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Synchronization-based parameter estimation from time series
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The parameters of a givechaotio dynamical model are estimated from scalar time series by adapting a
computer model until it synchronizes with the given data. This parameter identification method is applied to
numerically generated and experimental data from Chua’s cif&i063-651X96)12912-3

PACS numbes): 05.45+b, 43.72+q, 47.52+]

[. INTRODUCTION and a passive part, where different copies of the passive part
synchronize when driven by the same active component.
The synchronization of(unidirectionally coupled dy- Consider an arbitraryN-dimensional discretéchaotig dy-
namical systems is currently investigated very intensely, imamical system,
particular due to its potential applications in communication
(see[1-9)). In this paper we want to address the question X" I=F(x"p), 1)
how synchronization can be used for modeling and time se- . .
ries analysis. Assume that you have sampled a time serié%herep denotes a parameter vector. The goal is to rewrite
from some(chaotig physical process and that you know the tis autonomous_ system as a .nonautonomous system that
structure of the underlying equations but not the parameter‘gossesseS certain synchronization properties. Formally, we
and those state variables that have not been measured. THEY Write
goal is to find the unknown parameters and variables. This X+ L= f(x" S
- - . SP), v
problem can, for example, be tackled using multiple shooting
methods[10] or related approachdd1]. However, with all \yheres" is some vector valued function of tinja4] given
these methods not only do the parameters occur in the alg
rithm as unknown quantities, but also the initial values of the
trajectory segments between the sampling times. One there- s'=h(x"). 3
fore has to solve a high-dimensional minimization or fixed
point problem. This can be simplified considerably if a syn-The pair of functions andh constitutes a decomposition of
chronization mechanism is used that yields automatically théhe original systenf (see also the example that follows
right values of the state variables. Hence, using synchronizaFhe crucial point of this decomposition is that for suitable
tion the dimension of the minimization problem is reduced tochoices of the functiom any system
the number of unknown model parameters. In this paper we
describe an implementation of this general con¢@pi2,13 y"rt=f(y",s"p) 4

and demonstrate its applicability using experimental data o )
from Chua’s circuit. In Sec. Il the necessary notation and 4hat is given by thesamefunction f, the sameparameters

method for achieving synchronization are introduced and il; the samedriving s', but differentvariablesy”, synchro-
lustrated using the Hen map. Section Il contains the nu- Nizes Wwith the original systent2), i.e., [[x"~y"|—0 for
merical and experimental results obtained for an electronicdl — - More precisely, synchronization of the pair @den-
circuit and in Sec. IV we summarize the results and discusic@l) systems(2) and (4) occurs if the dynamical system
possible generalizations and improvements of the method. describing the evolution of the differene=y"—x"

et I=f(y", g —f(x", ") =f(x"+&",s") — f(x",s")
II. CONSTRUCTING SYNCHRONIZING SYSTEMS

BY ACTIVE-PASSIVE DECOMPOSITION possesses a stable fixed point at the origi0. In some
_ ) cases this can be proved using stability analysis of the lin-
In the following we describe a rather general method forggrized system for smad,

constructing synchronizing systems starting from a given

(chaotig dynamical system. In view of the following appli- et l=Df(x",")-€".

cation for parameter estimation the basic ideas are discussed

for discrete dynamical systems only. The generalization foor using(global) Lyapunov functions. In general, however,

continuous systems is straightforward and may be found, fothe stability has to be checked numerically using the fact that

example, in Ref[6]. synchronization occurs if all conditional Lyapunov expo-
The basic idea of this synchronization method consists iments[15] of the nonautonomous syste®) are negative. In

a decomposition of a givefchaotig system into an active this case systent2) is passive and the decomposition is
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therefore called armactive-passive decompositigdPD) of
the original dynamical systelti).

