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Complex-temperature singularities in Potts models on the square lattice
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We report some results on the complex-temperatGf® singularities ofg-state Potts models on the square
lattice. We concentrate on the problematic regionae(0 (wherea=eX) in which CT zeros of the partition
function are sensitive to finite lattice artifacts. From analyses of low-temperature series expansions for
3=<(q=8, we establish the existence, in this region, of complex-conjugate CT singularities at which the
magnetization and susceptibility diverge. From calculations of zeros of the partition function, we obtain
evidence consistent with the inference that these singularities occur at endpoaifsof arcs protruding into
the (complex-temperature extension of ttferromagnetic phase. Exponents for these singularities are deter-
mined; e.g., fog=3, we findB.,= —0.1251), consistent with3,= — 1/8. By duality, these results also imply
associated arcs extending into tt&T extension of thesymmetric paramagnetic phase. Analytic expressions
are suggested for the positions of some of these singularities; e.g=®r our finding is consistent with the
exact valueag,a =2(—17i). Further discussions of complex-temperature phase diagrams are given.
[S1063-651%96)09412-3

PACS numbg(s): 05.20-y, 05.50+(q, 64.60.Cn, 75.10.Hk

I. INTRODUCTION AND MODEL [9]. These authors considered the generalization of the exter-
nal magnetic field to complex valu¢8] and proved a cel-
In this paper, we report some results on complex-ebrated theorem that the complex-field zeros of the Ising
temperature singularities of thpstate Potts modéltl,2] on ~ model partition function lie on the unit circle in the plane,
the square lattice. The Potts model has been of interest bothhere u=e~2#", pinching the real axis as the temperature
as an example of a particular universality class for criticalT decreases through the critical poiffi,. Complex-
phenomena and as a model for physical phenomena such tsmperatur€CT) singularities of Ising models, first consid-
the adsorption of certain gases on substre@ésHowever, in  ered in Ref.[10], were investigated both by means of CT
contrast to the two-dimension@D) Ising model(equivalent  zeros of the partition functiofil1-13 and via their effects
to the q=2 case, the free energy of the Potts model for on low-temperature series expansi¢hd]. As well as being
generalg has never been calculated in closed form, even foof historical interest, these are relevant here because of the
zero external fiel@s). Some exact results have been estab-equivalence of thgspin-1/2 Ising model andq=2 Potts
lished for the model: from a duality relation, the critical point model. There is continuing interest in such complexifications
separating the disordered,-symmetric high-temperature because of the deeper insight that they give one into the
phase from the low-temperature phase with spontaneouslgroperties of statistical-mechanical moddfer the Ising
brokenZ, symmetry and associated nonzero ferromagnetienodel, see, e.g., Ref$15-26). From general arguments
(FM) long-range order is knowfi]. The free energy, latent and comparisons with exact solutions for 2D Ising models
heat[4], and magnetizatiofb] have been calculated exactly with isotropic couplings, one knows that in the thermody-
by Baxter at this critical point, establishing that the modelnamic limit, CT zeros merge together to form curvieglud-
has a continuous, second-order transition §ee4 and a ing possible line segmentsicross which the free energy is
first-order transition forg=5. Baxter has also shown that nonanalytic. These curves form the complex-temperature
although theq=3 model has no phase with antiferromag- phase boundary of the model. One can define notions of
netic (AFM) long-range order at any finite temperature, therecomplex-temperature extensions of the physical paramag-
is an AFM critical point aff=0 [5]. The values of the criti- netic (PM), FM, and (if it occurs) AFM phases. In certain
cal exponentgfor the range ofq where the transition is cases there are otheflabeled O) complex-temperature
continuou$ have been determind6]. Subsequently, further phases that do not have any overlap with any physical phase.
insight into the critical behavior was gained using the meth-These various CT phases are separated by boundaries com-
ods of conformal field theory7]. A review of work up  prisingB. The locus of points making uf§ may also contain
through 1982 was given in R€8]. part(s) consisting of curvegarcg or line segments that pro-
In general, if one knew the exattero-field free energy, trude into and terminate in certain phases.
one would be able to determine the full phase diagram as a There have been several calculations of complex-
function of complex temperature. The idea of generalizing demperature zeros of the partition function for the Potts
variable on which the free energy depends from real physicanodel on the square latti¢@7—32. Since the early calcula-
values to complex values was pioneered by Yang and Letions forq=3,4, it has been recognized that the zeros show
one clear feature: if one uses duality-preserving boundary
conditions, then in the Ra}>0 region(wherea=eX; see
*Electronic address: vmatveev@insti.physics.sunysb.edu below for notation, these zeros lie on a portion of the unit
"Electronic address: shrock@insti.physics.sunysb.edu circle x| =1, wherex=(a—1)//q [28-31]. In passing, we
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note that in thag— oo limit it has been showifassuming that eK_1
the g— < limit and the thermodynamic limit commytéhat X= (4
the CT zeros lie on the unit circle| =1 [32,33. However, Va

for a given(finite) g, the situation in the R&)<0 region .
has proved to be much more difficult to elucidate. The zero and deno_te the (r_e?uce()l free “energy per site as
=—BF= I|m,\,SMCNS InZ, whereNg denotes the number of

exhibit considerable scatter and, as we shall demonstrate, ' s i _
significant sensitivity to the boundary conditions used for theSites in the lattice. Here we consider the square lattice. There
finite lattice calculations, even if one requires these to pre@re actuallyq types of external fields that one may define,
serve duality. These facts have rendered it problematic to tr{avoring the respective values,=0, ... q—1; it suffices

to make inferences from calculations of zeros on finite latfor our purposes to include only one. The order parameter is
tices about the complex-temperature phase bounflamthe ~ defined to be
thermodynamic limit. In one early worR7] it was conjec-

tured that in the thermodynamic limit the zeros lie on the two m= M (5)
circles|a—1|=\/q and|a+1|=\4—q for g=3 andq=4 q-1

(where the second circle degenerates to a poinit shortly
thereafter, from a calculation of zeros for the 3 model on o ) o
larger lattices, it was concluded that this conjecture was fals@?zqf’)&mg:\jtlnc' disordered dpha\s/\(la a’"ﬁ:ﬁ In fthn?i“mltt?]f
[28] and the zero distribution did not suggest the existence orawurate ong-range order. Ve shall refemoas the

any simple algebraic expression that would describe this dismagnetization. Finally, théeduced, initial susceptibility is

