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We report some results on the complex-temperature~CT! singularities ofq-state Potts models on the square
lattice. We concentrate on the problematic region Re(a),0 ~wherea5eK) in which CT zeros of the partition
function are sensitive to finite lattice artifacts. From analyses of low-temperature series expansions for
3<q<8, we establish the existence, in this region, of complex-conjugate CT singularities at which the
magnetization and susceptibility diverge. From calculations of zeros of the partition function, we obtain
evidence consistent with the inference that these singularities occur at endpointsae ,ae* of arcs protruding into
the ~complex-temperature extension of the! ferromagnetic phase. Exponents for these singularities are deter-
mined; e.g., forq53, we findbe520.125(1), consistent withbe521/8. By duality, these results also imply
associated arcs extending into the~CT extension of the! symmetric paramagnetic phase. Analytic expressions
are suggested for the positions of some of these singularities; e.g., forq55, our finding is consistent with the
exact valueae ,ae*52(217 i ). Further discussions of complex-temperature phase diagrams are given.
@S1063-651X~96!09412-3#

PACS number~s!: 05.20.2y, 05.50.1q, 64.60.Cn, 75.10.Hk

I. INTRODUCTION AND MODEL

In this paper, we report some results on complex-
temperature singularities of theq-state Potts model@1,2# on
the square lattice. The Potts model has been of interest both
as an example of a particular universality class for critical
phenomena and as a model for physical phenomena such as
the adsorption of certain gases on substrates@3#. However, in
contrast to the two-dimensional~2D! Ising model~equivalent
to the q52 case!, the free energy of the Potts model for
generalq has never been calculated in closed form, even for
zero external field~s!. Some exact results have been estab-
lished for the model: from a duality relation, the critical point
separating the disordered,Zq-symmetric high-temperature
phase from the low-temperature phase with spontaneously
brokenZq symmetry and associated nonzero ferromagnetic
~FM! long-range order is known@1#. The free energy, latent
heat@4#, and magnetization@5# have been calculated exactly
by Baxter at this critical point, establishing that the model
has a continuous, second-order transition forq<4 and a
first-order transition forq>5. Baxter has also shown that
although theq53 model has no phase with antiferromag-
netic~AFM! long-range order at any finite temperature, there
is an AFM critical point atT50 @5#. The values of the criti-
cal exponents~for the range ofq where the transition is
continuous! have been determined@6#. Subsequently, further
insight into the critical behavior was gained using the meth-
ods of conformal field theory@7#. A review of work up
through 1982 was given in Ref.@8#.

In general, if one knew the exact~zero-field! free energy,
one would be able to determine the full phase diagram as a
function of complex temperature. The idea of generalizing a
variable on which the free energy depends from real physical
values to complex values was pioneered by Yang and Lee

@9#. These authors considered the generalization of the exter-
nal magnetic field to complex values@9# and proved a cel-
ebrated theorem that the complex-field zeros of the Ising
model partition function lie on the unit circle in them plane,
wherem5e22bH, pinching the real axis as the temperature
T decreases through the critical pointTc . Complex-
temperature~CT! singularities of Ising models, first consid-
ered in Ref.@10#, were investigated both by means of CT
zeros of the partition function@11–13# and via their effects
on low-temperature series expansions@14#. As well as being
of historical interest, these are relevant here because of the
equivalence of the~spin-1/2! Ising model andq52 Potts
model. There is continuing interest in such complexifications
because of the deeper insight that they give one into the
properties of statistical-mechanical models~for the Ising
model, see, e.g., Refs.@15–26#!. From general arguments
and comparisons with exact solutions for 2D Ising models
with isotropic couplings, one knows that in the thermody-
namic limit, CT zeros merge together to form curves~includ-
ing possible line segments! across which the free energy is
nonanalytic. These curves form the complex-temperature
phase boundaryB of the model. One can define notions of
complex-temperature extensions of the physical paramag-
netic ~PM!, FM, and ~if it occurs! AFM phases. In certain
cases there are other~labeled O) complex-temperature
phases that do not have any overlap with any physical phase.
These various CT phases are separated by boundaries com-
prisingB. The locus of points making upB may also contain
part~s! consisting of curves~arcs! or line segments that pro-
trude into and terminate in certain phases.

There have been several calculations of complex-
temperature zeros of the partition function for the Potts
model on the square lattice@27–32#. Since the early calcula-
tions for q53,4, it has been recognized that the zeros show
one clear feature: if one uses duality-preserving boundary
conditions, then in the Re(a).0 region~wherea5eK; see
below for notation!, these zeros lie on a portion of the unit
circle uxu51, wherex5(a21)/Aq @28–31#. In passing, we
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note that in theq→` limit it has been shown~assuming that
the q→` limit and the thermodynamic limit commute! that
the CT zeros lie on the unit circleuxu51 @32,33#. However,
for a given ~finite! q, the situation in the Re(a),0 region
has proved to be much more difficult to elucidate. The zeros
exhibit considerable scatter and, as we shall demonstrate,
significant sensitivity to the boundary conditions used for the
finite lattice calculations, even if one requires these to pre-
serve duality. These facts have rendered it problematic to try
to make inferences from calculations of zeros on finite lat-
tices about the complex-temperature phase boundaryB in the
thermodynamic limit. In one early work@27# it was conjec-
tured that in the thermodynamic limit the zeros lie on the two
circles ua21u5Aq and ua11u5A42q for q53 andq54
~where the second circle degenerates to a point!, but shortly
thereafter, from a calculation of zeros for theq53 model on
larger lattices, it was concluded that this conjecture was false
@28# and the zero distribution did not suggest the existence of
any simple algebraic expression that would describe this dis-
tribution. The same conclusion was reached from a calcula-
tion of the zeros for theq54 model@29#.

We have been able to make progress in the problematic
Re(a),0 region by employing a powerful method not hith-
erto used for this purpose, viz., to combine analyses of low-
temperature series with calculations of CT zeros of the par-
tition function. We report our results here. In our series
work, we have taken advantage of the recent calculations of
quite long low-temperature series for the free energy, mag-
netization, and susceptibility of the square-lattice Potts
model for q53 up to q510 by Briggs, Enting, and Gutt-
mann@35#, extending earlier calculations~e.g., Ref.@36#; for
q53 andq58, see also Ref.@37#!. The organization of this
paper is as follows. In Sec. II we define the model and our
notation and mention some of the general exact results that
are known. In Secs. III and IV we present our results for the
q53 andq54 Potts model. In Sec. V we mention some
similar results forq>5 Potts models. Concluding remarks
are given in Sec. VI.

