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We introduce a modification to Hele-Shaw flows consisting of a rotating cell. A viscougdiiliids injected
at the rotation axis of the cell, which is open to air. The morphological instability of the oil-air interface is thus
driven by centrifugal force and is controlled by the densitgt viscosity difference. We derive the linear
dispersion relation and verify the maximum growth rate selection of initial patterns within experimental
uncertainty. The nonlinear growth regime is studied in the case of vanishing injection rate. Several character-
istic lengths are studied to quantify the patterns obtained. Experimental data exhibit good collapse for two
characteristic lengths, namely, the radius of gyration and the radial finger length, which in the nonlinear regime
appear to grow linearly in timg¢S1063-651%96)02511-1

PACS numbes): 47.20.Ma, 47.20.Hw, 47.55.Kf, 68.10m

[. INTRODUCTION the observation of interesting dynamical phenomena for low
viscosity contrast in gravity-driven experimef6. In those
The study of the morphological instability of an interface cases, the morphological instability is basically originated by
between two immiscible fluids confined in a Hele-Shaw cellthe density difference and not by the viscosity difference of
has received a great deal of attention in the past decade agfree two fluids. This allows one to explore the region of low
prototypical system to study generic features of interfacialviscosity contrast. Simulatiorig], experiment$6], and later
pattern formation in nonequilibrium systerfis]. This fluid  theoretical analysi$8] showed that the viscosity contrast
system has in fact important aspects in common with otheplayed a crucial role in the deeply nonlinear regime, with
more complicated systems from different contexts includingmportant consequences, for instance, on the selection of the
flow in porous media, crystal growth, chemical electrodepo-single-finger steady stati8]. Since the screening mecha-
sition, flame propagation, etf2]. The study of viscous fin- nisms of finger competition and the resulting interface mor-
gering in Hele-Shaw cells has the great advantage of beinghologies depended strongly on viscosity contrast, the ques-
the simplest model from both theoretical and experimentation arises as to whether such a parameter plays a crucial role
points of view. Studies of Hele-Shaw two-fluid flows can bein the radial nonlinear growth case too.
grouped into two categories according to the two basic ge- The relation between injection and centrifugal driving in
ometries, namely, the linear or channel geometry and théhe circular geometry introduces some important differences
radial or circular one. In the former the focus has been on thevith respect to the correspondence of injection vs gravity
study of the mechanisms of steady-state selec{i8h driving in the channel geometry. In the latter case, an exact
whereas the latter has focused on the asymptotic morpholgarameter mapping exists between the two cases, which be-
gies in connection with the concepts of fractal groyh come equivalent in the appropriate dimensionless formula-
The success of the studies of viscous fingering as a prdion together with a change of frame of reference. In the
totypical system for interfacial pattern formation has leadcircular geometry this mapping exists only in the linear re-
more recently to the introduction of perturbations or modifi-gime (small amplitude perturbations of a circular interface
cations of the problem in order to enrich it in a controlled since the advance of the interface cannot be absorbed in a
way and thus obtain insight into more complicated featureshange of reference frame. The closest analog to a gravity
of related problems. A recent review of contributions alongdriven experiment would be the case of vanishing injection
these lines can be found in R¢&] and references therein. rate, in which the total mass of the inner fluid is conserved.
In the same spirit we introduce here a controlled modifi-Even in this case there is an important difference with the
cation on the radial viscous fingering setup, consisting of aravity driven counterpart in that the centrifugal force de-
rotating horizontal Hele-Shaw cell. To some extent this probpends on radial distance, while gravity is constant. This not
lem can be seen as the counterpart of the gravity-driven exenly modifies the balance between stabilizing and destabiliz-
periment in rectangular Hele-Shaw cells, but now in the cir-ing effects of viscosity and density contrasts, but may lead to
cular geometry. As opposed to the classical case, here threew morphologies in the highly nonlinear regime. An addi-
injected fluid will typically be more dense, for instance, oil tional motivation for this experiment is the study of the ex-
displacing air, in order to obtain a morphological instability istence of topological singularities in Hele-Shaw flows, such
of the interface. It can be argued that Coriolis forces areas the breakup of the interface into bubbles. Such phenom-
negligible within the framework in which the Hele-Shaw ap- ena have received much attention from a theoretical point of
proximation is valid. If they become noticeable at someview in different circumstancefd] and were significantly
point, they would manifest by breaking the radial symmetrypresent in experiments of low contrast gravity-driven experi-
of the problem. ments. In our case they could be potentially more important
One of the main motivations for this study comes fromdue to the growth of the driving force with distance. We will
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not address this point in the present paper and will focus, as S
a first step, on the formulation of the problem and the char- 3=w(n)+(’)( o), (6)
acterization of its basic features in the limit of high viscosity