~ — -1, — i
tribution. The same conclusion was reached from a calculagisl'zio:ﬁg d:ﬁ_(l__'g umgsimé%ﬂg;gevzgtggns'der the zero-

tion of the zeros for thgg=4 model[29]. .
We have been able to make progress in the problematic The general_q—state. Potts model on the square lattice
Re(a) <0 region by employing a powerful method not hith- obeys the duality relatioft]
erto used for this purpose, viz., to combine analyses of low- _ 1y —
: o : (a-1)(ag—1)=q, (6)
emperature series with calculations of CT zeros of the par-
tition function. We report our results here. In our seriesyherea =D(a) is the image under the duality map of
work, we have taken advantage of the recent calculations of
quite long low-temperature series for the free energy, mag-
netization, and susceptibility of the square-lattice Potts q
model forq=3 up toq=10 by Briggs, Enting, and Gutt- Da)=1+—7. @)
mann[35], extending earlier calculatiorie.g., Ref[36]; for
q=3 andgq=8, see also Ref37]). The organization of this with D?=1 as usual. In terms of the variabte this duality
paper is as follows. In Sec. Il we define the model and ourelation takes the simple form
notation and mention some of the general exact results that
are known. In Secs. Ill and IV we present our results for the 1
g=3 andqg=4 Potts model. In Sec. V we mention some Xd:; (8)
similar results forg=5 Potts models. Concluding remarks
are given in Sec. VI. The critical point at which a phase transition occurs between
the high-temperature symmetric phase and the low-
Il. DEFINITION OF MODEL AND EXACT RESULTS tempergture FM phase is given by the self-dual point
X.=1, i.e.,a,=1+/q. One may observe that E¢6) also
The (isotropic, nearest-neighblog-state Potts model on a has a second self-dual solution at a complex-temperature
lattice A is defined, at a temperatufe by the partition func-  point

whereM = (o) =limy,_,odf/oh. With this definition,m=0 in

tion
a=1-q=a,. 9
Z=2 e AX, (1) Exact expressions for the free and internal energy, latent
{on} heat, and magnetization have been given by B on

i o the critical self-dual curve
with the Hamiltonian

(a—1)*=q. (10)
H==32 85 0,~HX Soo, (2)  Since the latent heat is zero at for q<4 [4], the corre-
(nn’) " sponding transition between the symmetric and FM phases is
h . 1 7 lued variabl hsi continuous. The curvg10) also includes the complex-
whereo,=0, . .. g—1 areZ-valued variables on each site temperature singular point at in Eq. (9). We note that by

neA; B=(kgT)™ %, and (nn’) denotes pairs of nearest-

. ) ; the same reasoning, the phase boundary associated with the
neighbor sites. We use the notatilnr=3J, h=8H,

complex-temperature poird; is also continuous. Exact re-

1K sults have also been given by Baxter for the critical manifold
a=z ~=e", 3 [5,38]

and (a+1)?=4—q. (11)
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Forg=3, Eg.(11) has two solutions: the AFM critical point be in the FM phase. This fact can be seen equivalently as a
at a=0, i.e., T=0 with J<0, and a complex-temperature consequence of the fact that the model has a low-temperature
point expansion with a finite radius of convergence, so that there is
a finite neighborhood of the origin in the complexplane
a=—2=as. (120 where it is in the(CTE of the FM phase. Henceforth, we

shall generally refer to the complex-temperature extension of

We observe that these two points are mapped onto each othﬁ]re FM phase simply as the FM phase and similarly with the
under the duality mapping: PM phase.

D(a=0)=-2. (13
. q=3 POTTS MODEL
For q=4, Eq.(11) has only the solutiom=—1, implying
that forg=4 the model has no AFM long-range order even
atT=0.

Consider anL,XL, planar square latticeG with
Ns=N, sites (0-celly, N,=N; bonds (1-celly, and
Np=N, plaquetteg2-cells. We shall discuss boundary con-
ditions in Sec. Il E below. The dual @&, which we denote
Gy=D(G), is defined by associating uniquely a

Eﬁl—)p):-c(tla\lll)of (ﬁd) Vi't(hN )eaChanpd_C(EI") Ozf(ﬁ’) soSi:]hCaet fit the specific heaC, the magnetizatiorm, and the(re-
0/6—IN2/Gy AT/ G UGy 26T AT0/Gy: duced susceptibilityy to the leading singular forms appli-

the planar graph has no handlé$,=0, and hence Euler gpje near a generic singular pom,:

characteristicye=2(1—Ny) =2, it follows from the Euler 9

relation=7_(—1)!N;= xe thatNy—N;+N,=2. The dual- ,
ity relation connecting the partition functiah; on G with C~(1—2/zgjng) ~ “sing, 17
that onGy is [8]

We shall discuss our methods in detail for the=3
square-lattice Potts model and then proceed to the higher-
cases. We begin with analyses of the low-temperature series
expansions. The series for the partition function, magnetiza-
tion, and susceptibility have been calculated to ordér
[35]. As in our previous studies of complex-temperature sin-
gularities of various spin models, we have used hbtlog
Padeand differential approximants to analyze the series. We

Zo(x)=xMNagMo~1-(12NiZ (xy). (14) M~ (1= 2/Zging) P, (18)

It follows from (14) that in the thermodynamic limit, the and
singularities of that the free energy at a paanand its dual )
imageay are the same. In particular, X~ (1=2/2gjng) ™ 7sing. (19

fsndq=3;a=—2)=f5,{q=3;a=0). (15  As usual, the primes indicate that we are approaching this
) ) . . singularity from within the interior of the FM phase. We find
In discussing the complex-temperature phase diagram, it iSonyincing evidence from our series analyses for singulari-
convenient to use the Boltzmann weightts inversea, and a5 at two complex-conjugate points, which we dennte

the related variablg. For g=3, the exact resu_lts discussed andz* , at which the magnetization, susceptibility, and spe-
above show that the phase structure for physical temperatuter. . I'?eat are divergent

(i.e., 0<a=wx) consists of(i) the disorderedZ;-symmetric
PM phase for @&a<1+.3, (i) the FM phase for
1++/3<a=<w, and(iii) an AFM critical point ata=0. For
q=4, the physical phase structure consists only of the PM In Table | we present some diagonal and near-diagonal
phase for G<a<1+.q and the FM phase for d log Paderesults for this singularity(We have, of course,

