pn is the
Legendre polynomial of degreen, r and u are the coordi-
nates of the spherical coordinate system (r ,u,«) whose ori-
gin is at the equilibrium center of the particle and thez axis
~the zero direction ofu) lies in the direction of incident wave
propagation, andA1n andA2n are arbitrary constants.

Axisymmetric solution to Eq.~19! is given by@15#

6298 54ALEXANDER A. DOINIKOV



c~1!5ê«e
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`
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whereê« is the unit vector of the spherical coordinate system
mentioned above,Pn

1 is the associated Legendre polynomial
of the first order and degreen, andBn are arbitrary constants.

The total linear field consists of the incident field and the
scattered field, so that we can write

w~1!5w I
~1!1wS

~1! , ~24!

T~1!5TI
~1!1TS

~1! , ~25!

c~1!5cI
~1!1cS

~1! , ~26!

where the subscriptI refers to the incident field, and the
subscriptS to the scattered field. Both fields are expressed by
Eqs.~20!–~23! provided thatzn is replaced by an appropriate
specific function. For the incident field, we replacezn by the
spherical Bessel functionj n . We also assume the incident
field to be irrotational, so thatcI

(1)[0. As a result, we obtain

w I
~1!5e2 ivt(

n50

`
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The constantsA1n and A2n are determined by the type of
incident wave and assumed to be the given quantities in this
study. The first term between the square brackets in Eq.~27!
defines the elastic sound waves, which are due to the fluid
compressibility, and the second one defines the thermal
sound waves, which occur through nonzero heat conduction
of the fluid. It is known that the thermal sound waves die
down on passage through a fluid much more than the elastic
ones. Therefore, they can play a distinct role only within a
thin layer with the thickness of the order ofd t5A2x0 /v
near the sound transducer. We will assume that the particle is
placed at such a distance from the sound transducer that the
thermal component of the incident sound field is negligible.
This considerably simplifies calculations without the loss of
their generality and practical significance. Then, settingA2n
equal to zero and writingAn for A1n , Eqs. ~27! and ~28!
become

w I
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n50

`
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These expressions are what will be considered as a general
form of the incident field in this paper.

For the scattered field, we replacezn by the spherical
Hankel functions of the first kindhn

(1) . This results in
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where a1n , a2n , and a3n are dimensionless constants
~which are usually referred to as the linear scattering coeffi-
cients! to be determined by the boundary conditions at the
particle surface, namely, the conditions of continuity of the
velocity, stress, temperature, and heat flux. To apply these
conditions we must point out a specific internal structure of
the particle. However, the purpose of this section is to derive
a general expression for the radiation pressure applicable to
any type of dispersed particles. Therefore we now consider
the linear scattering coefficients to be known and proceed to
solve the equations of second order.

C. Time-averaged equations of second order

By time-averaging Eqs.~1!–~3! and keeping up to the
second order, we obtain
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wherer (1) ands(1) are defined by Eqs.~5! and~6!. One can
see that Eq.~36!, which describes a stationary temperature
distribution in the fluid, is not related to Eqs.~34! and ~35!,
which govern the stationary fluid motion, the so-called
acoustic streaming. As the quantity^T(2)& in itself does not
appear in the expression for the radiation pressure, there is
no necessity to solve Eq.~36!. The procedure for solving
Eqs.~34! and~35! is described in detail in@11# and therefore
will not be repeated here.