As an example we shall now consider therida map that
is given by the map

1—axi+b,x,
F(x;p) =( 5
X1
with the parameterp=(a,,b,)=(1.4,0.3). A possible APD §§§:§§§:‘5§
of this chaotic system is =
1—a,s°+byx,
f(x,s;p)= (6)
X1
with
s=h(x)=x2. )

FIG. 1. Averaged synchronization errfrvs response param-
Since the resulting linear system for the error dynamics  eters @, ,b,) of the Henon map.

gl 0 by & a=(ay,by) for two unidirectionally coupled Hen mapg9)
1 0 and (10):
is stable forb,<1 any copy of the nonautonomous system X" E=F(x",s" p), €)
(6) will synchronize with the drive signa". Note that here i1 i
and in the following we consider scalar drive signals only. yrr=f(y",s%a), (10)

wheref ands" are given by Eqsi6) and(7), respectively. As
Il. PARAMETER ESTIMATION can be seen there is a very well pronounced minimuii af
A. Hénon map g=p. In order to match the parameters of the response with
those of the drive we thus need a strategy to minimize the
. __synchronization error. This can be done using a general
drive system and the response system are the same. If th'S'rlr%nimization routine, like the subroutireoweLL from Ref.
not the case the ordinary omdentical synchronization r1q) hat we used for the computations presented in this pa-
(y—Xx) degrades and breaks doyvn com_plete_ly. However, a3er. Figure 2a) shows the parameters=(a,,b,) of the
long as the response system is passive., it pOSSesses yiven “model” system(10) vs the number of line minimi-

negative conditional Lyapunov exponeniise so-calleyen-  ;atiang of the routin@oweLL. As can be seen already after
eralized synchronizatiof2,16,17 continues to occur. This

means, that there exists a functibhsuch that in the limit

Until now we have assumed that the paramepeds the

n—oo the statey of the response system is given bifx). (& 1673
Since the occurrence of generalized synchronization depends 1‘21 Elval
on the stability properties of the response system only, it is % e
very robust with respect to parameter mismatch between g o8
drive and respongel 6]. Important for the following minimi- § 0.6 3
zation approach is the fact that the existence of generalized & ,, 3
synchronization leads here to a smooth dependence of the 0.2 4
averaged synchronization error
b
\/1 N ® 10-2
— _ n__ ny 12
E=/§ 2, ["-hoy"] ®) Lo-3
T
on the parameter mismatch. Of course, the efrdras to be
computed after the synchronization transient decayed and the ~ 107°
response system has to remain passive upon parameter varia- ;456 . . . .
tion. ) 5 3 4 5
Let p be the parameter vector of the drive apdhe pa- Lterations

rameter vector of the response. Thes E(p,q) is a direct

measure for thedis)agreement of the parameter values. g, 2. Convergence af) the response parametess, (b,) of

Since the parameters of the drive are assumed to be fixed Wge driven Heon map[Eq. (10)] and (b) the synchronization error

will investigate in the following the errdE=E(q) as a func-  E vs number of iterations of the routine used to minimize the syn-

tion of g. chronization erroE [Eq. (8)]. The dotted lines irth) give the exact
Figure 1 shows as an example of the dependenée@i  parameter valuep,=(1.4,0.3) of the driving Heon map.
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‘ FIG. 4. Largest conditional Lyapunov exponexit of the spo-
0 radically driven Chua circuit vs coupling time.
R
L 1 B. Chua’s circuit
—2 The second and main example of this paper is Chua’s
p pap
circuit [18] that is given by the following set of equations:
Ver

d
ClT =G(Vea—Ve1) —9(Vew),

dVe

2
Cz_dt =G(Vc1—Vea) +1, (11)
LA vyl
dt C2 oL

whereg is a piecewise-linear function defined by

g(V)=meV+3(m;—mg)[[V+By| = |[V=By|]. (12

For the numerical simulations of the circuit we used the pa-
rameter valuesny=—0.405 mSm;=—0.756 mSG=1/R
with R=1700 Q, B,=1.08 V, L=18 mH, R;=20 Q,
C,=10 nF, andC,=100 nF. Integration of this set of dif-
ferential equations generates a flgh R*— R® and for fixed
t=T we may consider this system as a tigiscretesystem
three iterations the true parameter valyes(1.4,0.3) are or iterated map

reached. The length of the time series used Mas100

FIG. 3. Synchronization of two Chua circuits due to the sporadic
V4 coupling given by Eq(15). Plotted arda) the curremlE of the
drive system(b) the current ¥ of the response system, afaj the
difference|I?— 1P| as a function of time.