contrast, deferring a more detailed morphological and dyToIIowing the same steps as in REL1]. In the Appendix we
namical study to future work. _ give an alternative formulation of the problem based on con-
Finally, one of the interesting features of the centrifugalformal mapping techniques and outline the derivation of the

driving of the instability is that it allows one to study the |inear dispersion relation within that framework. With an an-
case of vanishing injection rate. This considerably simplifies5t; of the form

the problem, and data collapse to simple scaling laws seems

more feasible, as suggested by existing results on the circular ) "

geometny{4] and particularly by related experiments such as $1=¢1 +,3(§ e, (7)

in Ref. [10]. In the present paper the study of nonlinear

growth will be restricted to the case of vanishing injection R\N

rate. o= (20)—B<—) en?, (8)
The rest of the paper is organized as follows. Section Il is '

devoted to the formulation of the problem and discussion ofy,¢ continuity condition Eq(4) determinegg in terms of the

the linear instability. In Sec. Il we describe the experimental gt of parameters as

setup and in Sec. IV we present the experimental results.

Some final considerations are left for Sec. V. AS

2aR 5 ©)

n

Q 5}
II. FORMULATION AND LINEAR STABILITY ANALYSIS

Consider two immiscible fluids of viscositigs, , u, and Using the pressure drop condition B), we find

densitiesp,,p,, between the two glass plates of a Hele-Shaw Q - >

cell of gap spacind. Within the usual high friction approxi- o(n)=-5_z+0n- @n(nz— 1), (10
mation, when the cell rotates with an angular velodity

Coriolis forces can be neglected and the flow is potentialynere

that is,v=V ¢, where the velocity potentiap is defined for

each fluid b ~ Q%2 p,— -
y 00— P17 P2 Q , M1~ M2 (11)
1 12 pytpy 27R% pgt po
¢i=_Mi(pi_§Pi92r2) @ and
and the mobilityM; is given byM;=b?/12u; . The index is S_ b_2 g (12)
1 for the inner fluid and 2 for the outer one. With the incom- 12 pot g’
pressibility condition, the problem is then completely speci- _ _
fied, in its simplest form, by the bulk equation Note that, in general, bot@ andR are time dependent, so
the actual relaxation or growth of the modes is not exponen-
V2¢;=0 (2 tial. In particular, for a circular interface we trivially have
N _ Q/(2mR?) =R/R. We will be mostly concerned with the
and the two boundary conditions at the interface case of positive, constai@, in which caseR~t"2. If the
experiment is performed at constant injection pressure, then
P1—=P2=0k, ) we haveR?InR~t. Equation(10) reproduces the usual result
for a circular geometry whefd =0 and reduces to the case
vp=N-Vé1=n-Vo,. (4  of a planar interface in a channel geometry

