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We present a simple model of a dynamical system driven by externally imposed coherent noise. Although
the system never becomes critical in the sense of possessing spatial correlations of arbitrarily long range, it
does organize into a stationary state characterized by avalanches with a power-law size distribution. We
explain the behavior of the model within a time-averaged approximation, and discuss its potential connection
to the dynamics of earthquakes, the Gutenberg-Richter law, and to recent experiments on avalanches in rice
piles. @S1063-651X~96!11512-9#
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I. INTRODUCTION

There has in the last few years been considerable interest
in extended systems which self-organize into a state exhibit-
ing large scale fluctuations and intermittent dynamics. One
of the earliest attempts to model systems of this type was
made in 1987 by Bak, Tang, and Wiesenfeld, who proposed
a simple lattice model for the avalanches produced by depos-
iting grains of sand on an ever-growing sand pile@1#. Despite
having only short-range interactions and no tunable param-
eters, their model organizes itself into a state with long-range
spatial correlations and avalanches of size not limited by any
finite correlation length. It has been proposed that similar
self-organized critical~SOC! behavior could lie behind a
wide range of physical phenomena showing 1/f noise and
scale-free fluctuation distributions. SOC models have been
put forward to describe the dynamics of earthquakes@2#,
biological evolution@3# and extinction@4#, interface depin-
ning @5,6#, forest fires@7#, and many other systems@8#. The
common features of these models are that~i! they are all
driven very slowly~quasistatically!, and ~ii ! they have per-
fect memory. In this paper we demonstrate that it is possible
to produce intermittent dynamics with robust scale invariant
distributions in systems which are not quasistatically driven.

A distinctive observable consequence of SOC dynamics is
that the distribution of fluctuation or avalanche sizes takes a
power-law form with characteristic exponentt:

paval~s!}s2t. ~1!

The value oft typically lies between 1 and32 with the value
3
2, corresponding to a critical branching process, appearing if
one makes the ‘‘random neighbor approximation’’ in which
each site interacts with a randomly selected small number of
other sites@9#. This approximation is equivalent to the limit
of infinite dimension, and should give correct results for sys-
tems above their critical dimension. However, some systems
display event size distributions with exponents considerably
larger than this. Examples include the one-dimensional~1D!
rice pile experiment of Fretteet al. @10# which yields a value
of t52.160.1, and terrestrial earthquakes. In the case of

earthquakes, there is good evidence to support the contention
that the areas of displacementS of events are distributed
according to a power lawp(S)}S2ts, with ts52.060.1, at
least when the earthquakes are not too big@11,12#. The dis-
tribution of released energies is less clear cut@13#, and seems
to depend more strongly on earthquake size, with measured
exponentst ranging from about 1.6 to 2.0 for smaller quakes
@2,12,14,15#, to somewhere between 2.0 and 2.5 for larger
ones@2,14,15#, the crossover occurring around magnitude 6.

A number of models have been proposed which offer ex-
planations for these higher values oft. Boundary driven
sandpile models@16#, for instance, can give power laws with
exponents in the vicinity oft52, though they do so at the
expense of initiating the avalanches only on the boundaries
of the system. The model discussed by Christensen and
Olami @2# also generates steeper power laws, at the price of
having an entirely deterministic dynamics; if one introduces
randomness into this model, the simple scaling behavior is
destroyed. The reason is that when the exponent describing
the distribution of avalanches’ spatial extent becomes larger
than 2, the mean avalanche size becomes finite and indepen-
dent of system size, and the spatial overlap between subse-
quent avalanches becomes insignificant@17#. In the presence
of randomness, this can prevent the system from building up
any long-range correlations, and ultimately destroy the criti-
cal state. We conjecture that, in this regime, randomness in
the positions of the nucleation centers of the avalanches will
destroy self-organization of long-range spatial correlations.

