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Inelastic collapse of three particles
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A system of three particles undergoing inelastic collisions in arbitrary spatial dimensions is studied with the
aim of establishing the domain of “inelastic collapse”—an infinite number of collisions which take place in a
finite time. Analytic and simulation results show that for a sufficiently small restitution coefficient,
0<r<7-43~0.072, collapse can occur. In one dimension, such a collapse is stable against small pertur-
bations within this entire range. In higher dimensions, the collapse can be stable against small variations of
initial conditions, within a smaller range, Gsr <9—4./5~0.056.[S1063-651X96)00907-5

PACS numbsd(s): 47.50+d, 05.20.Dd

[. INTRODUCTION beyondd= 1, inelastic collapse is an event, not an end point,
in the “lives” of the particles.

A system of particles interacting only through inelastic ~ To study the collapse, we use the methods of the dynami-
collisions is a useful idealization of granular materials, andcal systems theory. Specifically, we examine the situation in
has been much investigated recenly-10]. Inelasticity can ~ which particles one and two are very close to particle zero
make such a system evolve into a collapse state, in whicAnd aimed so that the system is very close to the collapsing
several of the particles collide an infinite number of times infixed point. Figure 1 shows a typical configuration. Particle
a finite time interval. 0 keeps colliding with particle 1 and particle 2 repeatedly,

Inelastic collapse in one dimension is well understoodand an inelastic collapse may occur. After many collisions,
[1-4]. In two dimensions, McNamara and Young carried outthe distances between the particles become small, and the
numerical investigations and found some evidence for th&emaining collisions take place so rapidly that the relative
inelastic collapses of three particlf5]. To understand the motion of the particles is small. Therefore, in the inelastic
collapse mechanism in higher dimensions, we study the besollapse, the anglé approaches a limiting value as the num-
havior of three particles in a particular model. Our modelber of collision goes to infinity. We identify the constaft-
involves collisions which preserve the total momentum andixed point and then investigate its stability. We find that a
the components of the momentum perpendicular to the lindixed point of an inelastic collapse exists only when the final
of centers. The component of the relative velocity along thed obeys
line of centers is reverseths in an elastic collisionand
reduced by the restitution coefficientl <1. We look at a
situation in which one particldabeled zerptakes part in all cosh= — 1)
collisions. The other two particlegabeled one and twaare 1+r°
alternatively a collider and a spectator. We assume that all

particles have the same mass, and that particles one and two . ) o
have identical radii. A collapse state will occur whenever this criterion holds and

There are two possible reasons that previous numeric&)!so steric effect do not block_off the required collisiotfor
studies might have shown collapse. One scenario is that tH&X@mple, such a blockage will always occuréat ) The
collapsed state is represented by one or many attractive fixed
points, so that the collapsing orbit can be stable against small
variations in the initial data. The other scenario is that each
orbit is unstable but that the infinity of collapsing orbits pro-
duces an observable collapse probability. For the specific
example of three particles, we find an attractive fixed point uc
for all dimensions and a sufficiently small coefficient of res- ' .
titution r. Thus we establish the possibility of the first sce-
nario. The second scenario is still possible, but we have seen
no evidence for it. For a larger, there is an interval in nth collision
which the fixed point is unstable against changes in the ini- A

before after

tial conditions. A
For dimensions greater than one, after the collapse has
occurred, the particles can separate from one another. Thus ‘
uS
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Electronic address: LeoP@uchicago.edu FIG. 1. Thenth collision between the collider and particle 0.
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stability analysis implies that for the collapse to be stablecomplemented by the equations corresponding to the posi-
against small perturbations in the initial velocities, a strongetions of the particles at the next collision,
condition is required, namely . R .