D. General expression for the radiation force

Substituting the first- and second-order solutions into Eq.
~7!, after laborious but straightforward calculations, one ob-
tains

F5Fr1Fd , ~37!
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where
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Here F is the total radiation force exerted on the particle,
Fr is the acoustic radiation pressure@it is Eq. ~38! that gives
the well-known expressions for the radiation pressure in
ideal fluids@6,7# when the dissipative effects tend to zero#,
andFd is the drag force caused by the stationary fluid flow
that is induced by the incident sound field in the absence of
the particle~this force is an analog of Stokes’ drag force and
vanishes in an ideal fluid!. The functionsFn

( jk) are given in
the Appendix, the asterisk indicates the complex conjugate,
R0 is the equilibrium radius of the particle,^v Iz

(2)& is the
projection of^vI

(2)& on thez axis,^vI
(2)& is the stationary fluid

velocity as if the particle were absent,x15k1R0, x35k3R0,
the prime denotes differentiation, and Re denotes the real
part. The velocitŷ vI

(2)& is found from Eqs.~34! and ~35!,
keeping only the incident field in their right-hand sides. But
it is much easier to calculate this quantity for a specific type
of incident field than for the general case determined by Eq.
~29!. Expressions for̂vI

(2)& in sound fields of most interest
are given in@11–13#.

To summarize, Eqs.~37!–~40! allow us to calculate the
radiation force on an arbitrary spherical particle in an arbi-
trary axisymmetric sound field, and consequently the pur-
pose of this section is achieved. But these equations do not
allow us to see the dissipative effects on the force clearly.
Therefore in the next section we apply the general theory to
a specific case.

III. EXAMPLE

As an example we consider a rigid sphere subjected to a
plane traveling wave.

A. Radiation force in a plane traveling wave

Let us apply Eqs.~38! and~40! to a plane traveling wave
given by

w I
~1!5Aexp~ ik1•r2 ivt !, ~41!

wherek15k1êz , êz is the unit vector in the1z direction, and
r is the position vector. By expanding Eq.~41! in the Leg-
endre polynomials@17# and comparing the series obtained
with Eq. ~29!, one finds

An5A~2n11!i n. ~42!

Substitution of Eq.~42! into Eq. ~38! yields

Fr
~ tr !53pr0uAu2(

n50

`

~n11!Im~Zn!, ~43!

where Im denotes the imaginary part.
An expression for^vI

(2)& in a plane traveling wave is
given by Eq.~5.11! of @11#. Substituting it along with Eq.
~42! into Eq. ~40!, one obtains

Fd
~ tr !52

3

2
pr0uAu2ux1u2~x11x1* !ix3
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`
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21u j n118 ~x1!u2#G . ~44!

B. Linear scattering coefficients for a rigid sphere

The general formula for the radiation pressure@see Eqs.
~39! and ~43!# is expressed in terms of the linear scattering
coefficientsa1n , a2n , anda3n which are determined by the
type of particle under consideration. For the rigid sphere,
these coefficients are found from the following boundary
conditions:

vI
~1!1vS

~1!5u~1! at r5R0 , ~45!

TI
~1!1TS

~1!5T̃~1! at r5R0 , ~46!

k0

]

]r
~TI

~1!1TS
~1!!5k̃0

]T̃~1!

]r
at r5R0 , ~47!

where u(1) is the first-order translational velocity of the
sphere, and the tilde denotes quantities that concern the me-
dium inside the sphere. Note also that the equilibrium tem-
perature of the sphereT̃0 is assumed equal to that of the host
fluid T0. The boundary conditions are supplemented with the
equation of the translational motion of the sphere, which in
linear approximation is written as

4

3
pR0

3r̃0

dui
~1!

dt
5E

S0

s ik
~1!nkdS ~48!

and an equation describing heat propagation inside the
sphere for which we take the well-known Fourier equation,

]T̃~1!

]t
5x̃0DT̃

~1!. ~49!