_ . , o o(@=09[U.(u2— 1)/ (ot py)—0g?], in the limits
Equation(3) is the usual Laplace pressure jump at the inter-R—o and|Q|— with |Q|/27R=U., andn/R=q.
face, wherer is surface tension. The sign convention for the  The different feature of Eq10) is the presence of the first
curvaturex is such that a circular interface has positive cur-term on the right-hand side of E€L1), which is proportional
vature. Equatiori4) is the continuity condition, with the unit  to the density difference. The instability will be governed by

normaln directed from fluid 1 to 2. the sign and size of). For positiveQ, it is clear that for a
_ For the case of a circular interface of radRsthe veloc-  typjcal situation in which the driving fluid is both more vis-
ity potential takes the form cous and more dense, such as for oil displacing air, the ef-
fects of the viscosity difference and density difference are
¢(°>=gln r + o 5) opposite. The former is stabilizing and the latter distabiliz-
27 \R 0 ing. Moreover, only the stabilizing effect of viscosity de-

pends on the radiuR, so the balance of the two terms will
where Q is the aerial injection rat¢éarea covered per unit favor the instability for largeR or equivalently long times.
time). If we now assume an infinitesimal perturbation of the Finally, the signs of the two terms can be changed separately
circular interface of the forma=Ads(t)e'"? we can derive so the problem is considerably enriched when an angular
the corresponding linear dispersion relatiofn) defined by  velocity ) is introduced, already at the level of the linear
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FIG. 1. Prediction of a linear stability analysis fag,,,, the

most unstable mode, as a function of two control parameters FIG. 2. Scheme of the experimental setup. See the text for de-

(angular velocity of the cellandQ (aerial injection ratge The other tails.
parameters are=0.5 mm,Ry=100 mm,o=20.7 mN/m,»v=50 3
mm?/s, andp= 1000 kg/nT. QR
g 9 ne=\/ 1+ = (14)

instability. Notice that) appears squared, since the effect of )

the rotation cannot depend on its sign, so the dependence &#pte that, contrary to the usual casg* 02 =0), for posi-

this control parameter is rather strong. tive Q) there is always at least one unstable mode, regardless
The most important aspect of Egd.0) and (11), how-  of how large(smal) the surface tensiofinterface radius

ever, is the fact that the interface may be unstable regardlessay be.

of the sign of the viscosity difference, and the nonlinear re-

gime can now be studied in terms of viscosity contrast, in- Ill. EXPERIMENTAL SETUP
cluding the region of low viscosity contrast. For the sake of
simplicity, we will restrict ourselves mostly tQ=0, in The Hele-Shaw cell used in this investigation is made of

which case the viscosity contrast is manifestly irrelevant atwo circular glass plates, 6 mm thick and 40 cm in diameter.
the linear level. The absence of this extra parameter makegnhe two plates are placed on top of each other, separated by
the collapse of the experimental data much simpler, as wg narrow gap, typically between 0.25 and 1.00 mm. The
will see in the following sections. separation is provided by six calibrated spacers evenly
From Eg.(10) we can also obtain some direct conse-spaced along the periphery of the cell. We estimate the fluc-
quences on the dependence of the linear dispersion rela-tyations in the gap around 0.05 mm. A viscous fluid, Rhodor-
tion. The zero mode that corresponds to a uniform expansiogj| 47 v 50 silicone oil, is injected to the cell by a syringe
of the circle behaves as in the classical case. It decaysump, through a hole drilled in the center of the top plate,
(grows for positive (negative Q as a consequence of mass ysing a special connector to prevent twisting of the tube
conservation and is marginal f@=0. The moden=1 cor-  when the cell rotates around its vertical symmetry axis. The
responds toa global off-center shift of the circular inteﬁace.syringe pump operates at injection rates adjustable from 1 to
The stability of this mode is given solely by the sign@f 299 ml/h in steps of 1 ml/h. The oil used has surface tension
and is independent of surface tension since it preserves the=20.7 mN/m, kinematic viscosity=50 mm?/s at 25°C,
circular shape. Fon>2 the stability depends on the inter- and perfectly wets the glass plates.
play of the two terms of Eq.10). As usual, largen is domi- The cell is mounted on top of a rotating platform driven
nated by the stabilizing effect of surface tension, resulting, irby a dc motor and reductor. A scheme of the setup is shown
the unstable case, in a finite band of unstable modes. Fan Fig. 2. The motor incorporates a tachometer, which is used
positive (2, the most unstable mode is given by the closesby an external, linear, four-quadrant servocontroller to main-
integer to the maximum of Eq10) with respect tan, which  tain highly stable angular velocities independently of load