In this paper, we present a different explanation to ac-
count for systems that have larger values oft. We demon-
strate that power-law event size distributions havingt
around 2 or greater, aretypical of extended systems with
quenched memory if they are driven by coherent noise, and
that in such systems they are present even in the absence of
any interaction between the different parts of the system.
~This is different from the situation in the SOC models,
where the system is driven by a local driving force, coupled
with interactions between the components of the system.!
The simplest model demonstrating the phenomenon is de-
fined as follows. Consider a system ofN agents, such as
grains on the surface of a sand pile or points of contact in a
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subterranean fault. With each agenti we associate a thresh-
old for movementxi which can take values falling in some
specified range and represents the amount of stress that the
agent will withstand before it moves. For convenience, we
choose to measurexi on a scale on which 0<xi,1, though
none of the results given below depend on this choice. The
dynamics of the model then consists of the repetition of two
steps, a ‘‘stress’’ step and an ‘‘aging’’ step.~The stress step
is the more important. Even in the absence of the aging step,
the stress step would be sufficient to create large, avalanche-
like events, though they would not then have a power-law
size distribution.!

~i! We select a random number or ‘‘stress level’’h from
some distributionpstress(h). All xi below h are exchanged
with new random numbers selected uniformly from the in-
terval 0<xi,1. The number of agents whose thresholds are
changed in this fashion is the sizes of the avalanche taking
place in this time step.

~ii ! A fixed fraction f of the agents is selected at random,
and the values of their threshold variablesxi are also ex-
changed with new random numbers selected uniformly from
the interval 0<xi,1.

The random selection of different values forh at each
step may be thought of as imposing external stresses which
coherently~in other words, simultaneously! influence all of
the weaker agents—those having suitably low thresholds for
stress—but leave unchanged the stronger ones. It seems
physically reasonable to assume that smaller stresses should
be more common than larger ones, and in the following dis-
cussion we make the assumption thatpstress(h) is largest at
h50 and falls off to zero ash becomes large. We denote the
typical scale of the falloff bys. The most interesting regime
is whens!1 and f!1.

II. RESULTS

We have examined the properties of this model both ana-
lytically and numerically. Instead of simulating the model
directly, we have developed an algorithm which calculates
the threshold distribution and avalanche sizes in a formally
exact way for a system withN5`. Starting off with a uni-
form distribution of thresholds, the system evolves towards a
statistically stationary state. In this state we record the mean
threshold distribution and the frequency distribution of ava-
lanches. The results are shown in Figs. 1 and 2 for a simu-
lation using exponentially distributed stresses:

pstress~h!5
1

s
exp~2h/s!. ~2!

As Fig. 1 shows, the distribution of avalanche sizess is flat
up to a certain point~whose position varies withs and f )
and then falls off as a power law according to Eq.~1! with
t'2.0. This power-law behavior appears to be robust in the
regime of smallf ands. If, for example, instead of Eq.~2!
we employ a Gaussian stress distribution

pstress~h!5A 2

ps2e
2h/s2, ~3!

then, although the average distribution of thresholds~Fig. 2!
changes radically, the power-law form of the avalanche dis-
tribution remains. Notice, however, that the exponentt
changes slightly as the applied stresses are varied. For the
Gaussian distribution, for example, we findt52.0260.02,
as opposed tot51.8460.03 for the exponential. And for
steeper distributions of stresses„p(h)}exp@2(h/s)q# with
q>4… we find t52.2 or greater.

Notice also that we measure the avalanche sizes in Fig. 1
as fractions of the total system size. Since the agents in our
model do not interact directly with one another, there should
be no finite size effects and we would expect the avalanche
distribution to look exactly the same for all sizes of system
when plotted in this way, except for a ‘‘coarsening’’ of the
horizontal scale for smaller systems as the number of bins in
the histogram decreases.

In order to investigate possible connections with spatially
organized models, we have also implemented our model on a
lattice and at each time step eliminated not only those agents
whose thresholds for stress fall below the selected level, but
also their neighbors. In all cases we observe a power-law
distribution of avalanches with exponent in the vicinity of
t52.

FIG. 1. Simulation results for the frequency distribution of ava-
lanches with exponentially distributed stresses~solid line! and
Gaussian ones~dashed line!, with f51023 ands5

1
20 in each case.