II. DEFINITION OF MODEL AND EXACT RESULTS

The ~isotropic, nearest-neighbor! q-state Potts model on a
latticeL is defined, at a temperatureT, by the partition func-
tion

Z5 (
$sn%

e2bH, ~1!

with the Hamiltonian

H52J (
^nn8&

dsnsn8
2H(

n
d0sn

, ~2!

wheresn50, . . . ,q21 areZq-valued variables on each site
nPL; b5(kBT)

21; and ^nn8& denotes pairs of nearest-
neighbor sites. We use the notationK5bJ, h5bH,

a5z215eK, ~3!

and

x5
eK21

Aq
~4!

and denote the ~reduced! free energy per site as
f52bF5 limNs→`Ns

21lnZ, whereNs denotes the number of
sites in the lattice. Here we consider the square lattice. There
are actuallyq types of external fields that one may define,
favoring the respective valuessn50, . . . ,q21; it suffices
for our purposes to include only one. The order parameter is
defined to be

m5
qM21

q21
, ~5!

whereM5^s&5 limh→0] f /]h. With this definition,m50 in
theZq-symmetric, disordered phase andm51 in the limit of
saturated FM long-range order. We shall refer tom as the
magnetization. Finally, the~reduced, initial! susceptibility is
denoted asx̄5b21x5]m/]huh50. We consider the zero-
field modelH50 unless otherwise stated.

The generalq-state Potts model on the square lattice
obeys the duality relation@1#

~a21!~ad21!5q, ~6!

wheread[D(a) is the image under the duality mapD of
a,

D~a!511
q

a21
, ~7!

with D251 as usual. In terms of the variablex, this duality
relation takes the simple form

xd5
1

x
. ~8!

The critical point at which a phase transition occurs between
the high-temperature symmetric phase and the low-
temperature FM phase is given by the self-dual point
xc51, i.e., ac511Aq. One may observe that Eq.~6! also
has a second self-dual solution at a complex-temperature
point

a512Aq[al . ~9!

Exact expressions for the free and internal energy, latent
heat, and magnetization have been given by Baxter@4,5# on
the critical self-dual curve

~a21!25q. ~10!

Since the latent heat is zero atac for q<4 @4#, the corre-
sponding transition between the symmetric and FM phases is
continuous. The curve~10! also includes the complex-
temperature singular point atal in Eq. ~9!. We note that by
the same reasoning, the phase boundary associated with the
complex-temperature pointal is also continuous. Exact re-
sults have also been given by Baxter for the critical manifold
@5,38#

~a11!2542q. ~11!
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For q53, Eq.~11! has two solutions: the AFM critical point
at a50, i.e., T50 with J,0, and a complex-temperature
point

a522[as . ~12!

We observe that these two points are mapped onto each other
under the duality mappingD:

D~a50!522. ~13!

For q54, Eq. ~11! has only the solutiona521, implying
that forq>4 the model has no AFM long-range order even
at T50.

Consider an Lx3Ly planar square latticeG with
Ns[N0 sites ~0-cells!, Nb[N1 bonds ~1-cells!, and
Np[N2 plaquettes~2-cells!. We shall discuss boundary con-
ditions in Sec. III E below. The dual ofG, which we denote
Gd5D(G), is defined by associating uniquely a
(22p)-cell of Gd with each p-cell of G, so that
(N0)G5(N2)Gd

, (N1)G5(N1)Gd
, and (N2)G5(N0)Gd

. Since

the planar graph has no handles,Nh50, and hence Euler
characteristicxE52(12Nh)52, it follows from the Euler
relation( j50

2 (21) jNj5xE thatN02N11N252. The dual-
ity relation connecting the partition functionZG on G with
that onGd is @8#

ZG~x!5xN1qN0212~1/2!N1ZGd
~xd!. ~14!

It follows from ~14! that in the thermodynamic limit, the
singularities of that the free energy at a pointa and its dual
imagead are the same. In particular,

f sing~q53;a522!5 f sing~q53;a50!. ~15!

In discussing the complex-temperature phase diagram, it is
convenient to use the Boltzmann weightz, its inversea, and
the related variablex. For q53, the exact results discussed
above show that the phase structure for physical temperature
~i.e., 0<a<`) consists of~i! the disordered,Z3-symmetric
PM phase for 0,a<11A3, ~ii ! the FM phase for
11A3,a<`, and~iii ! an AFM critical point ata50. For
q>4, the physical phase structure consists only of the PM
phase for 0<a<11Aq and the FM phase for
11Aq,a<`. One defines the complex-temperature exten-
sions~CTE’s! of the PM and FM phases by analytically con-
tinuing away from the respective segments of the positive
reala axis. Two rigorous properties are the following. First,
because the model has a high-temperature series expansion
with finite radius of convergence, it follows that the CTE of
the PM phase occupies a finite neighborhood surrounding the
point a51. Second, it is easy to show that for sufficiently
large uau, one is necessarily in the~CTE of the! FM phase.
To see this, leta5rae

iua; then

K5 lna5 lnra1 i ~ua12pn!, ~16!

wheren denotes the Riemann sheet of the logarithm and may
be taken to be equal to zero here. It is clear that for suffi-
ciently largeuau5ra , the angleua makes a negligible con-
tribution to K, so that~given thatd52 is above the lower
critical dimensionality for the FM transition! the system will

be in the FM phase. This fact can be seen equivalently as a
consequence of the fact that the model has a low-temperature
expansion with a finite radius of convergence, so that there is
a finite neighborhood of the origin in the complexz plane
where it is in the~CTE of the! FM phase. Henceforth, we
shall generally refer to the complex-temperature extension of
the FM phase simply as the FM phase and similarly with the
PM phase.