reads fluctuations. Available velocites go from 0.0 to
300.0(x0.1) rpm. The axis of the horizontal platform has
1 OR? been machined conical and the $etup has be_en mounted on a
Nma= \/ = | 1+ T) ) (13)  heavy granite table with three adjustable feet in order to have
3 the cell accurately leveled even at the highest angular veloci-

ties. A proper leveling of the cell is critical during rotation.

Equation(13) is illustrated in Fig. 1. In addition, the center of the cell is carefully aligned with the
Finally, for the case Q=0, the marginal mode rotation axis before each run, to a tolerance less than 0.02

w(n:)=0 is given by mm in the radial direction. The illumination is provided by
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FIG. 3. Typical pattern obtained in our rotating Hele-Shaw cell.
Oil is the inner fluid and air the outer one. HePe=0, b=0.5 mm, FIG. 4. Number of ripples formed at the onset of instabilityas
and Q=80 rpm. This single picture is extracted from an actuala function of the dimensionless quantit=(1/o)(Q?Rp
sequence of video frames. —QRy/2wM). Filled circles represent measurements W@k 0

and empty circles measurements wdh=0 (conserved magsThe

four neon tubes that form a square around the cell, at th&olid line is the prediction of a linear stability analysis fof.y.
level of the gap. . o

The patterns obtained are recorded with a JVC TK—S34&€c- Il. Our experiments correspond to the lipie>p, and
charge coupled device camera (X282 pixely equiped H1> i Since the inner fluid is a silicone oil and the outer
with a 8-mm Cosmicar-Pentax objective. The overall illumi- ON€ is air. In this limit the expression for the number of
nation is adjusted to make the electronic shutter of the canfingers developing at a maximum growth rdtq. (13)],
era operate at its maximum speed in order to avoid blurringVritten in terms of experimental parameters, reads
the images of the rotating pattern. Images are digitized se- 1
quentially by a Vitec VideoMaker frame grabber and stored Nma= \/ = (1+9), (15)
in the memory of a personal computer. The spatial resolution 3
of the captured images goes from a maximum of X686 ) ) ) L
pixels for a still image down to 288384 pixels for the whereS is a dimensionless quantity given by
maximum capture rate, 12.5 images/s, with 256 gray levels 1 QR,
per pixel. The number of images in a sequence is limited by S= _(Q2R8p__)
the amount of memory in the comput@urrently 16 Mb. o 2mM

Before each run, the glass plates are thoroughly cleaned Y .
and dried to avoid memory effects of wetting films from andM=b*/12u. We assume thal, the number of ripples

previous runs. Typically, a stable circular interface is formedofserve?”?t th?_do_nseft %f |nstab|I|ty,_ IS ty;lj_lcally of the order
first by injecting oil into the cell. Once the oil circle reaches 9! Mmax- he vall Ity of this assumption relies on two uncon-
a desired radiug,, the injection rate is adjusted to a Iorese_trolled properties of the initial conditions, namely, that the

lected value and, at the same time, the motor is switched oﬂOise is ;ufficiently weak and that its amplitude does no;
with the servocontroller adjusted to a preselected velocitfyStemat'Ca”y favor some modes over others. The compari-

). Then the pattern develops and a sequence of images? n of t_he num_ber Of. ripples "?‘"‘?'nax is thus not only a test
digitally recorded and stored for further analysis of the linear dispersion relation but actually of these two
' assumptions on the external noise in the initial condition.