Xp+1=Xnttalnsq,

2(n) ¥ 1+ ()Y
oo 2P (O] . o
1+r Xn+1=Xn+tnun+1' (9)
Il. THE COLLISION MODEL The time interval between theth and the G+ 1)th colli-

_ ) o sionst,, is such that the magnitude éﬁH is unity.
We use the standard model of inelastic collision: due to a

collision the component of the relative velocity of the collid-
ers along the line of centers, changes by a factor of We
denote byu; andx; the velocity and the position of thigh We now seek fixed points in these equations. We assume
particle at the instant before a collision occurs. Let us conthat the time between collisions is sufficiently small so that
sider a collision between particles 1 and 0. In the course othet, terms in Eqs(9) are negligible and consequently

the collision, the velocities of the particles change to

Ill. FLAT SURFACE APPROXIMATION

oS e

> > > Xn+1:Xn:
up=u;—A, - -
Xn+1= Xn s (10
Up=Ug+A, : : .
oo during the approach to the fixed point.
- - We wish to find a fixed point in the components of the
Uz =Uz. 3 velocity in the direction of the lines of centers. Specifically,

- o _ we would like to investigate how this component decreases
Here, the momentum transfer &. It must point in the di- in each iteration. We can define

rection of the line of centers. In terms of the coefficient of

restitutionr this transfer is given by the expression X, 1-US,  =kxC-uS. (11)
A= ﬂ(il—io)[(irio)'(Jl—ﬁo)]- (4) Taking the dot product of Eq$6), respectively, intoc
2 andx¢, and using Eqs(10) gives
Here we have assumed that the radii of the colliding particles S 0S. — xS 00 (12)
sum to unity so that, at the point of collision Xn+1 Unp2™ 7 XnUn,
> N2 > 5 S - 1+r. -
(X17%0)"= 1. ®) Xn+2 Un+2=Xns1 Uppat Txrcwl' Un+1C080.  (13)

To do the dynamical systems theory, we wish to look at . . ) o
the very same process repeatedly. Therefore, we introdudeduations(11)—(13) thus imply the recursion satisfied by the
the superscripte denoting the collider ang denoting the ~ Scaling factork,
spectator particle, as well as a subscripio denote the in- P14y
stant before thath collision occurgFig. 1). For simplicity, Kys1=— — + —=—COS. (14)
we take the velocity and the position of the particle O to be Kn 2
zero. In order to make sure that the velocity of particle O

continues to vanish after the collision, we view the postcol-':'xed points can be found by settitkg.,.1=ky in (14),

lision system from a frame moving with velociﬁvé:&. 1+r
Then Egs(3)—(5) read k?— k——cos+r=0. (15)
J§+1=Jﬁ—25, As a result, the fixed point of the scaling factor has two
possible values
R
us.;=ui—A. (6) Lir ][ 2 12
These equations are supplemented by the conditions Ke= 4 cos+ 4 cosf| —r (16)
- 1+r (XE)(XE. G39) ) Equation(16) is one of the major results of our study.
2 n/A%n"Hn/s In every collision, the colliding particle must approach
particle 0. Hence?c- GC must be negative in every iteration.
(x8)2=1. (8)  This is possible only ik is a positive real number. One kind

of failure arises whemk is complex. Then the real part of the
Additionally, both the velocity and the position of particle dot product will change signs infinitely often and no fixed
0 vanish. Notice that a collider becomes a spectator immepoint can be reached. Thus, for an inelastic collapse to occur,
diately following a collision. The above equations arethe quantity under the square root in E#j6) must be posi-
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FIG. 2. The parameter space, §) is divided by(1) and(2) into FIG. 3. Comparison of simulation result®(for —u¢-x¢, x

three regions. For dimensions greater than 1, collapse can only hapor t,,, <1 for d,) with the theoretical predictiongolid lineg for
pen inside regior(a). In region (b), particles can have many but the casa =0.05 andg=0.042.

finite number of collisions. In regiokc), particles can hardly get
very close. °s s
thi T Xyt Upgg
. . e . . . tn a x¢ -l]c
tive. This positivity still permits both signs of csHow- n+2 "n+2
ever, if the roots are real and the cosine is negative, bothys rosiit may be simplified with the aid of Eqa1) and
roots will be negative. Hence neither is a possible solutlortlz) to give

for the inelastic collapse. The only remaining possibility is
that the inelastic collapse may occur under the condition on t
the cosine given by Eql). According to that statement, =. (19
whenr—0, # can have a value between 0 ant?. On the

other hand, whe=0, the well-known one-dimensional re- | ot 4 genote the shortest distance between two particles. The

sult is recovered?], i.e., inelastic collapse is possible for distance ratio equals the product of the time ratio and the
0<r<7-443. Regionga) and(b) in Fig. 2 are the regions velocity ratio, k,

of r and 6 for which we may have an inelastic collapse.
We now consider the stability of the above fixed points. d