1+ Jg<a=c. One defines the complex-temperature extenalso calculated approximants farther from the diagorial.
sions(CTE’s) of the PM and FM phases by analytically con- should be noted that the actual values &f have small
tinuing away from the respective segments of the positivdmaginary parts; we list only the real part since, from our
reala axis. Two rigorous properties are the following. First, Previous experience with complex-temperature singularities
because the model has a high-temperature series expansifnthe Ising mode[19-22, when these are probed to very
with finite radius of convergence, it follows that the CTE of high accuracy, the exponents extrapolate to real values. Our
the PM phase occupies a finite neighborhood surrounding th@nalysis of the series for the order parameter indicates
point a=1. Second, it is easy to show that for sufficiently COmplex-conjugate  singulariies ~ at  approximately

|arge |a|, one is necessar”y in th@:TE of the EM phase' Ze,Z; =-0.34+0.29 (the location will be discussed further
To see this, leti=p,e'’%; then below), wherem diverges with the exponent

A. Magnetization

K=Ina=Inp,+i(6,+2mn), (16) Be=—0.1231). (20

wheren denotes the Riemann sheet of the logarithm and maft plausible inference is that the exact value of this exponent
be taken to be equal to zero here. It is clear that for suffilS

ciently large|a|=p,, the angled, makes a negligible con-

tribution to K, so that(given thatd=2 is above the lower Bo= 1 21)
critical dimensionality for the FM transitigrthe system will ©
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TABLE I. Values ofz, and 3, from d log Padeapproximants to TABLE II. Values of z, and y,, from d log Padeapproximants
low-temperature series fan for q=3. to low-temperature series for for q=3.
[N/D] Ze Be [N/D] Ze yé
[13/12) —0.340504- 0.287457 —0.1258 [15/15 —0.337324-0.290677 1.123
[13/13 —0.340420-0.287491 —0.1256 [17/15 —0.339008-0.289398 1.190
[14/13 —0.340382-0.287392 —0.1250 [15/16] —0.339062-0.288578 1.173
[13/14 —0.340358-0.287478 —0.1252 [16/16] —0.338269-0.289319 1.149
[14/14) —0.340441-0.287408 —0.1254 [17/16] —0.3382810.289318 1.150
[15/14 —0.340428-0.287382 —0.1252 [18/16] —0.338121-0.289177 1.138
[14/15 —0.340427# 0.287365 —0.1251 [15/17] —0.337814-0.289264 1.125
[15/15 —0.340433-0.287339 —0.1251 [16/17] —0.338280+-0.289318 1.150
[16/15 —0.340436-0.287386 —0.1253 [17/17] —0.338270-0.289319 1.149
[15/1€] —0.340429-0.287368 —0.1252 [18/17] —0.338227 0.289314 1.147
[16/16] —0.340512-0.287332 —0.1256 [19/17] —0.338392-0.289618 1.163
[17/1€6] —0.340405-0.287364 —0.1250 [16/18| —0.338168-0.2892638 1.143
[16/17] —0.340412-0.287339 —0.1250 [17/18 —0.338226-0.289312 1.147
[17/17] —0.340406-0.287354 —0.1250 [18/18 —0.338259-0.289325 1.149
[18/17] —0.340416-0.287357 —0.1251 [19/18 —0.338336-0.289377 1.154
[17/18 —0.3404106-0.287350 —0.1250 [20/18] —0.338338-0.289242 1.151
[18/18 —0.340406+0.287356 —0.1250 [17/19 —0.338077 0.2892738 1.138
[19/18 —0.340407 0.287368 —0.1250 [18/19 —0.338332-0.289360 1.153
[18/19 —0.340376-0.287418 —0.1251 [19/19 —0.3383110.289338 1.152
[19/19 —0.340312-0.287325% —0.1244 [20/19 —0.338355-0.289392 1.155
[20/19 —0.340260- 0.287344 —0.1241 [21/19 —0.33853%0.289589 1.170
[19/2Q —0.340273-0.287344 —0.1242 [18/20Q] —0.338310-0.289320 1.151
[20/2Q —0.340305-0.287229 —0.1241 [19/20Q] —0.3383410.289364 1.154
[21/2Q —0.340285-0.287321 —0.1242 [20/20Q] —0.338168-0.289338 1.145
[20/21] —0.340292-0.287319 —0.1243 [21/20Q] —0.337704-0.289629 1.126
[21/27 —0.340326-0.287269 —0.1243 [22/20Q] —0.337349-0.2908438 1111
[22/27 —0.3407110.286857 —0.1246 [19/21] —0.338488-0.291209 1.196
[22/22) —0.340855-0.286878 —0.1247 [20/21] —0.337205-0.289884 1.102
[23/22 —0.340688-0.286888 —0.1246 [21/27] —0.340368-0.286150 1.080
[22/23 —0.340982-0.287191 —0.1260 [20/22 —0.336698-0.291098 1.064
[23/23 —0.340806-0.287311 —0.1262

i ) =13/9, and%=4/15[6,39]. One recalls that the exponent
We comment that although such a divergence in the orde{/g goes occur in the set of the conformal weights for the

parameter is forbidden in usual physical phase transitions, {{,— 5 conformal field theory relevant to the 2=3 Potts
can and does occur at complex-temperature singularities. Ifq0qel viz. hys=hs.=1/8, where h,,={[(m+1)p

deed, in our previous work we have noted several instance§mq]z_l}/[4m(m+1)] for p=1,...m-1 and
where the magnetization diverges at CT singularities. Fof_ 4
example, exact results show thatl diverges [like w
(1+3u) 8] at the CT pointu=—1/3 in the (zero-field
spin-1/2 Ising model on the triangular lattice and at
u=ue=—(3—242) in the Ising model with8H=i/2 on

..p and the central charge is given by

c=1-6[m(m+1)] and has the value=4/5 for this case

[7]. However, the relation of this to the appearance of the

exponent —1/8 at the complex-temperature singularities

-V Y Z¢,Z5 is obscure, for several reasons. First, as we discussed

the square latticglike (1—u/ug) "] [22]. . . in Ref.[19], there are violations of basic scaling relations at
The appearance of the expon¢®0) at this CT singular- 5516y temperature singularities, so that it is not clear how

ity in_the squ_are-lattice .POttS fT‘Ode' is_intriguing si_nceto apply conformal field theory to such singularitiesnce