Figure 4 presents the comparison between our prediction Eq.
IV. RESULTS AND DISCUSSION (15) and the results of our observations. The error bars origi-

We have carried out experiments for different values of?@t€ from the uncertainties in the cell gap and the original
the parameters under experimental control. These have be&dius Ab=0.05 mm andAR,=5 mm. The agreement is
b=0.25, 0.50, and 0.81 mnD=0, 48, 69, 78, 86, 111, remarKabIe, p_artlcularly considering the Wldebanq ch'aracter
156, and 222 mys; O =30, 60, 75, 80, 90, 100, and 120 _of_ t_he msta_\blllty and the lack of control of the noise in the
rpm; andR,=50, 65, 70, 80, 90, 100, and 110 mm. Runs/nitial condition[12]. o
with Q=0 correspond to the spreading of an initially circular . W& have purposely distinguished between runs with fluid

drop upon rotation under conditions of mass conservationii€ction and runs without, in which mass is conserved

An example of the patterns obtained is shown in Fig. 3. (Q=0). Systematically, patterns with mass conservation ex-
hibit a wave number smaller than predicted iy, and the

discrepancy increases witd In the linear regime, this ob-

servation can be understood in the following way. For
We focus our attention first on testing the dispersion re-Q=0 the initial drop is unstable for all (Fig. 1). Since the

lation obtained from the linear stability analysis presented ircell takes a time of the ordef @ s toreach the steady speed

(16)

A. Linear regime
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FIG. 5. Two examples of time sequences of the digitized inter- *OIL)O | &
face.(a) Ry;=81 mm,b=0.81 mm,Q1=60 rpm, and the interface is hAl
drawn att=0, 15.2, 24.0, 28.8, and 33.2 s after the cell started to 0.8 12

rotate. (b) Ry=83 mm,b=0.5 mm, =60 rpm, andt=0, 40.0, Dimensionless time
58.0, 66.0, and 74.0 s. In both ru@s=0.

FIG. 6. Collapse of the dimensionless radius of gyration vs di-
(), the interface feels an effectiv&t) that grows from zero  mensionless time, for measurements under different experimental
to its maximum value. By the timé& reaches that value, conditions. The inset shows the experimental data before making
modes with smaller wave numbérorresponding ta,,at  the variables adimensional. The gap wititis given in millimeters
the instantaneouf) have been enhanced and may eventu-and the angular velocitf2 in rpm.

ally dominate over the most unstable mode at the steady o L . . L
Q. For Q>0 this effect is much less pronounced since theduantitative characterizations. Following similar studies in

instantaneous is positive only for a much shorter time. ~ 'adial Hele-Shaw cellg4], we first study the radius of gyra-
tion as the pattern develops in time, as a measure of the mass

distribution. The radius of gyration as a function of time is
shown in the inset of Fig. 6. This quantity starts from the
Experiments with mass conservatio+€0) correspond initial radiusRy and rises sharply when the instability devel-
to the most genuine case to explore with a rotating cell sinceps, at a rate depending on the values of the parameters. We
they correspond to a purely centrifugal driving, with no ana-have rescaled time by and the radius of gyration by, and
log in the usual injection-driven setup. In the rest of thisfound that data from runs with completely different sets of
section we concentrate on this case as the simplest and mgsirameters collapse into a single curve for all the evolution,
interesting one. The linear regime already shows the particuas shown in Fig. 6.
lar simplicity of the caseQ=0. R in Eqg. (10) is now a We can distinguish three different regimes. First there is a
constant and the growth and decay of modes are truly expgeriod of latency of about 0.3 in dimensionless time before
nential. The moden=0 is now marginal and the linear dis- the onset of instability. Next, a relatively short period with
persion relation provides us with a natural time scale of thgoresumably exponential growth follows, and immediately