Substituting Eqs.~29!–~33! into Eq. ~48!, one obtains for
u(1)

6300 54ALEXANDER A. DOINIKOV



u~1!5~A1lr /R0!êze
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12a31h1
~1!~x3!#, ~50!

wherelr5r0 / r̃0 and x25k2R0. Axisymmetric solution to
Eq. ~49!, which is also required to be finite atr50 and to
oscillate at the driving frequency, is given by

T̃~1!5e2 ivt(
n50

`

ãnAnj n~ k̃2r !Pn~cosu!, ~51!

where k̃25(11 i )/ d̃ t , d̃ t5A2x̃0 /v, and ãn are dimension-
less constants to be determined by the boundary conditions.
Substituting Eqs.~50! and ~51! along with Eqs.~29!–~33!
into Eqs.~45!–~47! and eliminatingãn , one obtains a set of
three simultaneous equations ina1n , a2n , anda3n ,

ai1a1n1ai2a2n1ai3a3n5bi , i51,2,3, ~52!

where
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~1!~x1!,

a225~12lrd1n!hn
~1!~x2!,

a235~12lrd1n!~n11!hn
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~1! ~x3!,

a315~12nqn!hn
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b35~nqn21! j n~x1!2qnx1 j n11~x1!,

qn5lk j n~ x̃2!/@n jn~ x̃2!2 x̃2 j n11~ x̃2!#, ~53!

lk5k0 /k̃0, and x̃25 k̃2R0. Equations~52! can be easily
solved by any of the conventional methods. Explicit expres-
sions for a jn are, however, extremely cumbersome and
therefore are not presented here.

C. Radiation force in the limits of weak and strong
dissipative effects

SubstitutingFn
( jk) from the Appendix and the linear scat-

tering coefficients from the preceding subsection into Eq.
~43!, we can obtain the radiation pressure for the most gen-
eral case. The expression is, however, too complicated to see
dissipative effects clearly. Therefore we consider below two
opposite limiting cases that allow this expression to be sub-
stantially simplified. First we assume the sound wavelength
to be much larger than the viscous and thermal wavelengths

(ux1u!ux2u,ux3u,ux̃2u) and the radius of the sphere
(ux1u!1). This limit, known as the long sound wavelength
limit, is of most interest in applications. Further, remaining
within the above limit, we consider two opposite limiting
cases. In the first of these, the dissipative effects are assumed
weak, so that the following inequality holds:
ux1u!1!ux2u,ux3u,ux̃2u. In the second case, the dissipative
effects are assumed strong, so thatux1u!ux2u, ux3u,ux̃2u!1.

1. Weak dissipative effects:zx1z!1!zx2z,zx3z,zx̃2z

Passing to this limit in Eq.~44!, the expressions for
Fn
( jk) ~see the Appendix!, and Eqs.~52!, solving the latter for

a jn and substituting the obtained approximate expressions
for Fn

( jk) anda jn into Eq. ~43!, one finds the leading term of
the total radiation force to be

F52pr0uAu2x10
3 F3S 12lr

21lr
D 2dv
R0

1
g021

2~11lkd̃ t /d t!

d t
R0

G ,
~54!

wherex105vR0 /c0 anddv /R0 , d t /R0!1. Let us compare
Eq. ~54! with the well-known King’s formula@6# which was
derived without considering the dissipative mechanisms:

FK52pr0uAu2x10
6 912~12lr!2

9~21lr!2
. ~55!

Equation ~54! is seen to be quite different from Eq.~55!.
This is explained as follows. In reality the total expansion of
the radiation force in the small parameterx10 involves both
these equations. If we have assumed the dissipative effects to
be zero, then we would obtain King’s formula, Eq.~55!, for
the leading term of the radiation force. We, however, have
considered the dissipative effects to be small but still finite.
In this case, the leading term inx10 is found to be given by
Eq. ~54!, which is of lower order inx10 and accordingly of
higher order indv /R0 andd t /R0 than King’s formula. Each
of the above equations can be dominant depending on the
magnitude of the dissipative effects. By comparing Eq.~54!
with Eq. ~55!, we can roughly estimate that the former be-
gins to predominate when

x10
3 !dv /R0 and/or x10

3 !d t /R0 . ~56!

Specific examples show that in the majority of cases of in-
terest in applications conditions~56! are well satisfied. It
follows that the radiation force due to a plane traveling wave
should be much larger than that predicted by King’s theory.
This fact has not been detected because King’s formula, Eq.
~55!, has not been verified by experiment. The only experi-
ments in this field which have dealt with plane traveling
waves are due to Hasegawa and collaborators@18#, who,
however, studied solid spheres of large size (x10>1). In ad-
dition, dv /R0 and d t /R0 were very small~about 1024) in
those experiments.