—1/8is not a simplénegativg multiple of any of the physi- e implies, among other things, such scaling relations
cal magnetic exponents in the model. This contrasts with th%econd since the Hamiltonian is not real at complex-
above-mentioned examples from the 2D Ising model, Wheret’emperature singularities, it is not obvious why the unitary

as is clear from the exact solution, the divergent magnetic,iional conformal series is relevant to such singularities.
exponents atu=—1/3 on the triangular lattice and at

u=u, on the square lattice fdr=i/2 are precisely minus
the common value o8=1/8 at the physical PM-FM critical
point. Specifically, for the PM-FM transition in the 2D In Table Il we present our corresponding results from the
q=3 Potts model, the thermal and magnetic exponents are log Padeanalysis of the low-temperature series for the
yi=1llv=1/v'=6/5 and y,=28/15, whence a=a’ susceptibility. We have also carried out a similar study with
=2—dly,=1/3, 6=(dly,—1) =14, B=1/9, y=vy' (first-order, unbiased differential approximants, which

B. Susceptibility
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TABLE lIl. Values of z, and a, from differential approximants as in our earlier works, e.g. Ref19]; [L/Mg;M,] is the
to low-temperature series féreduced specific heaC/(kgK?) for differential approximant to the generic functiap(z) ob-

q=3. tained as the solution to the ordinary differential equation
, Qo(2) ¢(2) +Q1(2)(zd/d2) #(2) = R(2), whereQo, Q;, and

[L/Mq;M,] Ze ae R are polynomials of ordei,, M,, andL. A review of the

[8/16:14 0.3407788-0.2885827 1.072 methods is given in Ref40]. We determine the specific-heat

[8/16:15 —0.3407563 0.2878427 1.052 exponent to be

[8/16;16 —0.3395542-0.2877949 0.997

[8/16;17 —0.3399969-0.2874121 0.986 ae=1.001). (23

[8/17;19 —0.3393125-0.2891874 0.960 L.

[8/17:16 0.3391475- 0.2886514 0.967 As_ can be seen fr_om Tables_ I—III_, the magnetization, suscep-

[10/15:13 0.340576% 0.2887910 1.049 t|b|||ty, and spec!flc—he::l't.ser|e§c give cor?sllstent values fgr the

[10/15:14 —0.3405514- 0.2889317 1044 location of the singularitieg, ,z; . Combining these, we in-

[10/15:1§ —0.3400586 0.2896685 0.987 fer that

[10/15;14 —0.3392558-0.2894922 0.935

[10/16;14 —0.3396813 0.2885618 0.989 Z,,zg =—0.3392)+0.2892)i. (24

[10/16;19 —0.339760% 0.288543% 0.994 . . .

[12/14:12 0.3401737- 02893914 1.001 For our comparison with Fhe plots of zeros o_f the partition

[12/14:13 —0.3405823- 02891851 1.049 function, it will be convenient to reexpress this in terms of

[12/14:14 _ 0.3406363- 0.2897800 1059 the a and x variables. We list the results in Table Iio-

[12/14;15 _ 0.3395286- 0.2896329 0.934 g_ether with positions of _the corresponding singularity for

[12/15;13 —0.340744%0.2896268 1.071 higher Vall-JeS of, to be discussed later :

' In passing, we observe that although we have found vio-
[12/15;14 —0.3404562-0.2891536 1.039 lations of scaling relations such as+28+y=2 and
[14/13;1] —0.339926@-0.2888016 0.989 a'+2B+vy"'=2 in our previous work at various complex-
[14/13;12 —0.3399969 0.2885408 1.001 temperature singularitie®.g., Refs[19,24)), in the present
[14/13;13 —0.3395575-0.2895497 0.919 case, we obtainy,+28,+ y.,=1.9+0.1 so that, to within
Hjﬁj?ig *ggig:ggigggggzgz gg;g the uncertainties, this exponent relation is satisfied.
(164213 Coasdconosessers 05 D. Singulares at dual mages ofa.a
[16/12:11 —0.3391883 0.2891054 0.929 A rigorous consequence of the <_juality of the model is_, that
[16/12;12 — 0.3394838-0.2892739 0.939 the fre_e energy also is smg_ular, with the same singularity, at
[16/12;13 —0.3393726-0.2892381 0.934 the points that are the dual images of theanda; , namely,
[16/13;11] —0.3394488-0.2892846 0.937 for the central vaIuesD(ae),D(az) =0.141+0.462 or,
[16/13;12 —0.3394364- 0.2893045 0.933 equivalently, D(xe),D(xs ) = —0.496+0.267. These points
[18/11;9] —0.340446% 0.2882994 1.032 lie in the (CTE) PM phase. Note that sinde =1 while
[18/11:1Q —0.3398013 0.2888885 0.979 |xo| =0.56, the singularities at.,x} lie closer to the origin
[18/11;1] —0.3395252 0.2888279 0.962 in the x plane than the physical critical point.

[18/11;13 —0.3396986-0.2891254 0.955
[18/12;1Q —0.3394656- 0.2892506 0.939 E. Connection ofa,,ag singularities
[18/12;11] —0.339444%0.2891136 0.945 with CT phase boundary B

We would also like to relate these complex-conjugate CT
) o , singularities atz,,z; or, equivalently, in the complexa
ylt_alds the same value, to _V\_/lthln the uncertainty. We deter.’plane, a,,a% , to the complex-temperature phase boundary
mine thei value of the specific heat exponent at the smgularlB From our previous studies on CT singularitié®, 22,24,
ties z,,z, to be we formulated a conjecture that whenever an arc or line seg-
ment of the phase boundary protrudes into, and ends in, the
ve=1.146), (22 FM phase, there is a divergencehh at the endpoint of this
arc. We proved that this divergence M implies also a
where the uncertainty represents a theoretical estimate frofivergence iny at the same endpoip24]. Besides the exact
the scatter of values among different pm differential results alluded to above that exhibit this behaVior, our calcu-
approximants. lations of partition function zeros for the 2D higher-spin
square-lattice Ising modg23], in conjunction with the series
analyses of Jensen, Guttmann, and Enfi?g], are consis-
tent with the conjecture. A natural extension of the conjec-
To study the complex-temperature singularities in the speture is that the divergences which we have foundrirat
cific heat, we have again carried out analyses with both Padiéese CT points in the square-lattigestate Potts model in-
and differential approximants. As an illustration, we show indicate that these points are endpoints of arcs of points where
Table Il our results from the latter. Our notation is the samef is nonanalytic, i.e., arcs on the CT phase boundary