B. Nonlinear regime with mass conservation Q=0)

system nonlinear effects take over, setting a growth law that appears
to be consistent with being linear in time. Remarkably
o 24u 17) enough, the time of latency itself appears to be a scaling
b202%p" quantity. This is not expected priori since such time de-

pends on the fluctuations present in the initial condition,

In the linear regime and fa@ =0 the mobility plays no role which are not controlled in the experiment. In fact, from this
other than setting the time scale of the instability and doegharacteristic time for the onset of instability we can get an
not affect the emerging pattern, which depends only on thestimate of the actual noise amplitude present in our experi-
ratio of centrifugal to capillary forces as defined by ments. In dimensionless time this must be of the order of
S=02R3p/o in Eq. (15). Thus n,,, is independent of the In(ARy,s/ AR,), WhereAR,,is the departure from the initial
cell gap and viscosity. Measurements of the number ofadius of gyration that is first appreciaklileig. 6 suggests an
ripples at the onset of instability, for givel and R, but  estimate of 0.05 in dimensionless ufigdARy is the typi-
differentb (empty symbols of the santin Fig. 4), confirm  cal relative fluctuation of the initial radiugypical amplitude
this prediction within experimental uncertainty. However, of modes resulting from preparation of the initial condijion
this is no longer true for well-developed patterns in the non‘We thus obtain that the noise amplitude in the initial condi-
linear regime, where substantial differences in morphologytions is roughly proportional tdR, with an estimate of
indicate that mobility plays an important dynamic role in the AR, of 5% or below.
nonlinear regime, when fingers develop and compete. An The second characterization of the emerging patterns is
example is shown in Fig. 5, where we compare patterns rethe so-called interface stretching, which measures the in-
sulting from two runs for which all parameters have beencrease of the total perimeter of the inner fluid region. Again,
taken to be the same, except the dmap the evolution for different experimental conditions is remark-

In order to study more precisely the resulting patterns anébly distinct, as shown in the inset of Fig. 7. The scaling of
their possible scaling properties we have defined severdéngth and time byRy and 7 in this case does not produce a



54 EXPERIMENTS IN A ROTATING HELE-SHAW CELL 6265

40 T L} I T
o ©
o E 00| :3:0 a -
E 30 .g EB{; K
3 2 ‘“”jg o o 7
B - L
= L L :
@ 20F 1
w
wn - —
=
§ 10 ]
‘A
g L
100
g of
A A . .
i FIG. 8. Time sequences of the same digitized interfaces shown
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FIG. 7. Dimensionless stretching vs dimensioniess time, for uite similar. In fact, one sees that from a rather noisy initial
measurements under different experimental conditions. The ins€ ) ’ y

shows the experimental data before making the variables adimerRatten a competition betw_een fingers is established in Wh'Ch
sional. The gap widttb is given in millimeters, and the angular Shorter fingers are left behind and only a few of them survive
velocity Q in rpm. and keep growing. While the pattern in the regions that are
left behind is rather static and irregular, the mechanism of
collapse of the experimental data beyond the latency periodinger competition of large fingers seems to follow a rather
We have not succeeded in finding a reasonably simple scategular pattern of behavior. This suggests that it is the inward
ing that makes our data for the interface stretching collapseir fingers in our experiments that may exhibit some sort of
in the nonlinear regime. This may be related to the fact thatiniversal dynamical behavior. With this view, the interface
surface tension effects are still significant in the present pastretching could in fact be too sensitive to the “nonuniver-
rameter regime, and there may be more than a single leng#al” regions left out by competition and would then be in-
scale that is necessary to characterize the pattern. The totadlequate for the study of the scaling properties of the pat-
interface length would presumably be much more sensitiveerns.
to this fact than other globally averaged quantities such as An important difference with respect to the channel ge-
the radius of gyration. ometry is that the competition process between air fingers