III. q53 POTTS MODEL

We shall discuss our methods in detail for theq53
square-lattice Potts model and then proceed to the higher-q
cases. We begin with analyses of the low-temperature series
expansions. The series for the partition function, magnetiza-
tion, and susceptibility have been calculated to orderz47

@35#. As in our previous studies of complex-temperature sin-
gularities of various spin models, we have used bothd log
Padéand differential approximants to analyze the series. We
fit the specific heatC, the magnetizationm, and the~re-
duced! susceptibilityx̄ to the leading singular forms appli-
cable near a generic singular pointzsing:

C;~12z/zsing!
2asing8 , ~17!

m;~12z/zsing!
bsing, ~18!

and

x̄;~12z/zsing!
2gsing8 . ~19!

As usual, the primes indicate that we are approaching this
singularity from within the interior of the FM phase. We find
convincing evidence from our series analyses for singulari-
ties at two complex-conjugate points, which we denoteze
andze* , at which the magnetization, susceptibility, and spe-
cific heat are divergent.

A. Magnetization

In Table I we present some diagonal and near-diagonal
d log Pade´ results for this singularity.~We have, of course,
also calculated approximants farther from the diagonal.! It
should be noted that the actual values ofbe have small
imaginary parts; we list only the real part since, from our
previous experience with complex-temperature singularities
in the Ising model@19–22#, when these are probed to very
high accuracy, the exponents extrapolate to real values. Our
analysis of the series for the order parameter indicates
complex-conjugate singularities at approximately
ze ,ze*520.3460.29i ~the location will be discussed further
below!, wherem diverges with the exponent

be520.125~1!. ~20!

A plausible inference is that the exact value of this exponent
is

be52
1

8
. ~21!
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We comment that although such a divergence in the order
parameter is forbidden in usual physical phase transitions, it
can and does occur at complex-temperature singularities. In-
deed, in our previous work we have noted several instances
where the magnetization diverges at CT singularities. For
example, exact results show thatM diverges @like
(113u)21/8# at the CT pointu521/3 in the ~zero-field!
spin-1/2 Ising model on the triangular lattice and at
u5ue52(322A2) in the Ising model withbH5 ip/2 on
the square lattice@like (12u/ue)

21/8# @22#.
The appearance of the exponent~20! at this CT singular-

ity in the square-lattice Potts model is intriguing since
21/8 is not a simple~negative! multiple of any of the physi-
cal magnetic exponents in the model. This contrasts with the
above-mentioned examples from the 2D Ising model, where,
as is clear from the exact solution, the divergent magnetic
exponents atu521/3 on the triangular lattice and at
u5ue on the square lattice forh5 ip/2 are precisely minus
the common value ofb51/8 at the physical PM-FM critical
point. Specifically, for the PM-FM transition in the 2D
q53 Potts model, the thermal and magnetic exponents are
yt51/n51/n856/5 and yh528/15, whence a5a8
522d/yt51/3, d5(d/yh21)21514, b51/9, g5g8

513/9, andh54/15 @6,39#. One recalls that the exponent
1/8 does occur in the set of the conformal weights for the
m55 conformal field theory relevant to the 2Dq53 Potts
model, viz., h1,25h4,451/8, where hp,q5$@(m11)p
2mq] 221%/@4m(m11)# for p51, . . . ,m21 and
q51, . . . ,p and the central charge is given by
c5126/@m(m11)# and has the valuec54/5 for this case
@7#. However, the relation of this to the appearance of the
exponent 21/8 at the complex-temperature singularities
ze ,ze* is obscure, for several reasons. First, as we discussed
in Ref. @19#, there are violations of basic scaling relations at
complex-temperature singularities, so that it is not clear how
to apply conformal field theory to such singularities~since
CFT implies, among other things, such scaling relations!.
Second, since the Hamiltonian is not real at complex-
temperature singularities, it is not obvious why the unitary
rational conformal series is relevant to such singularities.

B. Susceptibility

In Table II we present our corresponding results from the
d log Pade´ analysis of the low-temperature series for the
susceptibility. We have also carried out a similar study with
~first-order, unbiased! differential approximants, which

TABLE I. Values ofze andbe from d log Pade´ approximants to
low-temperature series form for q53.

@N/D# ze be

@13/12# 20.34050410.287457i 20.1258
@13/13# 20.34042010.287491i 20.1256
@14/13# 20.34038210.287392i 20.1250
@13/14# 20.34035810.287473i 20.1252
@14/14# 20.34044110.287408i 20.1254
@15/14# 20.34042810.287382i 20.1252
@14/15# 20.34042710.287365i 20.1251
@15/15# 20.34043310.287339i 20.1251
@16/15# 20.34043610.287386i 20.1253
@15/16# 20.34042910.287368i 20.1252
@16/16# 20.34051210.287332i 20.1256
@17/16# 20.34040510.287364i 20.1250
@16/17# 20.34041210.287339i 20.1250
@17/17# 20.34040610.287354i 20.1250
@18/17# 20.34041610.287357i 20.1251
@17/18# 20.34041010.287350i 20.1250
@18/18# 20.34040610.287356i 20.1250
@19/18# 20.34040710.287363i 20.1250
@18/19# 20.34037610.287413i 20.1251
@19/19# 20.34031210.287325i 20.1244
@20/19# 20.34026010.287344i 20.1241
@19/20# 20.34027310.287344i 20.1242
@20/20# 20.34030510.287229i 20.1241
@21/20# 20.34028510.287321i 20.1242
@20/21# 20.34029210.287319i 20.1243
@21/21# 20.34032610.287269i 20.1243
@22/21# 20.34071110.286857i 20.1246
@22/22# 20.34085510.286878i 20.1247
@23/22# 20.34068810.286888i 20.1246
@22/23# 20.34098210.287191i 20.1260
@23/23# 20.34080610.287311i 20.1262

TABLE II. Values of ze andge8 from d log Pade´ approximants
to low-temperature series forx̄ for q53.

