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The parameters of a given~chaotic! dynamical model are estimated from scalar time series by adapting a
computer model until it synchronizes with the given data. This parameter identification method is applied to
numerically generated and experimental data from Chua’s circuit.@S1063-651X~96!12912-3#

PACS number~s!: 05.451b, 43.72.1q, 47.52.1j

I. INTRODUCTION

The synchronization of~unidirectionally! coupled dy-
namical systems is currently investigated very intensely, in
particular due to its potential applications in communication
~see@1–9#!. In this paper we want to address the question
how synchronization can be used for modeling and time se-
ries analysis. Assume that you have sampled a time series
from some~chaotic! physical process and that you know the
structure of the underlying equations but not the parameters
and those state variables that have not been measured. The
goal is to find the unknown parameters and variables. This
problem can, for example, be tackled using multiple shooting
methods@10# or related approaches@11#. However, with all
these methods not only do the parameters occur in the algo-
rithm as unknown quantities, but also the initial values of the
trajectory segments between the sampling times. One there-
fore has to solve a high-dimensional minimization or fixed
point problem. This can be simplified considerably if a syn-
chronization mechanism is used that yields automatically the
right values of the state variables. Hence, using synchroniza-
tion the dimension of the minimization problem is reduced to
the number of unknown model parameters. In this paper we
describe an implementation of this general concept@7,12,13#
and demonstrate its applicability using experimental data
from Chua’s circuit. In Sec. II the necessary notation and a
method for achieving synchronization are introduced and il-
lustrated using the He´non map. Section III contains the nu-
merical and experimental results obtained for an electronical
circuit and in Sec. IV we summarize the results and discuss
possible generalizations and improvements of the method.

II. CONSTRUCTING SYNCHRONIZING SYSTEMS
BY ACTIVE-PASSIVE DECOMPOSITION

In the following we describe a rather general method for
constructing synchronizing systems starting from a given
~chaotic! dynamical system. In view of the following appli-
cation for parameter estimation the basic ideas are discussed
for discrete dynamical systems only. The generalization for
continuous systems is straightforward and may be found, for
example, in Ref.@6#.

The basic idea of this synchronization method consists in
a decomposition of a given~chaotic! system into an active

and a passive part, where different copies of the passive part
synchronize when driven by the same active component.
Consider an arbitraryN-dimensional discrete~chaotic! dy-
namical system,

xn115F~xn;p!, ~1!

wherep denotes a parameter vector. The goal is to rewrite
this autonomous system as a nonautonomous system that
possesses certain synchronization properties. Formally, we
may write

xn115f~xn,sn;p!, ~2!

wheresn is some vector valued function of time@14# given
by

sn5h~xn!. ~3!

The pair of functionsf andh constitutes a decomposition of
the original systemF ~see also the example that follows!.
The crucial point of this decomposition is that for suitable
choices of the functionh any system

yn115f~yn,sn;p! ~4!

that is given by thesamefunction f, the sameparameters
p, the samedriving sn, but different variablesyn, synchro-
nizes with the original system~2!, i.e., ixn2yni→0 for
n→`. More precisely, synchronization of the pair of~iden-
tical! systems~2! and ~4! occurs if the dynamical system
describing the evolution of the differenceen5yn2xn

en115f~yn,sn!2f~xn,sn!5f~xn1en,sn!2f~xn,sn!

possesses a stable fixed point at the origine50. In some
cases this can be proved using stability analysis of the lin-
earized system for smalle,

en115Df~xn,sn!•en.

or using ~global! Lyapunov functions. In general, however,
the stability has to be checked numerically using the fact that
synchronization occurs if all conditional Lyapunov expo-
nents@15# of the nonautonomous system~2! are negative. In
this case system~2! is passive and the decomposition is
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therefore called anactive-passive decomposition~APD! of
the original dynamical system~1!.

As an example we shall now consider the He´non map that
is given by the map

F~x;p!5S 12axx1
21bxx2

x1
D ~5!

with the parametersp5(ax ,bx)5(1.4,0.3). A possible APD
of this chaotic system is

f~x,s;p!5S 12axs
21bxx2

x1
D ~6!

with

s5h~x!5x1
2 . ~7!