C. Specific heat
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TABLE IV. Values of z, and, correspondinglya., andx, from analyses of low-temperature series for
magnetization, susceptibility, and specific heat. See the text for further details.

q Z,2¢ ae, g Xe,Xg

3 —0.339(2)+0.289(2) —1.71(1)% 1.46(1) —1.56(1)¥0.841(3)
4 —0.288(2)+0.270(2) —1.85(1)F 1.73(1) —1.42(1)70.866(4)
5 —0.251(2)+0.251(2) —1.99(1)¥ 1.99(1) —1.34(1)70.891(4)

In order to test this conjecture here, we have carried ouwhich violate duality but maintain equal coordination num-
calculations of complex-temperature zeros of the partitiorber for all lattice sites.
function for several different finite lattices, using transfer A third type of DBC has recently been suggested to us by
matrix methods, as in our earlier study of partition functionwu [34]; it can be defined as follows, and will be denoted as
zeros for the 2D higher-spin Ising modei3]. At appropriate  pBC type 3. Consider anL,xL, lattice with
points we shall make comparison with previous computay = +1, L,=L. Let all of the sites on the longéhorizon-
tions of zeros for the square-lattice Potts md@8-31. Itis  (5)) ypper edge of the lattice be connected to a special ad-
desqable to, ar_1d we shall, restrlct_ (_)urselves to lattices Wltfjloined point, viaL + 1 bonds, and similarly let all of the sites
duality-preserving boundary CO'ndItIOI’(QBC'S) [8’39’,3]]' on the lower edge of the lattice be connected_byl bonds
These guarantee tha¥(G) =G, i.e., the dual of &(finite) to a second adjoined point. Finally, connect the two adjoined

lattice G is (isomorphic 9 the 0“9'”"’?' Iatt|ce._T_q discuss points by a single bond and let the sites on the vertical edges
these, we recall Eq14) and the associated definitions. Note . L

T . i of the lattice have free boundary conditiofis the outward
that 2D periodic, i.e., toroidal, boundary conditions do not,_ . S ) . -
preserve duality for a finite lattice. The boundary Conditionshor'zomaI directions 'I2'h|s lattice  has No= N_2
are not uniquely specified by the condition that they preserve:,\ILEIIjL(lllz))&L 2 andN; =2(L°+L+1)=2(No—1) [S? again,
duality. One type, which we label as type 1, was discussed iff ° “M1=1in (14)]. Evidently, type-3 DBC's share
Ref.[31] (see their Fig. 1 We shall need a straightforward 9reater similarity with type 1 than type 2 since in types 1 and
generalization of it to the case of anx L, lattice with L, 3 no subsets of edge sites have periodic boundary conditions,
#L,, and we describe this as follows. Let the lattice bewhile in type 2 the sites on the vertical edges do have PBC's.
oriented with thex andy directions being horizontal and FOr @ given value ofj, the patterns of zeros that we have
vertical, respectively. Let all of the sites on the upper andPbtained with type-3 DBC's are indeed similar to those with
right-hand edges, including the corners, connect along diredYP€ 1-_ ]
tions outward from the lattice to a common site adjoined to N Figs. 1a) and 1b) we present calculations of complex-
this lattice (so that the upper right corner connects to thistemperature zeros, in the complexplane, of the partition
adjoined point via bonds in both theand they directiong, ~ function for theq=3 Potts model on 810 lattices with
while all of the sites on the lower and left-hand edges, exduality-preserving boundary conditions of types 1 and 2, re-
cluding the previously mentioned corners, have free boundspectively. The positions of the singular poirgts,ag are
ary conditions. For the dual lattice, the special adjoined pointarked with small circles on both of these plots. A compari-
may be taken to lie to the lower left of the lattice. In Ref. son of these plots gives a quantitative measure of how the
[31] it was noted that from(unpublishedl calculations of positions of the zeros can vary for different boundary condi-
zeros with other DBC’s, they obtained agreement with theittions and specifically for those that maintain duality. This
conclusions from type-1 DBC's that for R&(>0 the zeros extends previously published plof80,31, which showed
lie on the circle|x|=1 [31]. We have also used a set of that the pattern of zeros differs significantly when one uses
DBC's different from type 1, which we denote as type 2 duality-preserving, as opposed to duality-violating, boundary
[34]. For these, let the, X L, lattice have periodic boundary COﬂd'ItIC.)nS. These comparisons .demonstrated that once one
conditions(PBC’s) in the x direction, so that the lattice may SPecializes to duality-preserving boundary conditions
be pictured as a cylinder with its axis oriented vertically. (BC’s), the zeros in the Re)>0 region lie nicely on the
Now connect all of the sites on the upper edge of the cylincircle |a— 1| =g, whereas they lie close to, but not exactly
der to a special point adjoined to the lattice and let all of theon, this circle for duality-violating BC’s. Among previously
sites on the lower edge of the cylinder have free boundarpublished calculations with duality-preserving BC's, there is
conditions. The dual lattice is constructed in the usual wayone, given as Fig. 11.1 in Reff30], on a lattice as large as
assigning sites to each 2-cell of the original graph and adthe one that we use and the pattern of zeros found there is
joining the special point below the cylinder with the stipula- very close to the pattern in our Fig(kd. In our figure, one
tion that the points on the upper edge of the dual lattice havéan discern two outer-lying complex-conjugate arcs of zeros
free boundary conditions and the points on the lower edgé the “northwest” and “southwest” quadrants, and the
connect to the adjoined point. For both type-1 and type-dointsae,a} lie near the ends of these arcs. In Figa)there
DBC's, No=L,L,+1=N, andN,;=2L,L, so that the pref- is more scatter among the zeros, but, nevertheless, the points
actor qNO‘l‘(l’Z)lezl in Eq. (14). Note also that both a.,a} lie at the ends of subsets of zeros that can be associ-
type-1 and type-2 DBC's force some sites to have coordinaated with arcs. We have also performed analogous calcula-
tion number 3 rather than 4 and the adjoined point has cootions of zeros on smaller lattices with similar results. For
dination numbet.,+L, for type-1 DBC'’s and., for type-2  comparison, in Fig. (c) we show an exploratory calculation
DBC's. This is in contrast to periodic boundary conditions, with type-3 DBC'’s. Taking into account that the lattice for
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FM phase. By duality, this is equivalent to the statement that
the singularities aD(a,),D(a}) are the endpoints of arcs
contained inB which protrude into the PM phase.