@N/D# ze ge8

@15/15# 20.33732410.290677i 1.123
@17/15# 20.33900810.289393i 1.190
@15/16# 20.33906210.288573i 1.173
@16/16# 20.33826910.289319i 1.149
@17/16# 20.33828110.289318i 1.150
@18/16# 20.33812110.289177i 1.138
@15/17# 20.33781410.289264i 1.125
@16/17# 20.33828010.289318i 1.150
@17/17# 20.33827010.289319i 1.149
@18/17# 20.33822710.289314i 1.147
@19/17# 20.33839210.289613i 1.163
@16/18# 20.33816810.289263i 1.143
@17/18# 20.33822610.289312i 1.147
@18/18# 20.33825910.289325i 1.149
@19/18# 20.33833610.289377i 1.154
@20/18# 20.33833810.289242i 1.151
@17/19# 20.33807710.289273i 1.138
@18/19# 20.33833210.289360i 1.153
@19/19# 20.33831110.289333i 1.152
@20/19# 20.33835510.289392i 1.155
@21/19# 20.33853710.289589i 1.170
@18/20# 20.33831010.289320i 1.151
@19/20# 20.33834110.289364i 1.154
@20/20# 20.33816810.289333i 1.145
@21/20# 20.33770410.289629i 1.126
@22/20# 20.33734910.290843i 1.111
@19/21# 20.33848810.291209i 1.196
@20/21# 20.33720510.289884i 1.102
@21/21# 20.34036810.286150i 1.080
@20/22# 20.33669810.291093i 1.064

54 6177COMPLEX-TEMPERATURE SINGULARITIES IN POTTS . . .



yields the same value, to within the uncertainty. We deter-
mine the value of the specific heat exponent at the singulari-
ties ze ,ze* to be

ge851.14~6!, ~22!

where the uncertainty represents a theoretical estimate from
the scatter of values among different Pade´ and differential
approximants.

C. Specific heat

To study the complex-temperature singularities in the spe-
cific heat, we have again carried out analyses with both Pade´
and differential approximants. As an illustration, we show in
Table III our results from the latter. Our notation is the same

as in our earlier works, e.g. Ref.@19#; @L/M0 ;M1# is the
differential approximant to the generic functionf(z) ob-
tained as the solution to the ordinary differential equation
Q0(z)f(z)1Q1(z)(zd/dz)f(z)5R(z), whereQ0, Q1, and
R are polynomials of orderM0, M1, andL. A review of the
methods is given in Ref.@40#. We determine the specific-heat
exponent to be

ae851.0~1!. ~23!

As can be seen from Tables I–III, the magnetization, suscep-
tibility, and specific-heat series give consistent values for the
location of the singularitiesze ,ze* . Combining these, we in-
fer that

ze ,ze*520.339~2!60.289~2!i . ~24!

For our comparison with the plots of zeros of the partition
function, it will be convenient to reexpress this in terms of
the a and x variables. We list the results in Table IV~to-
gether with positions of the corresponding singularity for
higher values ofq, to be discussed later!.

In passing, we observe that although we have found vio-
lations of scaling relations such asa12b1g52 and
a812b1g852 in our previous work at various complex-
temperature singularities~e.g., Refs.@19,24#!, in the present
case, we obtainae812be1ge851.960.1 so that, to within
the uncertainties, this exponent relation is satisfied.

D. Singularities at dual images ofae ,ae*

A rigorous consequence of the duality of the model is that
the free energy also is singular, with the same singularity, at
the points that are the dual images of theae andae* , namely,
for the central valuesD(ae),D(ae* )50.14160.462i or,
equivalently,D(xe),D(xe* )520.49660.267. These points
lie in the ~CTE! PM phase. Note that sinceuxcu51 while
uxeu50.56, the singularities atxe ,xe* lie closer to the origin
in the x plane than the physical critical point.

E. Connection ofae ,ae* singularities
with CT phase boundary B

We would also like to relate these complex-conjugate CT
singularities atze ,ze* or, equivalently, in the complexa
plane, atae ,ae* , to the complex-temperature phase boundary
B. From our previous studies on CT singularities@20,22,24#,
we formulated a conjecture that whenever an arc or line seg-
ment of the phase boundary protrudes into, and ends in, the
FM phase, there is a divergence inM at the endpoint of this
arc. We proved that this divergence inM implies also a
divergence inx at the same endpoint@24#. Besides the exact
results alluded to above that exhibit this behavior, our calcu-
lations of partition function zeros for the 2D higher-spin
square-lattice Ising model@23#, in conjunction with the series
analyses of Jensen, Guttmann, and Enting@26#, are consis-
tent with the conjecture. A natural extension of the conjec-
ture is that the divergences which we have found inm at
these CT points in the square-latticeq-state Potts model in-
dicate that these points are endpoints of arcs of points where
f is nonanalytic, i.e., arcs on the CT phase boundaryB.

TABLE III. Values of ze andae8 from differential approximants
to low-temperature series for~reduced! specific heatC/(kBK

2) for
q53.