where the first 30 values were used for the synchronization F=¢": R’-R®
transient and the remaining 70 samples served for the esti- .
mation of the synchronization err@8). The decreasing syn- X— ¢ (X) 13

chronization errok is shown in Fig. 2b). In our implemen- )
tation of the search algorithm a search intefyg™, pf®|is ~ With
used to prevent the minimization algorithm to use parameter
values that are obviously wrondor physical reasons, for

examplg. This search interval is mapped to the real axis bythe APD approach for establishing synchronization is now
the transformation applied to this discrete system. In view of the following ap-
plication we consider the case that a time sefi&$ is ob-

X=(Ve1,Vea D). (14

max_ jmin tained from Chua’s circuit by sampling the voltaye, at
g(pk)=tar{ __ mm( Pe— P T Pk } discrete timeg,=nT, i.e., s":\_/m(tn_). The APD consists
Pk Pk 2 in a replacement of th¥, variable in the model at times
t, and is formally given by
Using this transformation the search process may get stuck X" =f(x",s"p) =T (S",X3,X3), (15

near the boundarigsy" and py'™ as long as it is moving in

parameter regions far from the minimum. In those cases theherex"=(x],x5,x3) = (Vc1,Vcea, 1) (t,) andp denotes the
minimization was reinitialized at a random position in the set of all parameters of Chua'’s circuit. To study synchroni-
corresponding parameter interval. zation two Chua’s circuits, drive and response, are consid-
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FIG. 6. Synchronization errdE vs number of iterations of the
minimization algorithm for the numerically generated; time se-
ries from Chua’s circuifcompare Fig. b

We shall now assume again that the parameter values of
the driving circuit are unknown and the parameter depen-
dence of the synchronization errérgiven by Eq.(8) will be
used to identify these values. As in the case of thedte
map the minimization routineoweLL from Ref.[19] is used
to reduce the synchronization error in order to find the cor-
rect parameter values. Simultaneously, the largest condi-
tional Lyapunov exponent of the response system is moni-
tored to make sure that the “model system” doesn't lose its
ability to synchronize with the driving time series.

For the search of the smallest synchronization error all
eight parameters in Eq$ll) and (12) have been varied by
the minimization routineeOWELL [19]. Additionally, a pos-
sible offsetb and an amplification factoa upon measure-
ment have also been taken into account in the minimization
process, i.e., we assume

s"=a[Vci(tn) —b].

Varying the factora, however, is equivalent to changes of
the breakpoint voltag8,. Therefore, we use®, to take

into account a possible amplification and the minimization
problem solved was nine dimensiofialght parameters from
Egs.(11) and(12) and the offseb]. Since the parametriza-
tion of Egs.(11) and (12) is redundant the following eight
normalized parameters have been computed from the nine

0 10 20 30 40 50 parameters used in the minimization routine:
Iterations
p1:C2/C1:10, p2:R2C2/L%16,
FI(_S._5._ anvergence of the norme_llized parame(éfﬁ_ during ps=RR,C,/L~0.189, p,=m,R~—0.689,
the minimization process for a numerically generated time se-
ries. The dotted lines give the values of the drive system used for ps=m;R~—1.285, pe=1/RC,~5882,
computing the time series. pr=B,, pg=b, (16)

ered with parameter vectoqs and g, respectively. If the where pg and p; give the time scaling and the amplitude
parameters of the drive system and the response systesgaling, respectively. Of course, one can also minimize the
agree exactly this type of unidirectionsporadic coupling synchronization error with respect to the normalized param-
[8,9] leads to perfect synchronization although both continueters(16). This alternative, however, turned out to be less
ous systems oscillate freely during the time intervals bestable and efficient.
tween the coupling. This is illustrated in Fig. 3 for a coupling  First, we consider a numerically generatéd,; time se-
time of T=0.025 ms. ries using Egs(11) and(12) with the parameter values given
To investigate the synchronization properties as a funcabove, an amplification factor of one and no offset=(Q).
tion of the coupling timeT we have computed the largest The time series was sampled with 40 kHz and consists of
conditional Lyapunov exponent of the sporadically driven1500 samples, where the first 500 values are used for the
system(13). As can be seen in Fig. ¥] is negative forT ~ synchronization transient and the last 1000 samples for com-
€[0,0.057. For theseT values we thus can achieve synchro- puting the averaged synchronization erfoi{Eq. (8)]. For
nization with this particular type of coupling. this time series the search algorithm converges to the exact
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FIG. 7. Synchronization errdg vs value of the resistdR and
value of the inductance for the numerically generated;, time
series. The other parameters of the response circuit coincide with
those of the drive.

values already after a few iterations and the synchronization
error E vanishes as can be seen in Fig. 5 and Fig. 6.