F. Singularities ata=0 anda= -2

The exact solutior(11) by Baxter shows that the point
a=0, i.e.,, T=0 for J<O0, is the antiferromagnetic critical
point. By the duality property14), it follows that the free
energy is also singular, with the same singularity, at the dual
to this point, namelya= —2=a, given in Eq.(12). From
renormalization-group methods, a mapping to a critical six-
vertex model, and studies of correlation functions, it has
been concluded that the AFM critical point is an essential
singularity, with an essential zero in the free energy and an
exponential divergence in the correlation length as
K— —o, i.e.,,a\,0 [41]. Thus, if one assigns algebraic ex-
ponentsa and v for this AFM critical point, thena= —oo,
v=o. By duality, the same singularity in the free energy
occurs at the dual poirg= —2.

We have addressed two questions concerning these singu-
larities ata=0 and —2: (i) how do they connect with the
complex-temperature phase boundBrgnd(ii) how well do
the low-temperature series detect the CT singular point at
a= —27? For questiorti), we first recall that the density of
CT zeros along the curves comprisifigin the vicinity of a
generic singular poinag behaves af13]

gwla_as|1ias! (29
whereag denotes a singular point ane («;) denotes the
corresponding specific-heat exponent for the approach to
from within the CTE PM(FM) phase. Sincex=—o at
a=0 and hence, by dualityy,=—% atas=—2, there is a
strong reduction in the density of CT zeros as one ap-
proaches these respective poiats0 anda= —2 alongB.

This is consistent with what is observed with CT zeros cal-
culated on finite lattices; one sees clear arcs of zeros and,
e.g., for type-1 duality-preserving boundary conditions, these
track toward the respective poinis=0 anda= —2, ending
some distance away from these poir{fSor type-2 DBC's,
one also observes a slight curling tendency among the last
few points on the curvesFrom this tracking of the zeros
toward a=0 (and hence, by duality, toward=—2), we
infer that the AFM critical pointa=0 lies on a portion of

B that connects with the continuation of the curves lying on
(either part or all of the unit circle|a—1|= /3 in such a
way as to bound completely the complex-temperature exten-
sion of the PM phase. This is reminiscent of another model
that has no AFM long-range order at any finite temperature,
but an AFM critical point aff =0 [42], namely, the(isotro-

pic, spin-1/2 Ising model on a triangular lattice. In that case,
in terms of the variablei=e™ %K, the complex-temperature
phase boundaryB consists of the union of the circle

1(b), one sees that the distribution of zeros is similar to thatu+ 1/3 =2/3 and the semi-infinite line segment running
in Fig. 1(a) with type-1 DBC'’s, especially in the region near along the negative real axis from—1/3 to — o, or, equiva-
ae,a; and their dual images. From all of these calculations)ently, in the variableu™* analogous ta, it consists of the

we thus conclude that the observed patterns of zeros are coonion of the circle|u™*—1|=2 and the line segment
sistent with the hypothesis that in the thermodynamic limit,—3<u~!<0. The AFM critical point atu =0 forms the

the pointsa.,a; are the ends of arcs contained in theright-hand end of this line segment and is connected to the

complex-temperature boundafy which protrude into the

rest of 5 by it. It is interesting to contrast this with the
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TABLE V. Values ofzg and vy, from diagonald log Padeap- G. Singularity at a=1-3?

proximants to low-temperature series ferfor g=3. The Baxter solutior§10) shows that the free energy is also

[N/D] 2, v, _singular at the self-dL_JaI complex-temperatgre pair_ugiven

in Eq. (9) for q=3, viz.,a=1— /3. There is considerable
[14/14 —0.478716 1.66 scatter of zeros in the vicinity of this poifiess for our Fig.
[15/15] —0.490833 231 1(c) or Fig. 11.1 of Ref[30] than in Fig. 1b)]; however, the
[16/16] —0.487890 212 zeros are consistent with the inference that this singular point
[17/17) —0.487889 2.12 lies on a segment of the circlm—1|=3. As one ap-
[18/18] —0.487906 212 proaches the regions near the intersection points discussed
[19/19 —0.487844 2.11 above, the scatter of zeros becomes too great to draw a firm
[20/20] —0.487995 212 conclusion about this part &. Nevertheless, we are able to
[21/21] —0.485409 1.99 infer that the pointa, is completely separated from the FM

phase by portions of the CT phase bound&rylo see this,
assume the contrary, i.e., that one can analytically continue
situation in a model that is disordered and noncritical affom z=0 toz =1/a,. First, this would contradict the prop-
K=—o, i.e., atu"1=0. An example is provided by the ety that the singular point &= —2 lies on a portion of3
(isotropic, spin-1/2 Ising model on the 36-3-6 (Kagome connecting it to the r_est oB (the _d_ual ima_lge of the curve
lattice [43,44). Since the poinu~1=0 is noncritical, it must connecting t_he physical AFM critical point to the rest of
be true that this point is not connected8pand indeed one B). Second, i, were not completely separateq frgm the FM.
finds[18,21] that it lies in the interior of the symmetric PM phase, then one should be able to detect this singular point

phase. The same behavior is found for tha # lattice[21]. with the very long low-temperature series available. How-

. - ever, we found no evidence for a singularity at this point
Retu'rr.nng to.theq—3 Pgtts model, the property that the from our analysis of these series. The obvious conclusion is
AFM critical point ata=0 is connected to the rest &f as

) e , , > thata, lies in a region beyond the applicability of these se-
descrlbgd above |mpI|e_s, by duality, that the smgular point af’ies, i.e., beyond the border of tf€TE) FM phase.

a=—2 lies on the dual image of the above-mentioned curve,

which thergfore encloses a complex-temperature phase and H. A Comment on dim(B) for Re(a)<0

separates it completely from th€TE of the FM phase.

Given the scatter of the zeros, it is not possible to make a We comment here on another feature of the pattern of
very reliable inference for where these curves intersect th&€r0s- For the 2D spin-1/2 Ising model with isotropic spin-
continuation of the circléa—1|= J3 in the northwest and spin couplings, one knows from exact solutions that on most

southwest quadrants of the compl@plane. We do remark Iatt[ces, Fhe zeros merge to form a one dlmensm_nal alggbralc

. ) o variety, i.e., the CT phase boundaBy Even for isotropic
that the zeros are consistent with the possibility that these : ) i . 2
. , . +27i/3 couplings, there is a heteropolygonal lattice, i.e., th&<4
intersection points ara=e~ .