Since the resulting linear system for the error dynamics

en115S 0 bx

1 0 D en
is stable forbx,1 any copy of the nonautonomous system
~6! will synchronize with the drive signalsn. Note that here
and in the following we consider scalar drive signals only.

III. PARAMETER ESTIMATION

A. Hénon map

Until now we have assumed that the parametersp of the
drive system and the response system are the same. If this is
not the case the ordinary oridentical synchronization
(y→x) degrades and breaks down completely. However, as
long as the response system is passive~i.e., it possesses
negative conditional Lyapunov exponents! the so-calledgen-
eralized synchronization@2,16,17# continues to occur. This
means, that there exists a functionH such that in the limit
n→` the statey of the response system is given byH(x).
Since the occurrence of generalized synchronization depends
on the stability properties of the response system only, it is
very robust with respect to parameter mismatch between
drive and response@16#. Important for the following minimi-
zation approach is the fact that the existence of generalized
synchronization leads here to a smooth dependence of the
averaged synchronization error

E5A1

N (
n51

N

@sn2h~yn!#2 ~8!

on the parameter mismatch. Of course, the errorE has to be
computed after the synchronization transient decayed and the
response system has to remain passive upon parameter varia-
tion.

Let p be the parameter vector of the drive andq the pa-
rameter vector of the response. ThenE5E(p,q) is a direct
measure for the~dis-!agreement of the parameter values.
Since the parameters of the drive are assumed to be fixed we
will investigate in the following the errorE5E(q) as a func-
tion of q.

Figure 1 shows as an example of the dependence ofE on

q5(ay ,by) for two unidirectionally coupled He´non maps~9!
and ~10!:

xn115f~xn,sn;p!, ~9!

yn115f~yn,sn;q!, ~10!

wheref andsn are given by Eqs.~6! and~7!, respectively. As
can be seen there is a very well pronounced minimum ofE at
q5p. In order to match the parameters of the response with
those of the drive we thus need a strategy to minimize the
synchronization error. This can be done using a general
minimization routine, like the subroutinePOWELL from Ref.
@19# that we used for the computations presented in this pa-
per. Figure 2~a! shows the parametersq5(ay ,by) of the
driven ‘‘model’’ system~10! vs the number of line minimi-
zations of the routinePOWELL. As can be seen already after

FIG. 1. Averaged synchronization errorE vs response param-
eters (ay ,by) of the Hénon map.

FIG. 2. Convergence of~a! the response parameters (ay ,by) of
the driven He´non map@Eq. ~10!# and ~b! the synchronization error
E vs number of iterations of the routine used to minimize the syn-
chronization errorE @Eq. ~8!#. The dotted lines in~b! give the exact
parameter valuespx5(1.4,0.3) of the driving He´non map.
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three iterations the true parameter valuesp5(1.4,0.3) are
reached. The length of the time series used wasN5100
where the first 30 values were used for the synchronization
transient and the remaining 70 samples served for the esti-
mation of the synchronization error~8!. The decreasing syn-
chronization errorE is shown in Fig. 2~b!. In our implemen-
tation of the search algorithm a search interval@pk

min ,pk
max# is

used to prevent the minimization algorithm to use parameter
values that are obviously wrong~for physical reasons, for
example!. This search interval is mapped to the real axis by
the transformation

g~pk!5tanF p

pk
max2pk

min S pk2 pk
max1pk

min

2 D G .
Using this transformation the search process may get stuck
near the boundariespk

min andpk
max as long as it is moving in

parameter regions far from the minimum. In those cases the
minimization was reinitialized at a random position in the
corresponding parameter interval.

B. Chua’s circuit

The second and main example of this paper is Chua’s
circuit @18# that is given by the following set of equations:

C1

dVC1
dt

5G~VC22VC1!2g~VC1!,

C2

dVC2
dt

5G~VC12VC2!1I L , ~11!

L
dIL
dt

52VC22R0I L ,

whereg is a piecewise-linear function defined by

g~V!5m0V1 1
2 ~m12m0!@ uV1Bpu2uV2Bpu#. ~12!