(18

+1 T
Stability will imply that a small change in the initial condi- g =i (20)
tions will leave the system in a collapse state, or in other n
words, changes will still permit an infinite number of colli- e performed numerical simulations of the collision pro-

sions. There are two collapse fixed points distinguished by.ess by considering three inelastic particles moving in two
the values of the two multiplierk=k, andk=k_. Sub-  gimensions with random initial conditions. When collapse
tractingk.. from both sides of14) yields happens, we compared the ratios calculated from simulations
with the predictions of Eqs(11) and (19), (20). We found
ko —k K. excellent agreemeriFig. 3), indicating that the fixed points
Znvl P= °F are attractive and indeed correspond to collapse.
. (17
k—K. K,
IV. VALIDATION OF THE FLAT SURFACE

It is seen thatk_ corresponds to an unstable fixed point, APPROXIMATION

while k.. corresponds to a stable one. Henceforth, wekuse  As observed in the last section, making the approximation

to denote the stable fixed poiktk., . (10) dramatically simplifies the original system and it can be
Next, we investigate the time interval between successiv@escribed by a single ratik, . It is as if the particles have

collisions. Assume that the relative motion of the two collid- fjat surfaces, so that the effect of the tangential components

ing particles between each pair of collisions covers a disyf the velocities of particles 1 and 2 can be ignored. This is

tance which is very small in comparison to their radii. Thenyye only if the time intervals are negligible, so tt{&6) can

we can think of the surface of the particles as flat. After thepe optained fronf9). We will see when such a simplification

nth collision, the colliding particle moves away from the js valid, and we will set a criterion for the range of validity of

surface and covers a distangg; , ;- U;, ;. In the next step, the approximation.

this particle moves back over the same distance, which is On our way to Egs(12) and(13), we neglected terms like

given by —t,, 1x¢, ,-US, , and reaches the surface. Thus thet,(uS)? in comparison tox¢-uS, by using approximation
ratio of times is (10). As noted above, the former terms decrease as
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(r/k®)", while the latter terms decreaselds Thus, the flat tangential velocity component of particle 1. The collision
surface approximation is reliable only wherck® so that time is

terms proportional td, can be safely ignored. This condition

can be explicitly written as, 1(—u-x [[u-x)\? vz
t=— —-||—] —2d . (22
1+t 1+ 2 1/2\ 3 U\ Uy U
r<|{——cos9+ —cosﬂ) —r} ) . (21) . . : .
4 4 Immediately before the collision, the radial velocity compo-

. o N nent of particle 1 equals
which can then be simplified into the form of conditi¢®).

The region of stability determined by this condition is region 4. )'(*f: [(U-%)2—2du?]2 (23)
(@ in Fig. 2. The maximum possible value offor stable ' '
behavior isr.=9-4.5. Equation(22) gives the quantity needed to complete the

To this point, our calculation did hot rely on th? circular gquation set6)—(9). In order to abbreviate this calculation,
geometry of the particles. The name “flat surface” suggestsye introduce an effective centrifugal acceleration. In the

that when criterion(2) is satisfied, particles do not experi- gpove calculation, if we view the situation in a frame rotating

flat. This calculation is valid for arbitrary particle shapesto bothu and the line of centers, passing through the center