. . lattice, for which this is not the case; the locus of points
As regards the analysis of the low-temperature series, W&here the free energy is nonanalytic forms a two-

find that Fhese series are able to locate the singular point gimensional algebraic varief21]. Moreover, for nonisotro-
as=—2, i.e.,z;=—1/2, but not very accurately. Represen- yic gpin couplings, this is also true, even on the square lattice
tative results for diagonal log Padeapproximants are given [46]. In both cases it is easy to see why this is tfsee Sec.

in Table V, again based on the series calculate@t’’) in 6 of Ref.[21]). The zeros of the 2D Ising model for higher
Ref. [35]. We do not show the results of thitlog Pade spin values also appear to approach curves as the lattice size
approximantg N/D ] with N=D <13 because these did not gets large23]. For the 2Dg-state Potts model, the zeros in
locate thez=—1/2 singularity with acceptable accuracy the Re@)>0 half plane lie on a one-dimensional curve, i.e.,
(e.g., the [12/12] and [13/13] approximants gave part of a circle[28—32. In the Ref) <0 region, we are not
—0.607 830 and—0.572 062, respectively As is evident aware of any proof of this. However, we can observe that in
from Table V, the series yield values of the susceptibilitythe known cases with exact solutions, in the thermodynamic
exponent‘yé~2' Our previous Worl{lg] has shown that limit, the zeros form e|the(|) curves OI’(II) areas, but not

there are subtleties in applying exponent relations such 0th curves and areas. Thus, given that the zeros for
»'d=2—a' andy’ =v'(2— 7) at complex-temperature sin- Re(@)>0 do form a curve, one would have a qualitatively
gularities. However, it is of interest to note that, since"eW situation not previously encountered if some of the ze-

ol =—c, if the hyperscaling relation’d=2—a/ is valid, 'S N the Re&)<0 did form areas.

then v.=o~ and hence, assuming that the relation
vi=v.(2— ns) holds atzg, it would follow thaty,=, i.e.,

x would have an exponential divergence at this point. Of We have carried out exploratory analyses for higher-
course, the series analysis cannot yiglg=c, but it does Potts models on the square lattice and have found evidence
produce a rather large value. For reference, one may recdibr singularities analogous @ ,z5 in each of the cases stud-
that in the case of the 2D(2) model, while the Kosterlitz- ied. We begin with thegy=4 model. Like theq=2,3 cases,
Thouless theory implies thay diverges exponentially as this model has a continuous, second-order PM-FM transition.
T\.T., so thaty=, the earlier series analyses gave a valueHowever, from the exact solution by Baxter on the manifold
of roughly y=3 [45]. (12), it follows that theq=4 model does not have any AFM

IV. q=4 POTTS MODEL
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TABLE VI. Values ofz, and 3, from d log Padeapproximants

20 F ] LN . (a) | to low-temperature series fon, for q=5.

15 F M . M . i

ol e . . o [N/D] Z, Be

o5l . .' ] [10/1Q —0.248723-0.25065% —0.1023
= . s [11/1Q —0.248197% 0.250780 —0.1004
E 00 . .. 1 [10/17 —0.248617 0.250694 —0.1019
IR ] [11/11] —0.249536+ 0.249950 —0.1034

. [12/11] —0.25113% 0.250021 -0.1105

Ao0r .. . T [11/17] —0.251182 0.250694 ~0.1142

as5- " Lo . | [12/12) —0.251032-0.250976 —0.1146

20 ° ¢ . L.t * [13/12 —0.250982-0.250979 —0.1143

" 20 15 10 05 00 05 10 15 20 25 30 [12/13 —0.250978-0.250974 —0.1142
Re(a) [13/13 —0.251028-0.250979 —0.1146

[14/13 —0.251528-0.251159 —0.1190

2-% . R l(b)‘ 1 [13/14) —0.25128% 0.250904 —-0.1157
15 e Y - 1 [14/14 —0.2515270.251148 —0.1189
: . [15/14 —0.251527%0.251158 —0.1190
oLt ] [14/15) —0.251475 0.251197 ~0.1188

05 | . . ) B [15/15 —0.251524-0.251171 —0.1190
= *. : [16/15 —0.251529-0.251161 —0.1190
E %0F . i [15/16] —0.251667 0.251138 —0.1199

-0.5 - . P 1 [16/16 —0.251668-0.251140 —0.1199

S ) t] [17/16] —0.2516310.251079 —-0.1191

. ‘ [16/17] —0.2516670.251138 —0.1199

A5 . . 1 [17/17] ~0.251710-0.251167 —-0.1205

sol e e [18/17] —0.251396+ 0.251142 —-0.1181
20 -15 -1.0 05 00 05 10 15 20 25 3.0 [17/18] —0.251644-0.251144 —0.1198
Re(a) [18/18 —0.252009-0.2516638 —0.1282

. I . [19/18] —0.251915-0.251720 —0.1267

2o R [18/19] ~0.251910-0.251717 ~0.1266

1.5 . . e * g [19/19 —0.251929-0.251724 —0.1270

1.0 b . .

05 | e T Im(ag)= J3 for q=4. This and a similarly intriguing result
= . . that we find forq=5 suggest that there may be simple alge-
€ 00 % 1 braic formulas for the singularitieae,a} . In view of the
- o5 ’ ] logarithmic confluent singularities that are known to occur at

’ . the physical PM-FM transition in this modp47], it would
1.0 - : . . be useful in future work to carry out a more sophisticated
a5 L .. * ] analysis of the series including such confluent singularities
° ., L also at the complex-temperature singularities; however, in
20 & . AL n the present exploratory work we have not done this. From

-20 -15 10 -05 00 05 10 15 20 25 3.0

Re(@) our study of the low-temperature series for we find the

exponentB.,=—0.121), sothat, as before, the magnetiza-
tion diverges atz.,z5 . This rigorously implieg24] that y
also diverges at these points.