The reader will notice that the morphologies observed inseems to stop after a while, when a reduced number of fin-
the rotating cell are apparently quite different from the onegyers keeps growingin the logarithmic representatignin-
observed in classical radial viscous fingerind£0, stead of a single finger, as it would be the case in the experi-
Q>0). Interestingly, a pattern evolution closely resemblingment in the channel geometryl4]. This observation
ours was obtained by Thone al.[13] in the reversed ver- suggests a scenario in which the competition process is split
sion of the radial viscous fingering experimen®<0, into two regimes. In the first regime, neighbor fingers are
0 =0) with a viscous fluid being pumped out at the center aglose to parallel to each other and compete essentially like in
air fingers invaded from the exterior. In this high viscosity a channel geometry. After the competition process has elimi-
contrast limit both experiments are quite similar. Our casepated a number of fingers, the angle between them increases
however, provides the means to study the competition ofo a point at which screening effects no longer produce the
such inward fingers with no time limitation, in principle, dynamical elimination of fingers and a reduced number of
since the viscous fluid is not being removed from the cellthem survive, which keep approaching the cell axis.

(and could even be injectgdn any case, the most interest-  Within this scenario, the differences between the time se-
ing differences between the two experiments may be exgquences of the patterns in Fig. 5 can be easily interpreted.
pected at low viscosity contrast. The sequence of interfaces in Figap[and Fig. &a)] corre-

An interesting way to characterize the competition of in-sponds to a case in which the number of fingers is small and,
ward air fingers, which may be useful to gain some insightconsequently, the period of actual finger competition is very
into the nonlinear dynamics, is to compare the patterns obshort. The sequence in Fig(®B [and Fig. &b)] instead
tained with the ones in the case of fingers competing in avould correspond almost entirely to the competition regime
channel geometry. This can be done by mapping thg)(  between a large number of fingers. With this view, it seems
coordinates of the interface into new coordinatesthat the larger the number of fingers, the longer the compe-
[0,—In(r/Ry)], where ¢, 6) are the polar plane coordinates. tition regime. A more systematic test of this scenario goes
Applying this conformal mapping to the patterns in Fig. 5beyond the scope of the present paper.
produces the result shown in Fig. 8. In this representation, it The observation of the regularity of the behavior of in-
is apparent that the patterns strongly resemble those found imard fingers lead us to study a third quantitative character-
the classical fingering problem in the channel geometry aization of the dynamics of fingered patterns in terms of the
high viscosity contrastwith air invading oi). Not only the  radial length of selected air fingers as a function of time. We
fingered patterns but the dynamics of competition seem to bkave measured this length for many different runs but dis-
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lished[16]. This is not the case in our experiments, where a

20 ; L good scaling has been found for the finger length and for the
- O A radius of gyration, but not for the stretching of the interface.
= 16 g © In all cases, the nonlinear behavior seems to exhibit a linear
50 3 Voo growth law for the scaled lengths. The failure to scale the
g E- o 1 interface stretching, however, may be a signal of the exist-
@ 12k +y' VO _ ence of an additional characteristic length scale of the pat-
§ - I terns. Finally, it has been observed that inward air fingers
g i b * O T seem to exhibit a more “universal” dynamical behavior than
‘B 081 ro o - outward oil fingers in the sense that competition mechanisms
5 can be compared with their counterparts in the channel ge-
§ i 5 ] ometry, through an appropriate conformal mapping. Interest-
A 04 025 6;; 80 120 1100 ingly, the analogy holds only for an intermediate-time re-
I 0s0| % [ [Ov] & gime, when the number of fingers is quite large. When the
03l |+ | W pattern has coarsened to a reduced number of penetrating air
0.0 ——»~——L— fingers, the screening effects are eventually affected by the

0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless time angle of competition and the process stops, leaving a reduced

number of active fingers approaching the cell center. Further
FIG. 9. Collapse of the dimensionless length of individual in- study of this aspect is necessary to establish the actual valid-

ward air fingers vs dimensionless time, for measurements undélY of this scenario.