FIG. 2. Simulation results for the time-averaged distribution of
thresholdsx with exponentially distributed stresses~solid line! and
Gaussian ones~dashed line!. As in Fig. 1, f51023 ands5

1
20 in

each case.
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In order to understand the appearance of this power law,
let us consider the time-averaged behavior of the model. The
statistically stationary state arises as a competition between
the two processes comprising the dynamics: the stresses
which tend to remove lower thresholds from the distribution
and thus shift the weight of the threshold distribution to
higher values ofx, and the aging, which tends to move
weight back down again. The result is that the average
threshold distributionpthresh(x) is a highly nonhomogeneous,
monotonic increasing function ofx which, for smalls, tends
to have a plateau asx approaches unity~see Fig. 2!. By
balancing the two competing processes, we can calculate
pthresh(x) and hence the avalanche distribution. For concrete-
ness, we perform the calculation here for the exponentially
distributed stresses of Eq.~2!.

The probability of an agent possessing a thresholdx lying
below the stress levelh at any given time step~and hence of
it moving during this time step! is

Pmove~x!5E
x

`

pstress~h!dh5e2x/s. ~4!

The total time-averaged rate at which agents move in the
interval betweenx andx1dx is then

Pmove~x!pthresh~x!dx1 f pthresh~x!dx5Wdx, ~5!

where thex-independent constantW on the right-hand side is
the time-averaged rate at which probability is added to
pthresh. Rearranging we have

pthresh~x!5
W

f1e2x/s . ~6!

The constant is easily fixed by requiring thatpthresh(x) inte-
grate to unity, giving

W5
f

s F logf e1/s11

f11 G21

. ~7!

For small f ands, pthresh(x) rises exponentially nearx50
and then levels off in a plateau aroundx52s logf. Physi-
cally, this arises because agents possessing thresholds above
this point are affected only by the aging process, which treats
them all equally. Below this level, the stress process is im-
portant too, and it preferentially moves those with lower
thresholds.

The avalanche size distribution is given by

paval~s!5E
0

`

p~suh!pstress~h!dh. ~8!

The probabilityp(suh) of getting an avalanche of a certain
size given a certain stress level depends on the distribution of
thresholds, which will in general vary from one time step to
another. However, if we make the ‘‘time-averaged approxi-
mation’’ ~TAA ! whereby one assumes that at each time step
the threshold distribution can be approximated by its time-
averaged value, thenp(suh)5d„s(h)2s… wheres(h) is just

s~h!5E
0

h
pthresh~x!dx. ~9!

The avalanche size distribution then becomes

paval~s!5E
0

`

d„s~h!2s…pstress~h!dh5
pstress„h~s!…

pthresh„h~s!…

5
1

Ws
e2h~s!/s~ f1e2h~s!/s!, ~10!

where we have used Eqs.~6! and ~9!. We can calculate the
stress levelh(s) corresponding to an avalanche of sizes
from the same two equations, which give

s5F log11 f eh/s

11 f G Y F log11 f e1/s

11 f G's log~11 f eh/s!2s f

~11!

for e21/s! f!1 ands!1. We can now distinguish a num-
ber of different regimes. For small avalanches, such that
s!s, the logarithm on the right-hand side can be expanded,
giving s1s f's f eh/s. Substituting into Eq.~10!

paval~s!}@s1s f #22 for s!s. ~12!

This gives a flat avalanche distribution for smalls up to
abouts5s f , and then a power-law distribution for largers
with exponentt52. The approximation breaks down when
s's, giving way to a regime in whicheh/s;es, and hence
the avalanche distribution falls off exponentially withs. The
various regimes can clearly be seen in the numerical results
presented in Fig. 1, and the predicted crossover points be-
tween them agree well with the theory.

When f decreases belowe21/s, the approximations in Eq.
~11! break down and instead it becomes valid to write
eh/s'11se1/s. In this regime the theory predicts a break-
down in the scaling, a phenomenon which is also seen in the
simulations. Thus the aging process, whose scale is set by
f , must be small but necessarily nonzero if we are to see
power-law behavior in the avalanche distribution. Notice,
however, that at preciselyf50 the theory predicts a return to
t52 scaling, which is not seen in the simulations, implying
that the TAA breaks down in this regime because the distri-
bution p(suh) becomes too broad to be well approximated
by a d function.