In order to visualize the error landscape in the nine-
dimensional parameter space we have plotted two-
dimensional cross sections where the remaining seven pa-
rameters have been kept fixed at the exact values of the drive
system. Figure 7 and Fig. 8 show two representative ex-
amples. In Fig. 7 the synchronization errér[Eq. (8)] is
given vs the resistoR and the inductancke. As can be seen
a clear minimum exists. Figure 8 shows the effoin the
L-mg plane. Still a minimum exists, but in this case it is
located in a rather flat valley and is thus more susceptible to
any disturbances due to noise or model inaccuracies.

We turn now to experimental data taken from a hardware
implementation of Chua’s circuit. Thé:; time series used
had a length of 10 000 samples and was sampled with 44 100
kHz. Figure 9 shows the convergence of the normalized pa-
rameters during the minimization process. The resulting es-
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FIG. 9. Convergence of the normalized parame(&6 during
the minimization process for an experimentally generatgdtime
series.
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FIG. 8. Synchronization errd vs value of the inductanck

and value of the slope, for the numerically generatéd, time
series. The other parameters of the response circuit coincide witdre 11 shows delay reconstructions of the attractors from the
those of the drive.

timates of the parameter values are given in the diagrams. In
this case the minimum of the synchronization error is larger
than zero due to the noise as can be seen in Fig. 10. Numeri-
cal simulations including noise have shown that noise with
SNR<60 dB may shift the minimum from the correct point
in parameter space to some other location nearby. This
means that a response system with slightly different param-
eter values as the drive fits better to theisy data that are
available.

In order to compare the experimentally observed dynam-
ics and the model ¥, time series has been generated using
Egs.(11) and(12) and the estimated parameter values. Fig-

experimental datdsolid curve and the numerically gener-
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FIG. 10. Synchronization errd vs number of iterations of the
minimization algorithm for the experimentally measunég, time
series from Chua’s circuitcompare Fig. 2

ated time seriegsdashed curve As can be seen both attrac-
tors are located in the same region of state space and look
very similar, indicating a good agreement of the model dy- FIG. 11. Attractor reconstruction using delay embedding of the
namics and the experiment. This comparison can be exexperimental datdsolid curve and a numerically generatedc,
tended to include invariants such as dimensions, Lyapunotfme series based on the estimated parameter vadiastied curve

exponents, or the topological organization(ahstablé pe- (i) can be used with discretely sampled time seriés)

riodic orbits[20]. gives exact results when used with numerically generated
data, andiv) was shown to work well even for experimental
IV. CONCLUSION data.

In this letter we have presented a parameter estimationm e?ho%ois; S'?Af eigrrr):Iclztlc\)/nLS(l)firr:hIIZmFe)ﬁ::?oﬂgrofeeitelgf(?noi:
method that recovers the parameter values of a given modgl stems Ii’ke Chua’spci'rcuit whePe the determination of the
from a single time series by minimizing an averaged syn- y

chronization error. Using time series from théride map actual values of the individual components is very difficult.
and Chua’s circui'i it was demonstrated that the error Iand!n t_hose cases where a continuous couplmg petyveen the ex-
scape is a sufficiently smooth function with a deep minimumperlment and a computer model is possible, similar methods

at the true parameter values. For numerically generated ti may be applied where additional differential equations for

) - P : e unknown parameters are used to control the adaption
series this minimum and the corresponding correct paramet j?rocess[Zl,ZZ. The approach used there to derive the nec-

values were found already after a few iterations of the mini- , ; L ;
ssary parameter ODE’s can in principle be generalized to

mization routine. Similar results have been obtained for othe he case of discrete dvnamics that is considered in this paper
dynamical systems such as the Lorenz system and a drivqp : y Lo paper.
or further improvements and generalizations one may try

damped pendulum. In the case of real dataluding noisé¢ . L o
the minimum of the synchronization error landscape is les ifferent def|n|t|o_n_s of the_synchromzano_n err@ost func-
ion) or more efficient minimization algorithms.

deep and may also be slightly shifted. Nevertheless, a com-

parison of attractor reconstructions from the experimental ACKNOWLEDGMENTS
data and a numerical time series using the estimated param-
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