@L/M0 ;M1# ze ae8

@8/16;14# 20.340778810.2885827i 1.072
@8/16;15# 20.340756310.2878427i 1.052
@8/16;16# 20.339554210.2877949i 0.997
@8/16;17# 20.339996910.2874121i 0.986
@8/17;15# 20.339312510.2891874i 0.960
@8/17;16# 20.339147510.2886514i 0.967
@10/15;13# 20.340576110.2887910i 1.049
@10/15;14# 20.340551410.2889317i 1.044
@10/15;15# 20.340058010.2896685i 0.987
@10/15;16# 20.339255810.2894922i 0.935
@10/16;14# 20.339681310.2885613i 0.989
@10/16;15# 20.339760710.2885435i 0.994
@12/14;12# 20.340173710.2893914i 1.001
@12/14;13# 20.340582310.2891851i 1.049
@12/14;14# 20.340636310.2897800i 1.059
@12/14;15# 20.339528610.2896329i 0.934
@12/15;13# 20.340744110.2896263i 1.071
@12/15;14# 20.340456210.2891536i 1.039
@14/13;11# 20.339926010.2888016i 0.989
@14/13;12# 20.339996910.2885408i 1.001
@14/13;13# 20.339557510.2895497i 0.919
@14/13;14# 20.339524210.2893949i 0.915
@14/14;12# 20.340503110.2889864i 1.030
@14/14;13# 20.339598210.2892116i 0.942
@16/12;10# 20.339460210.2889824i 0.955
@16/12;11# 20.339188310.2891054i 0.929
@16/12;12# 20.339483810.2892739i 0.939
@16/12;13# 20.339372610.2892381i 0.934
@16/13;11# 20.339448810.2892846i 0.937
@16/13;12# 20.339436410.2893045i 0.933
@18/11;9# 20.340446110.2882994i 1.032
@18/11;10# 20.339801310.2888885i 0.979
@18/11;11# 20.339525210.2888272i 0.962
@18/11;12# 20.339698610.2891254i 0.955
@18/12;10# 20.339465610.2892506i 0.939
@18/12;11# 20.339444110.2891136i 0.945
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In order to test this conjecture here, we have carried out
calculations of complex-temperature zeros of the partition
function for several different finite lattices, using transfer
matrix methods, as in our earlier study of partition function
zeros for the 2D higher-spin Ising model@23#. At appropriate
points we shall make comparison with previous computa-
tions of zeros for the square-lattice Potts model@28–31#. It is
desirable to, and we shall, restrict ourselves to lattices with
duality-preserving boundary conditions~DBC’s! @8,30,31#.
These guarantee thatD(G)5G, i.e., the dual of a~finite!
lattice G is ~isomorphic to! the original lattice. To discuss
these, we recall Eq.~14! and the associated definitions. Note
that 2D periodic, i.e., toroidal, boundary conditions do not
preserve duality for a finite lattice. The boundary conditions
are not uniquely specified by the condition that they preserve
duality. One type, which we label as type 1, was discussed in
Ref. @31# ~see their Fig. 1!. We shall need a straightforward
generalization of it to the case of anLx3Ly lattice with Lx
ÞLy , and we describe this as follows. Let the lattice be
oriented with thex and y directions being horizontal and
vertical, respectively. Let all of the sites on the upper and
right-hand edges, including the corners, connect along direc-
tions outward from the lattice to a common site adjoined to
this lattice ~so that the upper right corner connects to this
adjoined point via bonds in both thex and they directions!,
while all of the sites on the lower and left-hand edges, ex-
cluding the previously mentioned corners, have free bound-
ary conditions. For the dual lattice, the special adjoined point
may be taken to lie to the lower left of the lattice. In Ref.
@31# it was noted that from~unpublished! calculations of
zeros with other DBC’s, they obtained agreement with their
conclusions from type-1 DBC’s that for Re(x).0 the zeros
lie on the circleuxu51 @31#. We have also used a set of
DBC’s different from type 1, which we denote as type 2
@34#. For these, let theLx3Ly lattice have periodic boundary
conditions~PBC’s! in thex direction, so that the lattice may
be pictured as a cylinder with its axis oriented vertically.
Now connect all of the sites on the upper edge of the cylin-
der to a special point adjoined to the lattice and let all of the
sites on the lower edge of the cylinder have free boundary
conditions. The dual lattice is constructed in the usual way,
assigning sites to each 2-cell of the original graph and ad-
joining the special point below the cylinder with the stipula-
tion that the points on the upper edge of the dual lattice have
free boundary conditions and the points on the lower edge
connect to the adjoined point. For both type-1 and type-2
DBC’s, N05LxLy115N2 andN152LxLy so that the pref-
actor qN0212(1/2)N151 in Eq. ~14!. Note also that both
type-1 and type-2 DBC’s force some sites to have coordina-
tion number 3 rather than 4 and the adjoined point has coor-
dination numberLx1Ly for type-1 DBC’s andLx for type-2
DBC’s. This is in contrast to periodic boundary conditions,

which violate duality but maintain equal coordination num-
ber for all lattice sites.

A third type of DBC has recently been suggested to us by
Wu @34#; it can be defined as follows, and will be denoted as
DBC type 3. Consider an Lx3Ly lattice with
Lx5L11, Ly5L. Let all of the sites on the longer~horizon-
tal! upper edge of the lattice be connected to a special ad-
joined point, viaL11 bonds, and similarly let all of the sites
on the lower edge of the lattice be connected byL11 bonds
to a second adjoined point. Finally, connect the two adjoined
points by a single bond and let the sites on the vertical edges
of the lattice have free boundary conditions~in the outward
horizontal directions!. This lattice has N05N2

5L(L11)12 andN152(L21L11)52(N021) @so again,
qN0212(1/2)N151 in ~14!#. Evidently, type-3 DBC’s share
greater similarity with type 1 than type 2 since in types 1 and
3 no subsets of edge sites have periodic boundary conditions,
while in type 2 the sites on the vertical edges do have PBC’s.
For a given value ofq, the patterns of zeros that we have
obtained with type-3 DBC’s are indeed similar to those with
type 1.

In Figs. 1~a! and 1~b! we present calculations of complex-
temperature zeros, in the complexa plane, of the partition
function for theq53 Potts model on 8310 lattices with
duality-preserving boundary conditions of types 1 and 2, re-
spectively. The positions of the singular pointsae ,ae* are
marked with small circles on both of these plots. A compari-
son of these plots gives a quantitative measure of how the
positions of the zeros can vary for different boundary condi-
tions and specifically for those that maintain duality. This
extends previously published plots@30,31#, which showed
that the pattern of zeros differs significantly when one uses
duality-preserving, as opposed to duality-violating, boundary
conditions. These comparisons demonstrated that once one
specializes to duality-preserving boundary conditions
~BC’s!, the zeros in the Re(a).0 region lie nicely on the
circle ua21u5Aq, whereas they lie close to, but not exactly
on, this circle for duality-violating BC’s. Among previously
published calculations with duality-preserving BC’s, there is
one, given as Fig. 11.1 in Ref.@30#, on a lattice as large as
the one that we use and the pattern of zeros found there is
very close to the pattern in our Fig. 1~b!. In our figure, one
can discern two outer-lying complex-conjugate arcs of zeros
in the ‘‘northwest’’ and ‘‘southwest’’ quadrants, and the
pointsae ,ae* lie near the ends of these arcs. In Fig. 1~a! there
is more scatter among the zeros, but, nevertheless, the points
ae ,ae* lie at the ends of subsets of zeros that can be associ-
ated with arcs. We have also performed analogous calcula-
tions of zeros on smaller lattices with similar results. For
comparison, in Fig. 1~c! we show an exploratory calculation
with type-3 DBC’s. Taking into account that the lattice for

TABLE IV. Values of ze and, correspondingly,ae and xe from analyses of low-temperature series for
magnetization, susceptibility, and specific heat. See the text for further details.

q ze ,ze* ae ,ae* xe ,xe*

3 20.339(2)60.289(2)i 21.71(1)71.46(1)i 21.56(1)70.841(3)i
4 20.288(2)60.270(2)i 21.85(1)71.73(1) 21.42(1)70.866(4)i
5 20.251(2)60.251(2)i 21.99(1)71.99(1)i 21.34(1)70.891(4)i
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Fig. 1~c! is somewhat smaller than that for Figs. 1~a! and
1~b!, one sees that the distribution of zeros is similar to that
in Fig. 1~a! with type-1 DBC’s, especially in the region near
ae ,ae* and their dual images. From all of these calculations,
we thus conclude that the observed patterns of zeros are con-
sistent with the hypothesis that in the thermodynamic limit,
the points ae ,ae* are the ends of arcs contained in the
complex-temperature boundaryB which protrude into the

FM phase. By duality, this is equivalent to the statement that
the singularities atD(ae),D(ae* ) are the endpoints of arcs
contained inB which protrude into the PM phase.