The physical principle behind the appearance of a power-
law distribution here is the interdependence of the avalanche
and threshold distributions; the avalanche distribution is a
function of the particular distribution of thresholds at any
time, but the threshold distribution is itself produced by the
action of the avalanches.

III. CONNECTION WITH OTHER MODELS

There are clear similarities between our model and SOC
models. SOC models with extremal dynamics@3,8# have
agents which possess thresholds for withstanding stress in a
way similar to the model described here. Furthermore, our
model has a source term, the aging or reloading fractionf of
agents which at each time step lose memory of their previ-
ously assigned thresholds. This source term is similar in ef-
fect to the addition of the single grains of sand in sand pile
models@1#. There are however also some crucial differences
between our model and the SOC models. First, the stresses in
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our model act coherently, rather than on one site at a time,
and second, the agents are, at least in the simplest versions of
the model, entirely noninteracting. In SOC models, it is the
interactions which give rise to avalanches. In our model on
the other hand the avalanches of simultaneously moving
agents arise because all the agents feel the same externally
imposed stresses. There is no causal connection between the
events which comprise an avalanche; each agent moves in-
dependently of the others.

Unlike other model systems for large scale fluctuations,
such as the Burridge-Knopoff~BK! model @18# and the re-
cycled version of the democratic fiber bundle model
~DFBM! @19#, the model presented here does not make a
distinction between small, finite-sized events, and large ones
whose size scales like the size of the system. In the BK
model, for instance, the spectrum of event sizes contains two
separate parts, one composed of small events which scales as
s22, and another composed of the big events, which occur
quasiperiodically. The BK and DFBM models are not statis-
tically stationary, by contrast with our model whose dynam-
ics rapidly reaches a statistically stationary state. Models
such as BK and DFBM also show ‘‘foreshock’’ events in
which large avalanches are preceded by smaller ones. Our
dynamics does not have foreshocks but does display after-
shock events, a phenomenon which we discuss in greater
detail in the next section.

IV. DISCUSSION

We would like to examine the potential relationship of
our model to processes occurring in real physical systems.
First we consider earthquakes. To begin with, we ignore spa-
tial correlations and consider the variablesxi to be thresholds
for movement at various points along a fault. The coherent
stressh is provided by long-wavelength background noise
from some external source, such as other distant tremors, or
movements in the deeper regions of the earth, and the aging
f is due to slow plastic deformation from tectonic move-
ments of the crust. As we have seen, these elements alone
lead directly to a power-law distribution of earthquake sizes
very close to the observed Gutenberg-Richter law, without
needing to invoke interactions between neighboring parts of
the fault. That is not to say that such interactions do not
exist, only that they are not necessary to produce the ob-
served power law.~Kagan@20# has presented evidence of a
fractal pattern in the spatial distribution of earthquake activ-
ity, which is an indication that interactions are a feature of
the dynamics. This however need not lead us to conclude
that these interactions are necessary for producing the ob-
served distribution of events.!

An interesting feature of our model is that it shows clear
aftershocks. The mechanism for these is straightforward.
When a large avalanche occurs the thresholds of all the
agents involved are assigned new, uniformly distributed ran-
dom values. Among other things, this has the effect of in-
creasing the number which have thresholds close to zero,
such thresholds being rare under normal circumstances~see
Fig. 2!. The result is that subsequent stresses on the system
have a larger-than-normal effect, and we see an amplification
of the usual level of ‘‘background’’ avalanches in the after-
math of a particularly large event. In Fig. 3, we show a

section of a time series of avalanches from one of our simu-
lations, which clearly displays this aftershock effect. Notice
that if we apply the argument iteratively, we would also ex-
pect to see sequences of ‘‘after aftershocks’’ following each
of the aftershocks, a behavior which is indeed evident in Fig.
3.