Wh\elz\?e(zaZISOSsggre\/de. that when criterig) is satisfied, the of particle 0, then particle 1 has zero tangential velocity, and

oo ; ' Ifhe effect of the tangential velocity can be represented by a

time intervalt,, decreases faster than the radial component o . c T, : A

the velocities. In such a situation, collapse happens Sgentrlfugal acceleration, = u; . This substitution is justified

quickly that all other effects, external or internal, have no y noticing that Wwe can g_et exactly the Same expressions as
QZ) and (23) by using this acceleration. We do not really

essential influences on the process. One can further consid dt h tating f W Hoct
arbitrary interactions between the particles as well as arbjh©€d 0 USe such a rotaling frame. We aga@s an efiective

trary external fields, as long as all the interactions depengentrifugal e_lccel_eration to replace the tangential component
only on the relative positions. Since the particles’ relativemc t:ff vetlr(])cny with thet.same effects._ h ol .
positions only change very little during the process of col- er these preparations, we are in a much ciearer posi-

lapse, all the effects of the interactions on, say, particle 1 caflon: Particle 1 and particle 2, respectively, have centrifugal

be replaced by a constant total force acting on it which in_e}ccelerat|onsal and a,, which are all in the radial direc-

duces a constant acceleration. This acceleration has vel%?_ns' quatlor(10) IS again a g_ood approximation. Particle
little effect in the tangential direction since the time interval IS moving on a Ilng, and so is par.tlcle 2. We can further
is too small for it to change the tangential component of thedrOp th? vector notation. In the folloyvmg, we u_seo denote
velocity. When the flat surface approximation is valid, the_the raQ|aI component of t.h? veloqty_of part_u_:les 1 an.d 2
time interval is even too small to change the radial velocity"ﬁnrmntd'ate'y before a collision, with Its positive direction
component. We conclude that the previously obtained fixed®®"tiN9, towards the2 center of particle 0. Consequently,
points are unchanged. a;=—uy anda;=—Uy.

The equation sei6)—(9) reduces to

V. CIRCULAR GEOMETRY U, = —ruS+as, t,,

In the preceding sections, the calculations were performed
by neglecting the,, terms completely out of Eq$9) and the
fixed points for inelastic collapse were found when the final
state satisfied conditio(2). After understanding the charac-
teristic behavior of the collapse, we can do a more rigorous 1
calculation to investigate how the system behaves outside the dy=Up, th— Eaﬁﬂtﬁ,
region satisfying(2).

We now see that during the collapse process, the radial

C — 1S 1+r Cc Cc
Upq=Up+ T(coa?)unJr an 1tn,

velocity components of particles 1 and 2 m_onoton_ically d_e- —dyy 1= —rult,+ laﬁutﬁy

crease till they vanish at the moment of singularity, while 2

their tangential components approach limiting values as the

number of collision diverges. Hence we take those tangential ai,,=ay,

components as constants, and concentrate on the radial com-

ponents in the calculation of fixed points. as.,=as, (24)

For simplicity we study in detail one collision in the situ-

ation where particle 1 has a zero radius while particle 0 haghered, is the distance between the spectator and particle
a unit radius. Since the theory depends only upon the sum @f at the instant of theth collision. Recall that,, is the time

the two radii, this case subsumes all others. Here we denoffiterval between thath and (+ 1)th collisions.

the initial instant with a subscript and the instant before the  One simple case can be fully carried through, the case
collision with f. We drop the superscripts since only particle 3, =a,=a. In this case, particle 1 and particle 2 are in a

1 is considered. We also assume the particles are very clos§ymmetrical situation so that the recursion relation of the
d<1, and —u-x;<u,, whereu, is the magnitude of the system can be obtained after a single collision.
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As we did before, we use two nondimensional numbers (1+r)cod
k, and «,, to describe the evolution of the system A= — o2
uﬁ+l —at,
kKn=—c anda,=—¢. (25 a+r
"o "oup An=—z ~Aw,
Starting from(24), after some straightforward calculation,
we get the following recursion relation: A _(1+r)cos)—2k
22 2k2 .
) 1+r r\2 L an|V? o6
1= || T oY ~ +r)cos€k—n » @8 | ot us denote by the eigenvalue of matrid, hence we
have
and
) A2—b\+c=0, (32)
1+ r o, 1+r r
Any1= 2 0089—k—n—k—n— —2 COSg—k—n where
112
an 1 1 1+r 211
—(1+r)cosfs—| . 2 =_-_ Y _
(1+r) kn} 27 b=3— 1+ (1+r)cosy ( 5>—Cosd }ZKZ
Suppose the fixed point ig(k), then from(27), we have 1 3r?
+r(l+r)(cosd) =3~ =z,
1+r k® 2k
— K%+ ——(cosh)k—r ,
— r
a= K1 . (28 c= —