For the numerical simulations of the circuit we used the pa-
rameter valuesm0520.405 mS,m1520.756 mS,G51/R
with R51700 V, Bp51.08 V, L518 mH, R0520 V,
C1510 nF, andC25100 nF. Integration of this set of dif-
ferential equations generates a flowf t:R3→R3 and for fixed
t5T we may consider this system as a timediscretesystem
or iterated map

F5fT: R3→R3

x°fT~x! ~13!

with

x5~VC1 ,VC2 ,I L!. ~14!

The APD approach for establishing synchronization is now
applied to this discrete system. In view of the following ap-
plication we consider the case that a time series$sn% is ob-
tained from Chua’s circuit by sampling the voltageVC1 at
discrete timestn5nT, i.e., sn5VC1(tn). The APD consists
in a replacement of theVC1 variable in the model at times
tn and is formally given by

xn115f~xn,sn;p!5fT~sn,x2
n ,x3

n!, ~15!

wherexn5(x1
n ,x2

n ,x3
n)5(VC1 ,VC2 ,I L)(tn) andp denotes the

set of all parameters of Chua’s circuit. To study synchroni-
zation two Chua’s circuits, drive and response, are consid-

FIG. 3. Synchronization of two Chua circuits due to the sporadic
VC1 coupling given by Eq.~15!. Plotted are~a! the currentI L

D of the
drive system,~b! the currentI L

R of the response system, and~c! the
differenceuI L

R2I L
Du as a function of timet.

FIG. 4. Largest conditional Lyapunov exponentl1
c of the spo-

radically driven Chua circuit vs coupling timeT.
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ered with parameter vectorsp and q, respectively. If the
parameters of the drive system and the response system
agree exactly this type of unidirectionalsporadic coupling
@8,9# leads to perfect synchronization although both continu-
ous systems oscillate freely during the time intervals be-
tween the coupling. This is illustrated in Fig. 3 for a coupling
time of T50.025 ms.

To investigate the synchronization properties as a func-
tion of the coupling timeT we have computed the largest
conditional Lyapunov exponent of the sporadically driven
system~13!. As can be seen in Fig. 4l1

c is negative forT
P@0,0.057#. For theseT values we thus can achieve synchro-
nization with this particular type of coupling.

We shall now assume again that the parameter values of
the driving circuit are unknown and the parameter depen-
dence of the synchronization errorE given by Eq.~8! will be
used to identify these values. As in the case of the He´non
map the minimization routinePOWELL from Ref.@19# is used
to reduce the synchronization error in order to find the cor-
rect parameter values. Simultaneously, the largest condi-
tional Lyapunov exponent of the response system is moni-
tored to make sure that the ‘‘model system’’ doesn’t lose its
ability to synchronize with the driving time series.

For the search of the smallest synchronization error all
eight parameters in Eqs.~11! and ~12! have been varied by
the minimization routinePOWELL @19#. Additionally, a pos-
sible offsetb and an amplification factora upon measure-
ment have also been taken into account in the minimization
process, i.e., we assume

sn5a@VC1~ tn!2b#.

Varying the factora, however, is equivalent to changes of
the breakpoint voltageBp . Therefore, we usedBp to take
into account a possible amplification and the minimization
problem solved was nine dimensional@eight parameters from
Eqs.~11! and ~12! and the offsetb#. Since the parametriza-
tion of Eqs.~11! and ~12! is redundant the following eight
normalized parameters have been computed from the nine
parameters used in the minimization routine:

p15C2 /C1510, p25R2C2 /L'16,

p35RR0C2 /L'0.189, p45m0R'20.689,

p55m1R'21.285, p651/RC2'5882,

p75Bp , p85b, ~16!

where p6 and p7 give the time scaling and the amplitude
scaling, respectively. Of course, one can also minimize the
synchronization error with respect to the normalized param-
eters~16!. This alternative, however, turned out to be less
stable and efficient.

First, we consider a numerically generatedVC1 time se-
ries using Eqs.~11! and~12! with the parameter values given
above, an amplification factor of one and no offset (b50).
The time series was sampled with 40 kHz and consists of
1500 samples, where the first 500 values are used for the
synchronization transient and the last 1000 samples for com-
puting the averaged synchronization errorE @Eq. ~8!#. For
this time series the search algorithm converges to the exact

FIG. 5. Convergence of the normalized parameters~16! during
the minimization process for a numerically generatedVC1 time se-
ries. The dotted lines give the values of the drive system used for
computing the time series.