F. Singularities at a50 and a522

The exact solution~11! by Baxter shows that the point
a50, i.e., T50 for J,0, is the antiferromagnetic critical
point. By the duality property~14!, it follows that the free
energy is also singular, with the same singularity, at the dual
to this point, namely,a522[as given in Eq.~12!. From
renormalization-group methods, a mapping to a critical six-
vertex model, and studies of correlation functions, it has
been concluded that the AFM critical point is an essential
singularity, with an essential zero in the free energy and an
exponential divergence in the correlation length as
K→2`, i.e., a↘0 @41#. Thus, if one assigns algebraic ex-
ponentsa andn for this AFM critical point, thena52`,
n5`. By duality, the same singularity in the free energy
occurs at the dual pointa522.

We have addressed two questions concerning these singu-
larities ata50 and22: ~i! how do they connect with the
complex-temperature phase boundaryB and~ii ! how well do
the low-temperature series detect the CT singular point at
a522? For question~i!, we first recall that the densityg of
CT zeros along the curves comprisingB in the vicinity of a
generic singular pointas behaves as@13#

g;ua2asu12as, ~25!

whereas denotes a singular point andas (as8) denotes the
corresponding specific-heat exponent for the approach toas
from within the CTE PM ~FM! phase. Sincea52` at
a50 and hence, by duality,as852` at as522, there is a
strong reduction in the density of CT zeros as one ap-
proaches these respective pointsa50 anda522 alongB.
This is consistent with what is observed with CT zeros cal-
culated on finite lattices; one sees clear arcs of zeros and,
e.g., for type-1 duality-preserving boundary conditions, these
track toward the respective pointsa50 anda522, ending
some distance away from these points.~For type-2 DBC’s,
one also observes a slight curling tendency among the last
few points on the curves.! From this tracking of the zeros
toward a50 ~and hence, by duality, towarda522), we
infer that the AFM critical pointa50 lies on a portion of
B that connects with the continuation of the curves lying on
~either part or all of! the unit circleua21u5A3 in such a
way as to bound completely the complex-temperature exten-
sion of the PM phase. This is reminiscent of another model
that has no AFM long-range order at any finite temperature,
but an AFM critical point atT50 @42#, namely, the~isotro-
pic, spin-1/2! Ising model on a triangular lattice. In that case,
in terms of the variableu5e24K, the complex-temperature
phase boundaryB consists of the union of the circle
uu11/3u52/3 and the semi-infinite line segment running
along the negative realu axis from21/3 to2`, or, equiva-
lently, in the variableu21 analogous toa, it consists of the
union of the circle uu2121u52 and the line segment
23<u21<0. The AFM critical point atu2150 forms the
right-hand end of this line segment and is connected to the
rest of B by it. It is interesting to contrast this with the

FIG. 1. Plot of zeros ofZ, in thea plane, for the square-lattice
q53 Potts model on an 8310 lattice with duality-preserving
boundary conditions~DBC’s! of ~a! type 1,~b! type 2, and~c! on a
736 lattice with type-3 DBC’s. The singularitiesae ,ae* are
marked with+.
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situation in a model that is disordered and noncritical at
K52`, i.e., at u2150. An example is provided by the
~isotropic, spin-1/2! Ising model on the 3•6•3•6 ~Kagomé!
lattice @43,44#. Since the pointu2150 is noncritical, it must
be true that this point is not connected toB, and indeed one
finds @18,21# that it lies in the interior of the symmetric PM
phase. The same behavior is found for the 3•122 lattice @21#.

Returning to theq53 Potts model, the property that the
AFM critical point ata50 is connected to the rest ofB as
described above implies, by duality, that the singular point at
a522 lies on the dual image of the above-mentioned curve,
which therefore encloses a complex-temperature phase and
separates it completely from the~CTE of the! FM phase.
Given the scatter of the zeros, it is not possible to make a
very reliable inference for where these curves intersect the
continuation of the circleua21u5A3 in the northwest and
southwest quadrants of the complexa plane. We do remark
that the zeros are consistent with the possibility that these
intersection points area5e62p i /3.

As regards the analysis of the low-temperature series, we
find that these series are able to locate the singular point at
as522, i.e., zs521/2, but not very accurately. Represen-
tative results for diagonald log Pade´ approximants are given
in Table V, again based on the series calculated toO(z47) in
Ref. @35#. We do not show the results of thed log Pade´
approximants@N/D# with N5D,13 because these did not
locate the z521/2 singularity with acceptable accuracy
~e.g., the @12/12# and @13/13# approximants gave
20.607 830 and20.572 062, respectively!. As is evident
from Table V, the series yield values of the susceptibility
exponentgs8;2. Our previous work@19# has shown that
there are subtleties in applying exponent relations such as
n8d522a8 andg85n8(22h) at complex-temperature sin-
gularities. However, it is of interest to note that, since
as852`, if the hyperscaling relationns8d522as8 is valid,
then ns85` and hence, assuming that the relation
gs85ns8(22hs) holds atzs , it would follow thatgs85`, i.e.,
x would have an exponential divergence at this point. Of
course, the series analysis cannot yieldgs85`, but it does
produce a rather large value. For reference, one may recall
that in the case of the 2DO(2) model, while the Kosterlitz-
Thouless theory implies thatx diverges exponentially as
T↘Tc , so thatg5`, the earlier series analyses gave a value
of roughlyg53 @45#.