In order to see how these singularities connect to the
complex-temperature phase bound#hfor the model, we
have carried out a calculation of CT zeros of the partition
function on various lattices with duality-preserving boundary
critical point. Note that the complex-temperature pointconditions. In Figs. @) and 2b) we show calculations of
a=—1 lies on the manifold11). these zeros, in the complexplane, for a 6<6 lattice with

We have analyzed the low-temperature series for the magype-1 and type-2 DBC's, respectively. Previously published
netization, susceptibility, and specific heat as before. Thesealculations of zeros for this model include plots for strips
yield a consistent indication of singularities at the points(L,x 32 forL,=4, 6, and 8; and 1816) [29] and a plot for
listed in Table IV.(The values of, from they series exhibit a 4x 4 lattice with type-2 DBC’s. We use symmetric lattices
somewhat greater scatter than those fromrthend C se-  since in taking the thermodynamic limit on apx L, lattice,
ries) It is interesting that, to within the uncertainty, our nu- if L, /L deviates strongly from unity, the results can involve
merical value for Im&}) can be fit by the exact expression one-dimensional artifacts. For type-1 DBQRig. 2(@] one

FIG. 2. Plot of zeros oE, in thea plane, for the square-lattice
gq=4 Potts model on a 86 lattice with DBC’s of(a) type 1,(b)
type 2, andc) on a 6x5 lattice with DBC's of type 3. The notation
is the same as in Fig. 1.
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FIG. 3. Plot of zeros oF, in thea plane, for the square-lattice FIG. 4. Plot of zeros o, in thea plane, for the square-lattice
g=5 Potts model on a 86 lattice with DBC'’s of type 2. The q=6 Potts model on a 86 lattice with DBC'’s of type 2. The
notation is the same as in Fig. 1. notation is the same as in Fig. 1.

sees a clear indication of a complex-conjugate pair of arcs of
zeros in the northwest and southwest quadrants, with the a¢,a8s =2(—1%i) for q=5. (26)
singularities ata.,a} forming the endpoints of these arcs.
These arcs are not as clear with type-2 DB[E&. 2(b)], but
again, the pointg,,a} lie at the ends of subsets of zeros Of course, in the absence of an exact solution of the model,
that can be associated with arcs. A calculation with type-3ve cannot exclude the possibility that this agreement is for-
DBC's is included as Fig. (2). The resultant pattern is very tuitous, but it motivates one to think further about simple
similar to that in Fig. 2a) with type-1 DBC’s, to an even analytic expressions for the location of the arc endpoints that
greater extent than in trege=3 model. The patterns of zeros we have discovered. From our series analysis, we find that
in Figs. 2a)-2(c) are all in good agreement with the above- the magnetization diverges at these points with exponent
mentioned property that the model is not critical even atg,=—0.11(1). As noted above, this implie§24] that y
a=0, i.e, thatit has no AFM critical point even®&t=0. For  must also diverge at these points, and our analysis of the
the plot in Fig. Zb) with type-2 DBC'’s, the zeros are con- |ow-temperature series fory vyields the exponent
sistent with the expectation from the Baxter solutid) yl=1.2(1).
that the complex-temperature phase bounda&rypasses We find the same generic features for all of thealues
through the poinia=—1 (equal_ently for thisq=4 Case, that we have analyzed, viz., complex-conjugate singularities
x=—1). In contrast, for the plots in Figs(@ and 2c), with ¢ pointsz, 2% . These thus appear to be a general feature of
type-1 and type-3 DBC's, respectively, there are no zerog,g g state Potts model on the square lattice der3. Be-
near, or easily extrapolated towamk=—1. A clarification  gjqeg the casg=5, we have made exploratory studies of the
of the situation in .the vicinity of this point merits further low-temperature expansions for the cagess, 7, and 8. We
study on larger lattices. find  z,,25=-023:0.24, —021+23,  and
z.=—0.20=22 for q=6, 7, and 8, respectively. Thus the
magnitude|z.| (|a.|) decreasegincreasesas g increases.
We proceed to square-lattice Potts models wjith5, for ~ Note that if, in thex plane, the complex-conjugate arcs re-
which the physical PM-FM phase transition is first order. Oftract toward their respective points of origin and finally dis-
course, a series analysis does not, in general, yield an accappear in theq—c limit, as is required in order for the
rate determination of the location of the phase transitiorcomplex-temperature phase bound&rio reduce to the unit
point for a first-order transition. However, there is no obvi-circle |x|=1 in this limit, it is necessary that for large
ous reason why this should be a drawback for our study of|, |Re(@.)| and|Im(a.)| grow like . We find thatg,
the complex-temperature arc endpoint singularitigszy increases from-—0.11 forq=6 to ~—0.10 forqg=8.
since these yield a strong signal in the form of a divergent In Figs. 3 and 4 we show our calculation of CT zeros of
magnetization. In Table VI we list the results fag and Z for g=5 andgq=6 on a 6<6 lattice with type-2 DBC'’s.
corresponding exponent, from diagonald log Padeap- (We have checked that other DBC's give results which also
proximants to the low-temperature series for We obtain ~ support our conclusions.Although there is considerable
similar results forz, from the susceptibility and specific-heat scatter of zeros in the Re[<0 region, the pattern is again
series. From these diagon@nd near-diagonpd log Pade consistent with the conclusion that the singularities at
approximants, we obtain the value far listed in Table IV.  a,a} lie at the end of arcs of zeros, so that in the thermo-
This is an intriguing result since, to within the uncertainty, dynamic limit these points are endpoints of arcs of singulari-
our determination is consistent with the exact analytic for-ties that connect with the rest of the complex-temperature
mula phase boundarjs.

V. HIGHER- g POTTS MODEL



6184 VICTOR MATVEEV AND ROBERT SHROCK 54

VI. CONCLUSION g=3 and an inference of an exact formi6) for the end-

oint singularities foq=>5. From the duality of the model, it
In summary, we have used analyses of low-temperatur i .
ollows that these arcs protruding into the complex-

series expansions to study complex-temperature singularitic%%m erature extension of the EM phase are accompanied b
in the square-latticg-state Potts model. We have found sin- P P b y

" i : ; their dual images, i.e., arcs protruding into the CT extension
gularities at complex-conjugate pairs of points and, by means X

. . " . of the PM phase. Our results further elucidate the complex-
of comparison with patterns of partition function zeros, have

obtained support for the inference that in the thermodynami(t:emperature phase diagrams of square-lattice Potts models.
limit these are endpoints of arcs lying on the complex-
temperature phase boundafy At these points, the magne-

tization diverges, in agreement with an earlier conjecture that
we had formulated. This guarantees that the susceptibility We thank Professor F. Y. Wu for the helpful private com-
also diverges at these points, and our series analyses arernunication[34] and Professor A. J. Guttmann for a helpful

accord with this. Our work includes several intriguing find- comment. This research was supported in part by the NSF
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