We have also measured the average probability of getting
an event of a certain sizes>s1 a certain timet after a large
events>s2.s1, and found that for small times its distribu-
tion goes approximately ast21 ~Fig. 4!, regardless of the
thresholdss1, s2 chosen to define these large events. A simi-
lar result is seen in the data from real earthquakes, and is
commonly referred to as Omori’s law@21#. Thet21 distribu-
tion can be understood as follows. Suppose a large avalanche
occurs, redistributing a fractions of the agents in the system
uniformly across the allowed interval of threshold values
(0<x,1 in this case!. A subsequent stress of magnitude
h1 will remove all those agents withx,h1, and produce an
aftershock event of sizeh1s. In order to get another signifi-
cant aftershock we now need a stressh2.h1 in order to
reach those agents which were not affected by the first after-
shock. In general, if it took a timet1 to get the first stress,
then on average it will take as long again to get another of
the same size or larger, or a total time oft252t1 until a
stress of sizeh2.h1 comes along@and produces an event of

FIG. 3. Time series plot of avalanche sizes during a portion of a
simulation showing clear aftershocks.

FIG. 4. Histogram of the time distribution of aftershocks follow-
ing a major avalanche. The histogram follows a power law with an
exponent close to 1~Omori’s law!.
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size approximately (h22h1)s#. Repeating the argument, it
will take as long again, or a total time oft352t254t1 to get
the third aftershock, and so forth. Thus the average time it
takes to producen aftershocks is

t52nt1 . ~13!

The number of aftershocks occurring in any intervaldt fol-
lowing the initial large event is therefore

dn5
dt

n2n21t1
;
dt

t
. ~14!

In other words, the exponential increase in the time intervals
between aftershock events implies a histogram with at21

power-law form, regardless of the precise distribution of
stresses applied to the system.

Note that the mechanism proposed here is by no means
the only way to obtain aftershocks. One alternative mecha-
nism has been proposed by Nakanishi@22# using a Burridge-
Knopoff-like model in which relaxation processes are intro-
duced by considering the geometry of stress redistribution
following large quakes. As with the BK model, Nakanishi’s
model has quasiperiodic dynamics, but unlike the BK model
it displays aftershocks, whereas the BK model displays fore-
shocks. Also of interest is the work of Ito and Matsuzaki@23#
in which behavior approximating Omori’s law is obtained in
a sandpile model by introducing an extra step into the dy-
namics in which thresholds are randomly reshuffled after
each avalanche has taken place. This has the effect of per-
turbing the system away from its normal critical attractor and
aftershocks are generated as it evolves back to the steady
state. For further discussions of aftershocks and Omori’s law,
see Ref.@24#.

Next, let us compare our model with the results of recent
studies of one-dimensional rice piles by Fretteet al. @10#. In
these studies the experimenters found a frequency distribu-
tion of avalanche sizess which was flat up to a certain frac-
tion of the total size of the pile, and then fell off as a power
of s for larger avalanches according to Eq.~1!, with a mea-
sured exponent oft52.160.1. Although the exponent mea-
sured in these experiments describes the energy released in
the avalanche, whereas our coherent noise scenario deals
with the number of sites taking part, it is striking that the
statistics of our simulations~Fig. 1! also display a flat distri-
bution of avalanches up to a certain fraction;s f of the total
system size, and then a power-law fall in avalanche fre-
quency for larger sizes with an exponent close to 2. A pos-
sible interpretation of the experimental data then is that the
dynamics of the rice pile is one of avalanches produced by
the interplay of reloading with coherent stress. The reloading
f could arise as a result of newly added grains of rice, which
tend to randomize the thresholds for grains on the surface,
and the stresses might come from the tumbling of new grains
as they are added to the pile. The plateau in the avalanche
distribution for small sizess is then caused by rice grains
which tumble past a number of sites before coming to rest,
but have only enough energy to disturb the most unstable of
those sites, and the larger events which form thet52 power
law are the result of occasional larger stresses in the tail of
the distribution. The one-dimensional nature of the system

ensures that all input disturbances propagate through a large
portion of the system, and thus may be treated as coherent. In
a two-dimensional system this would not be the case, and the
pile might well show entirely different dynamics, either pos-
sessing a shallower power-law distributiont,2, indicating
perhaps that a true SOC dynamics is at work, or not possess-
ing a power-law distribution at all, indicating that coherent
driving forces are the only mechanism responsible for power
laws in this system.