G. Singularity at a51231/2

The Baxter solution~10! shows that the free energy is also
singular at the self-dual complex-temperature pointal given
in Eq. ~9! for q53, viz., a512A3. There is considerable
scatter of zeros in the vicinity of this point@less for our Fig.
1~c! or Fig. 11.1 of Ref.@30# than in Fig. 1~b!#; however, the
zeros are consistent with the inference that this singular point
lies on a segment of the circleua21u5A3. As one ap-
proaches the regions near the intersection points discussed
above, the scatter of zeros becomes too great to draw a firm
conclusion about this part ofB. Nevertheless, we are able to
infer that the pointal is completely separated from the FM
phase by portions of the CT phase boundaryB. To see this,
assume the contrary, i.e., that one can analytically continue
from z50 to zl51/al . First, this would contradict the prop-
erty that the singular point ata522 lies on a portion ofB
connecting it to the rest ofB ~the dual image of the curve
connecting the physical AFM critical point to the rest of
B). Second, ifal were not completely separated from the FM
phase, then one should be able to detect this singular point
with the very long low-temperature series available. How-
ever, we found no evidence for a singularity at this point
from our analysis of these series. The obvious conclusion is
that al lies in a region beyond the applicability of these se-
ries, i.e., beyond the border of the~CTE! FM phase.

H. A Comment on dim„B… for Re„a…<0

We comment here on another feature of the pattern of
zeros. For the 2D spin-1/2 Ising model with isotropic spin-
spin couplings, one knows from exact solutions that on most
lattices, the zeros merge to form a one-dimensional algebraic
variety, i.e., the CT phase boundaryB. Even for isotropic
couplings, there is a heteropolygonal lattice, i.e., the 4•82

lattice, for which this is not the case; the locus of points
where the free energy is nonanalytic forms a two-
dimensional algebraic variety@21#. Moreover, for nonisotro-
pic spin couplings, this is also true, even on the square lattice
@46#. In both cases it is easy to see why this is true~see Sec.
6 of Ref. @21#!. The zeros of the 2D Ising model for higher
spin values also appear to approach curves as the lattice size
gets large@23#. For the 2Dq-state Potts model, the zeros in
the Re(a).0 half plane lie on a one-dimensional curve, i.e.,
part of a circle@28–32#. In the Re(a),0 region, we are not
aware of any proof of this. However, we can observe that in
the known cases with exact solutions, in the thermodynamic
limit, the zeros form either~i! curves or~ii ! areas, but not
both curves and areas. Thus, given that the zeros for
Re(a).0 do form a curve, one would have a qualitatively
new situation not previously encountered if some of the ze-
ros in the Re(a),0 did form areas.

IV. q54 POTTS MODEL

We have carried out exploratory analyses for higher-q
Potts models on the square lattice and have found evidence
for singularities analogous toze ,ze* in each of the cases stud-
ied. We begin with theq54 model. Like theq52,3 cases,
this model has a continuous, second-order PM-FM transition.
However, from the exact solution by Baxter on the manifold
~11!, it follows that theq54 model does not have any AFM

TABLE V. Values of zs andgs8 from diagonald log Pade´ ap-
proximants to low-temperature series forx̄ for q53.

@N/D# zs gs8

@14/14# 20.478716 1.66
@15/15# 20.490833 2.31
@16/16# 20.487890 2.12
@17/17# 20.487889 2.12
@18/18# 20.487906 2.12
@19/19# 20.487844 2.11
@20/20# 20.487995 2.12
@21/21# 20.485409 1.99
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critical point. Note that the complex-temperature point
a521 lies on the manifold~11!.

We have analyzed the low-temperature series for the mag-
netization, susceptibility, and specific heat as before. These
yield a consistent indication of singularities at the points
listed in Table IV.~The values ofze from thex̄ series exhibit
somewhat greater scatter than those from them andC se-
ries.! It is interesting that, to within the uncertainty, our nu-
merical value for Im(ae* ) can be fit by the exact expression

Im(ae* )5A3 for q54. This and a similarly intriguing result
that we find forq55 suggest that there may be simple alge-
braic formulas for the singularitiesae ,ae* . In view of the
logarithmic confluent singularities that are known to occur at
the physical PM-FM transition in this model@47#, it would
be useful in future work to carry out a more sophisticated
analysis of the series including such confluent singularities
also at the complex-temperature singularities; however, in
the present exploratory work we have not done this. From
our study of the low-temperature series form, we find the
exponentbe520.12(1), so that, as before, the magnetiza-
tion diverges atze ,ze* . This rigorously implies@24# that x
also diverges at these points.

In order to see how these singularities connect to the
complex-temperature phase boundaryB for the model, we
have carried out a calculation of CT zeros of the partition
function on various lattices with duality-preserving boundary
conditions. In Figs. 2~a! and 2~b! we show calculations of
these zeros, in the complexa plane, for a 636 lattice with
type-1 and type-2 DBC’s, respectively. Previously published
calculations of zeros for this model include plots for strips
(Lx332 forLx54, 6, and 8; and 10316) @29# and a plot for
a 434 lattice with type-2 DBC’s. We use symmetric lattices
since in taking the thermodynamic limit on anLx3Ly lattice,
if Lx /Ly deviates strongly from unity, the results can involve
one-dimensional artifacts. For type-1 DBC’s@Fig. 2~a!# one

TABLE VI. Values ofze andbe from d log Pade´ approximants
to low-temperature series form, for q55.