different experimental conditions. The inset shows the experimental EXcept for the linear regime, the present study has con-
data before making the variables adimensional. The gap width ~ Centrated on the case of conserved mass patterns. Apart from

given in millimeters and the angular veloci€y in rpm. the open questions discussed above for that case, there are
many other interesting regimes to be explored. First, we plan

carding fingers that grow preferentially in directions otherto extend our investigation of the limit of high viscosity con-

than the radial direction. The results, presented in the inset dfast to the problem witl@+ 0. In particular, it is interesting

Fig. 9, clearly show that the radial finger growth is basicallyto look at the different scalings proposed in the literature for

linear in time for all cases once the finger is formed. WhenQ>0 and to check the cas@<0, where the instability is

rescaled byR, and 7, the data display the remarkable col- driven at the same time by the density difference and the

lapse shown in Fig. 9. viscosity contrast. A more systematic study of the nonlinear
regime, with focus on asympotic behavior, and quantitative
V. SUMMARY AND CONCLUSIONS analysis of morphologies and symmetries is also of interest.

_ - ] _ Finally, a slight modification of our setup should make it

We have considered a modification of the classical V|5'possib|e to Vary the ViSCOSiW contrast and exp|0re in particu_
cous fingering problem in a circular Hele-Shaw cell consist4ar the low contrast limit. From what is known concerning
ing in a controlled rotation of the cell around its vertical axis. the role of viscosity contrast on the mechanisms of finger
With this modification the instability can be driven by both competition and in the resulting morphologies, the study of
the density difference and the viscosity contrast between thgis aspect in our problem is expected to be one of its most
two fluids. In this sense, our experiments in a rotating Ce”promising and interesting.
draw an analogy with gravity-driven experiments in the
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root-mean-square displacement from planafi#guivalent to

a radius of gyration in the circular geometare all equiva- Here we briefly discuss an alternative formulation of the
lent in the sense that mutual linear relations can be estalproblem, and a derivation of the linear dispersion relation,
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based on the conformal mapping approach to Laplacia|°r|m(a§f/(9sf|asf|).We can now derive the linear dispersion
growth problems. This formalism has been applied withanalysis for infinitesimal perturbations with integer wave
great success for high viscosity contrast Hele-Shaw flowsiumbern of the circular interface, inserting the ansatz
(see, for instance, Rdf1]). We apply it in this same limit to
flows in a rotating cell. f(w,t)=a(t)w+ 8(t)o"*? (A3)
The basic idea is to describe the interface dynamics, for
either a channel or a circular geometry, in terms of an evopmto Eq. (A1). We then obtain
lution equation for the conformal mappig- f (w,t), which
maps a prescribed fixed region in the complex planén 10Q
our case the interior of the unit cirglinto the physical re- a=—-——+0(8), (A4)
. - . - . - azm
gion corresponding to the viscous fluid, with-x+iy, X,y
being Cartesian coordinates. The evolution equation for the

mapping, which contains all the geometric information about o
the interface, takes the form (—S—w(n)+0(5), (AS)
Jf(w,1) ~REDP(w,t)] .
= - - wherew(n) is given b
- Df(w,t)A Df w0 | (A1) w(n)isg y
whereD=wd,, andZ[g(s)] is an integral operator that acts w(n)=— Lﬁﬁn—%n(nz— 1) (AB)
on a real-valued functiom(s), defined on the unit circle 2mR R

w=e', whose output is the complex-valued function that is
analytic in the interior of the unit circle and ha¢s) as its and
real part at the unit circle. The complex potentda{w,t) in

the case of a rotating Hele-Shaw cell reads ~ 0%%p Q
O=— 5 (A7)
12 27R
Q b2 . b2 o~ ) M
d(w,t)= Emw‘f' moA[K(s)]erpQ Allf(s)|7], and
(A2)
where k(s) is the curvature of the interface, which is ex- S b_zg (A8)
pressed in terms of the mapping as(s)= 12’
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