Since =0 from its definition, the right-hand sidghs) of . .

the above equality must be non-negative. Thus there mus':tor the fixed point (&),

exist two real solutions ok satisfying rhs=0. And we r r2

readily recover the conditioft). b=-—=(1+k,) andc= —. (33
Substituting(28) into (26), we have k% K

, [+ 2 So
k =(T(coa9)k—r) —(1+r)

r r
)\1:_ and7\2=

—. (34)
k2 k3

) 1+r
—ko+ T(cosﬁ)k—r

X(cos9)k (299  The point (0k,) is an attractive fixed point if and only if
r<ki. Hence we recover the condition ). If we only
Of coursek. which appeared before, are solutions(28). ~ requirex;<1, we can recover conditiofl).

From (28) we learn that (&) are fixed points. Let us look For the fixed point &g,ko), we find thatay>0 if and

k+1

at other solutions of Eq29) which satisfy only if the condition of(2) is satisfied, but that condition also
decides the range of {#) inside which we will have
3 1+r ’ 1+r
ke+( 1+ TC039 ke— I’+TCO§ k—r=0. 1—b+c<0. (35)
(30

From Eq.(32) we know that one eigenvalue of matrxis
This equation has one and only one solutionkofn the larger than 1, implying that the corresponding fixed point is
interval [ 0,1]. We denote the corresponding fixed point asunstable. We conclude that there are no additional stable
(ag,kp). Of the three relevant fixed points, kQ,) is un-  fixed points beyond those which satisfy conditi?), and
stable, and we concentrate on the stability condition for théhere are no stable collapses outside that range in the case

other two fixed points. a;=a,.
Suppose thatd, ,k,) has a small deviation from the fixed We believe this is true for the general situation af
point («,k). Then #a,. When condition(2) is violated, our simulations show
that even though the particles can be very close, they will get
OKni1)  [An Ag) [ &Ky apart before having collided an infinite number of times.
Sanit) Ay Al day)’ (31) From the above calculation, and specifically E24), we

can see the parameter spaced can be divided into three
where regions(Fig. 2):
(a) When condition(2) is satisfied, both the eigenvalues
of matrix A are smaller than unity. The fixed point is stable

r(1+r)(cos)a in all directions in spaced,k). It is the collapse region.

1 1+r r
An=oi3| 2| 5 0¥
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(b) When condition(2) is violated but the conditiofil) is  condition(2), it does have some effects. The centrifugal ac-
satisfied, the eigenvalue,>1, while A;<<1. In this region, celeration, which obviously is important in deciding the
particles can have any number of collisions before theyprobability of collapse, is inversely proportional to the ra-
might eventually separate. dius. So chances are larger for collapse to happen when the

(c) When the conditiortl) is violated, both eigenvalues of colliding point is at a position on the surface with a larger
matrix A are larger than unity. Collapse does not occur.  radius of curvature.

The above calculation is independent of the sources of the
accelerations, which could be the interactions between par- VI. CONCLUSION

ticles. The calculation confirms our previous argument that . . . .
interactions are irrelevant in the process of collag@at We demonstrated analytically the existence of an inelastic

when there is a sufficiently strong attraction, e.g., graVity,collapse for three particles in allldimensions. At the last mo-
between particles so that the directions of the accelerationf@€Nt Of collapse, the three particles have a cyclic behavior,
are reversed, we want fixed points with<0. Then the fixed Which is characterized by a fixed point. We have established
point (aq,ky) becomes stable when conditi@) is violated. the range of the parameters for which the fixed point exists

Inelastic collapse can happen in a much larger region of‘nd the range for which it is stable.
(r,0).]
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