@N/D# ze be

@10/10# 20.24872310.250655i 20.1023
@11/10# 20.24819710.250780i 20.1004
@10/11# 20.24861710.250694i 20.1019
@11/11# 20.24953610.249950i 20.1034
@12/11# 20.25113110.250021i 20.1105
@11/12# 20.25118210.250694i 20.1142
@12/12# 20.25103210.250976i 20.1146
@13/12# 20.25098210.250979i 20.1143
@12/13# 20.25097810.250974i 20.1142
@13/13# 20.25102810.250979i 20.1146
@14/13# 20.25152810.251159i 20.1190
@13/14# 20.25128110.250904i 20.1157
@14/14# 20.25152710.251148i 20.1189
@15/14# 20.25152710.251158i 20.1190
@14/15# 20.25147510.251197i 20.1188
@15/15# 20.25152410.251171i 20.1190
@16/15# 20.25152910.251161i 20.1190
@15/16# 20.25166710.251138i 20.1199
@16/16# 20.25166810.251140i 20.1199
@17/16# 20.25163110.251079i 20.1191
@16/17# 20.25166710.251138i 20.1199
@17/17# 20.25171010.251167i 20.1205
@18/17# 20.25139610.251142i 20.1181
@17/18# 20.25164410.251144i 20.1198
@18/18# 20.25200910.251663i 20.1282
@19/18# 20.25191510.251720i 20.1267
@18/19# 20.25191010.251717i 20.1266
@19/19# 20.25192910.251724i 20.1270

FIG. 2. Plot of zeros ofZ, in thea plane, for the square-lattice
q54 Potts model on a 636 lattice with DBC’s of~a! type 1, ~b!
type 2, and~c! on a 635 lattice with DBC’s of type 3. The notation
is the same as in Fig. 1.
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sees a clear indication of a complex-conjugate pair of arcs of
zeros in the northwest and southwest quadrants, with the
singularities atae ,ae* forming the endpoints of these arcs.
These arcs are not as clear with type-2 DBC’s@Fig. 2~b!#, but
again, the pointsae ,ae* lie at the ends of subsets of zeros
that can be associated with arcs. A calculation with type-3
DBC’s is included as Fig. 2~c!. The resultant pattern is very
similar to that in Fig. 2~a! with type-1 DBC’s, to an even
greater extent than in theq53 model. The patterns of zeros
in Figs. 2~a!–2~c! are all in good agreement with the above-
mentioned property that the model is not critical even at
a50, i.e., that it has no AFM critical point even atT50. For
the plot in Fig. 2~b! with type-2 DBC’s, the zeros are con-
sistent with the expectation from the Baxter solution~11!
that the complex-temperature phase boundaryB passes
through the pointa521 ~equivalently for thisq54 case,
x521). In contrast, for the plots in Figs. 2~a! and 2~c!, with
type-1 and type-3 DBC’s, respectively, there are no zeros
near, or easily extrapolated toward,a521. A clarification
of the situation in the vicinity of this point merits further
study on larger lattices.

V. HIGHER- q POTTS MODEL

We proceed to square-lattice Potts models withq>5, for
which the physical PM-FM phase transition is first order. Of
course, a series analysis does not, in general, yield an accu-
rate determination of the location of the phase transition
point for a first-order transition. However, there is no obvi-
ous reason why this should be a drawback for our study of
the complex-temperature arc endpoint singularitiesze ,ze*
since these yield a strong signal in the form of a divergent
magnetization. In Table VI we list the results forze and
corresponding exponentbe from diagonald log Pade´ ap-
proximants to the low-temperature series form. We obtain
similar results forze from the susceptibility and specific-heat
series. From these diagonal~and near-diagonal! d log Pade´
approximants, we obtain the value forze listed in Table IV.
This is an intriguing result since, to within the uncertainty,
our determination is consistent with the exact analytic for-
mula

ae ,ae*52~217 i ! for q55. ~26!

Of course, in the absence of an exact solution of the model,
we cannot exclude the possibility that this agreement is for-
tuitous, but it motivates one to think further about simple
analytic expressions for the location of the arc endpoints that
we have discovered. From our series analysis, we find that
the magnetization diverges at these points with exponent
be520.11(1). As noted above, this implies@24# that x̄
must also diverge at these points, and our analysis of the
low-temperature series for x̄ yields the exponent
ge851.2(1).

We find the same generic features for all of theq values
that we have analyzed, viz., complex-conjugate singularities
at pointsze ,ze* . These thus appear to be a general feature of
the q-state Potts model on the square lattice forq>3. Be-
sides the caseq55, we have made exploratory studies of the
low-temperature expansions for the casesq56, 7, and 8. We
find ze ,ze*520.2360.24i , 20.21623i , and
ze520.20622i for q56, 7, and 8, respectively. Thus the
magnitudeuzeu (uaeu) decreases~increases! as q increases.
Note that if, in thex plane, the complex-conjugate arcs re-
tract toward their respective points of origin and finally dis-
appear in theq→` limit, as is required in order for the
complex-temperature phase boundaryB to reduce to the unit
circle uxu51 in this limit, it is necessary that for large
q, uRe(ae)u and uIm(ae)u grow like Aq. We find thatbe
increases from;20.11 forq56 to ;20.10 forq58.

In Figs. 3 and 4 we show our calculation of CT zeros of
Z for q55 andq56 on a 636 lattice with type-2 DBC’s.
~We have checked that other DBC’s give results which also
support our conclusions.! Although there is considerable
scatter of zeros in the Re(a),0 region, the pattern is again
consistent with the conclusion that the singularities at
ae ,ae* lie at the end of arcs of zeros, so that in the thermo-
dynamic limit these points are endpoints of arcs of singulari-
ties that connect with the rest of the complex-temperature
phase boundaryB.

FIG. 3. Plot of zeros ofZ, in thea plane, for the square-lattice
q55 Potts model on a 636 lattice with DBC’s of type 2. The
notation is the same as in Fig. 1.

FIG. 4. Plot of zeros ofZ, in thea plane, for the square-lattice
q56 Potts model on a 636 lattice with DBC’s of type 2. The
notation is the same as in Fig. 1.
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VI. CONCLUSION

In summary, we have used analyses of low-temperature
series expansions to study complex-temperature singularities
in the square-latticeq-state Potts model. We have found sin-
gularities at complex-conjugate pairs of points and, by means
of comparison with patterns of partition function zeros, have
obtained support for the inference that in the thermodynamic
limit these are endpoints of arcs lying on the complex-
temperature phase boundaryB. At these points, the magne-
tization diverges, in agreement with an earlier conjecture that
we had formulated. This guarantees that the susceptibility
also diverges at these points, and our series analyses are in
accord with this. Our work includes several intriguing find-
ings, including the likely exponent valuebe521/8 for

q53 and an inference of an exact formula~26! for the end-
point singularities forq55. From the duality of the model, it
follows that these arcs protruding into the complex-
temperature extension of the FM phase are accompanied by
their dual images, i.e., arcs protruding into the CT extension
of the PM phase. Our results further elucidate the complex-
temperature phase diagrams of square-lattice Potts models.
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