Let us now analyze Eq.~54! itself. It consists of two
terms. The first is caused by viscosity, and the second by
heat conduction. Both terms are positive, so that the sphere
will be urged away from the sound transducer. To compare
contributions from viscosity and heat conduction in magni-
tude, consider a typical example, say, a dust particle in air.
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Setting R05100 mm and f540 kHz, one obtains
x10'0.076 (x10

3 '4.431024), dv /R0'0.11, and d t /R0

'0.15. It is seen that Eqs.~56! are satisfied. The ratio of the
thermal term of Eq.~54! to the viscous term is about 0.36,
showing that the thermal effects give a rather substantial cor-
rection. The ratio ofF to FK is about 837, supporting the fact
that Eq.~54! is dominant.

2. Strong dissipative effects:zx1z!zx2z,zx3z,zx̃2z!1

In this limit, the total radiation force becomes

F52
2

3
pr0uAu2x10

3 F11~12lr!

5lr

R0

dv
1

~g021!d t
lkd̃ t

R0

d̃ t
G .
~57!

It should be emphasized that Eq.~57! cannot be compared
with King’s formula, Eq.~55!, since these equations describe
fundamentally different limiting cases. Let us analyze Eq.
~57!. It shows that heavy particles, i.e., ones for which
lr,1, will be urged away towards the sound transducer.
Recall that in the reverse limiting case the force is directed
from the sound transducer. To compare the viscous and ther-
mal contributions, consider, for example, a steel sphere in
glycerin. To satisfy the required limiting conditions, we take
R051 mm andf51 kHz. Then the ratio of the thermal term
of Eq. ~57! to the viscous term is about 1.2. This shows that
both dissipative mechanisms are of equal importance.

Let us now consider light particles for whichlr.1. It is
seen that these can be urged away both from the sound trans-
ducer and towards it depending on whether the viscous or
thermal term is dominant in Eq.~57!. For example, for a
sawdust particle in glycerin at the same values ofR0 and f
the thermal term predominates, causing the particle to move
to the sound transducer.

IV. CONCLUSIONS

In this paper, a general theory has been developed for the
acoustic radiation pressure exerted by a sound field on a
spherical particle, which takes account of the viscous and
thermal effects in the surrounding fluid. Restrictions imposed
on the incident field are as follows:~i! the incident field is
axisymmetric~a plane-traveling and -standing wave and a
spherical wave, which are of most interest in applications,
fall into this category!; ~ii ! the thermal component of the
incident field is negligible~this can result from an appropri-
ate method of sound generation or, as is usually the case in
practice, because the particle is far enough from the sound
transducer!. No restrictions have been imposed on the size
and the internal structure of the particle. This means that the
particle can have an arbitrary radius with respect to the
sound, viscous, and thermal wavelengths and be any of the
following types: a liquid drop, a gas bubble, a rigid or elastic
sphere, a spherical shell, etc. The general formula for the
radiation pressure is expressed in terms of the linear scatter-
ing coefficients which are determined by a specific type of
particle under consideration. To demonstrate the dissipative
effects on the radiation pressure clearly, the general theory
has been applied to the case of a rigid sphere subjected to a
plane traveling wave field. It has been shown that in many

cases of interest the dissipative mechanisms are not negli-
gible and radically modify the expression for the radiation
force from that given by the theory for ideal fluids: the ra-
diation force is substantially increased, and when the dissi-
pative effects are strong it can also reverse its direction.
Comparative analysis of the viscous and thermal effects has
found that both mechanisms are in general of equal impor-
tance.
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APPENDIX
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hn
(k) is the spherical Hankel function of thekth kind, andEn@x# is the integral exponent of ordern @17#.
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