Our model also makes quantitative predictions about the
scaling of the line between the two regimes in the avalanche
distribution: the position of the line should go likeNs f , the
factor of the system sizeN appearing when we shift from
measuring avalanches as fractions of the system size to mea-
suring the total energy they release. Scaling of precisely this
form with N is indeed seen in the experiments. Frette
et al. also mention that simple scaling disappears when the
experiment is repeated with ‘‘rounder’’ rice. We can explain
this result in terms of the narrower distribution of thresholds
that round rice can support, which corresponds to larger val-
ues of boths and f .

The results of these experiments have also been modeled
by Christensenet al. @25# and by Amarel and Lauritsen@26#
using a SOC model with interacting elements. There are as-
pects of the dynamics captured by their model which are
missing from ours, particularly geometrical effects con-
cerned with the spatial distributions of avalanches and the
corresponding transport properties of rice in the pile@27#.
However, because the exponentt is greater than 2, making
^s& independent of system size, we can expect these proper-
ties to be independent of the largest avalanche events
~though, on the other hand, they should now depend strongly
on the position and nature of the crossover between the two
regimes of the avalanche distribution!. We suggest that the
reverse is also true, i.e., that the observed large avalanches
could appear even in the absence of long-range spatial cor-
relations.

One characteristic which does seem to distinguish our
model from the SOC alternatives is the existence of after-
shock events. It might therefore might be profitable to inves-
tigate the existence of aftershock avalanches in the experi-
mental data, in order to make a quantitative distinction
between the two classes of dynamics.

Finally we would like to point out that models of the type
introduced here do not constraint to values close to 2. Al-
though the values found with the simple version of the model
outlined in Sec. II all lie approximately in the range
1.8,t,2.4, we have investigated other variants on the
model which produce values outside this range. One particu-
larly interesting version is one in which we allow for the
possibility of there being many different kinds of stress on an
agent. We suppose that agenti is subject toM independent
types of stress, and that it has a separate threshold for yield-
ing to each one, making our threshold parameter an
M -dimensional vector quantityxi . One then assumes that all
M components ofxi are to be replaced with new values
every time any one of the types of stress exceeds the corre-
sponding threshold value. In the limitM51, this model is
clearly just the same as the version discussed above, and for
higher values ofM we continue to see a power-law distribu-
tion of avalanche sizes, regardless of the nature of the ap-

6230 54M. E. J. NEWMAN AND KIM SNEPPEN



plied stresses. However, the exponent of the power law be-
comes steeper as the value ofM increases, and appears to
approach 3 asM becomes large.~We have investigated the
model numerically up toM550.! It is interesting to note that
stock market fluctuations show power-law fluctuation distri-
butions with exponents close tot53 @28#. One may specu-
late whether these so-called ‘‘fat tails’’ in the distribution are
the natural response to the action of external stresses on the
market~of which there are indeed many!.

V. CONCLUSION

To summarize, we have demonstrated that coherent noise
in large systems can give rise to intermittent behavior with
an ‘‘avalanche’’ type dynamics characterized by a power-
law distribution of avalanche sizes with exponent in the vi-

cinity of t52. This value is similar to that seen in a number
of real systems, including rice piles and earthquakes, sug-
gesting that these systems may in fact be driven by external
noise, rather than self-organizing under the influence of
short-range internal interactions. If one allows more elabo-
rate types of stress on the system one can obtain power laws
with exponents as high ast53.

We believe that the study of systems driven in this fashion
by coherent external noise may offer alternative interpreta-
tions of intermittent dynamics in a variety of extended non-
equilibrium systems in terms of a direct interplay between
small scale structures and long-wavelength fluctuations in
the system. Such systems might include not only the rice
piles and earthquakes considered here, but possibly also ex-
tended chaotic systems such as economies@28# and turbu-
lence@29#.
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to ordering on length scaleL is L/Lt21. This average organi-
zation effect should be compared with the disorganization
caused by the annealed noise from nonoverlapping smaller
avalanches appearing with frequency of order 1. Criticality
demands that organization should be larger than disorganiza-
tion for L→`, implying thatt,2.
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