FIG. 6. Synchronization errorE vs number of iterations of the
minimization algorithm for the numerically generatedVC1 time se-
ries from Chua’s circuit~compare Fig. 5!.
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values already after a few iterations and the synchronization
errorE vanishes as can be seen in Fig. 5 and Fig. 6.

In order to visualize the error landscape in the nine-
dimensional parameter space we have plotted two-
dimensional cross sections where the remaining seven pa-
rameters have been kept fixed at the exact values of the drive
system. Figure 7 and Fig. 8 show two representative ex-
amples. In Fig. 7 the synchronization errorE @Eq. ~8!# is
given vs the resistorR and the inductanceL. As can be seen
a clear minimum exists. Figure 8 shows the errorE in the
L-m0 plane. Still a minimum exists, but in this case it is
located in a rather flat valley and is thus more susceptible to
any disturbances due to noise or model inaccuracies.

We turn now to experimental data taken from a hardware
implementation of Chua’s circuit. TheVC1 time series used
had a length of 10 000 samples and was sampled with 44 100
kHz. Figure 9 shows the convergence of the normalized pa-
rameters during the minimization process. The resulting es-

timates of the parameter values are given in the diagrams. In
this case the minimum of the synchronization error is larger
than zero due to the noise as can be seen in Fig. 10. Numeri-
cal simulations including noise have shown that noise with
SNR,60 dB may shift the minimum from the correct point
in parameter space to some other location nearby. This
means that a response system with slightly different param-
eter values as the drive fits better to thenoisydata that are
available.

In order to compare the experimentally observed dynam-
ics and the model aVC1 time series has been generated using
Eqs.~11! and ~12! and the estimated parameter values. Fig-
ure 11 shows delay reconstructions of the attractors from the
experimental data~solid curve! and the numerically gener-

FIG. 7. Synchronization errorE vs value of the resistorR and
value of the inductanceL for the numerically generatedVC1 time
series. The other parameters of the response circuit coincide with
those of the drive.

FIG. 8. Synchronization errorE vs value of the inductanceL
and value of the slopem0 for the numerically generatedVC1 time
series. The other parameters of the response circuit coincide with
those of the drive.

FIG. 9. Convergence of the normalized parameters~16! during
the minimization process for an experimentally generatedVC1 time
series.
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ated time series~dashed curve!. As can be seen both attrac-
tors are located in the same region of state space and look
very similar, indicating a good agreement of the model dy-
namics and the experiment. This comparison can be ex-
tended to include invariants such as dimensions, Lyapunov
exponents, or the topological organization of~unstable! pe-
riodic orbits @20#.

IV. CONCLUSION

In this letter we have presented a parameter estimation
method that recovers the parameter values of a given model
from a single time series by minimizing an averaged syn-
chronization error. Using time series from the He´non map
and Chua’s circuit it was demonstrated that the error land-
scape is a sufficiently smooth function with a deep minimum
at the true parameter values. For numerically generated time
series this minimum and the corresponding correct parameter
values were found already after a few iterations of the mini-
mization routine. Similar results have been obtained for other
dynamical systems such as the Lorenz system and a driven
damped pendulum. In the case of real data~including noise!
the minimum of the synchronization error landscape is less
deep and may also be slightly shifted. Nevertheless, a com-
parison of attractor reconstructions from the experimental
data and a numerical time series using the estimated param-
eter values yielded a satisfying agreement.

In comparison with similar approaches for
synchronization-based parameter estimation@12,13# our
method~i! is stable even when all parameters are estimated,

~ii ! can be used with discretely sampled time series,~iii !
gives exact results when used with numerically generated
data, and~iv! was shown to work well even for experimental
data.

A possible application of this parameter estimation
method is, for example, VLSI implementations of electronic
systems like Chua’s circuit where the determination of the
actual values of the individual components is very difficult.
In those cases where a continuous coupling between the ex-
periment and a computer model is possible, similar methods
may be applied where additional differential equations for
the unknown parameters are used to control the adaption
process@21,22#. The approach used there to derive the nec-
essary parameter ODE’s can in principle be generalized to
the case of discrete dynamics that is considered in this paper.
For further improvements and generalizations one may try
different definitions of the synchronization error~cost func-
tion! or more efficient minimization algorithms.
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