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Reaction-diffusion master equation: A comparison with microscopic simulations
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Microscopic simulations are used to investigate the status of the stochastic theory of reaction-diffusion
systems based on master equation. It is shown that the validity of this theory can only be guaranteed over
length scales not smaller than the reactive mean free path. In this case, quantitative agreement is demonstrated
in a variety of situations, including the vicinity of a pitchfork bifurcation po{r81063-651X96)08512-1
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I. INTRODUCTION cal reactions, interrupted byaiting timeintervals. During
these intervals the large number of nonreactive collisions
The phenomenological theory of reaction-diffusion equa-will give rise to a randomization and a loss of memory.
tions rests on the fundamental assumption of a clear-cuthese remarks strongly suggest that the evolution of the sys-
separation between macroscopic behavior, as described §m can be represented byjemp Markov processn an
the equations of chemical kinetics coupled to mass transfeRPPropriate phase space. The probability distribution for the
and dynamical processes at the microscopic level. Eaciptal number of particle); of specied obeys then the mas-
event is considered to result from an average over all microter €quatior{10]
scopic characteristics. This lumping of all but the macro- d
scopic degrees of freedom ignores the spontaneous devia- —P{U}t)= > WHUN{UDHP{U/ L), (1)
tions from average behavior, thdluctuations These dt {u/}
deviations are always present in a macroscopic system that,
because of the complexity of molecular motions, can bewhere theW's are transition probabilities per unit time. They
viewed as a spontaneous generator of noise. are proportional to the frequency of collisions between mol-
The theoretical analysis of fluctuations requires an enecules of the constituents involved in each reaction and can
larged description in which information pertaining to micro- thus easily be constructed through combinatorial arguments
scopic behavior is incorporated. Such an enlarged descrigd]. An important property of the transition probabilities is
tion is traditionally based on the theory of stochastictheir extensivity, which expresses the physically obvious fact
processe$l,2]. The simplest approach is the Langevin for- that the rate of a chemical process in a volukhenust be
mulation of reactive systems where Gaussian random whitproportional toV times a suitable function dhtensivevari-
noise terms are added to the macroscopic evolution equables.
tions [3]. The amplitudes of these noise terms are directly The master equatiofl) is particularly well suited for de-
related to the macroscopic path through a fluctuationscribing the statistical properties of well stirred reactive sys-
dissipation theorem, which guarantees that at equilibrium théems. The main advantage of such a global description lies in
resulting probability density becomes equivalent to one ofits simplicity, which permits detailed analytical investiga-
the familiar Gibbs ensembles of equilibrium statistical phys-tions. Its applicability to nonstirred media, however, remains
ics [4—6]. The validity of this approach is thus directly re- questionable even if one limits oneself to macroscopically
lated to the uniqueness of the solution of macroscopic equdaiomogeneous systems. In fact, the global master equation
tions. In particular, a Langevin description leads to a correcselects the very limited class of exceptionally large fluctua-
stationary distribution only if the corresponding macroscopictions that appear at the level of the entire system, disregard-
equations admit a single globally asymptotically stable ating important nonequilibrium features originated by local
tractor[7]. fluctuations. A satisfactory approach must therefore include
A more satisfactory approach is based on the master equihie effects of local fluctuations as well.
tion formulation of chemical systems, which gives a This paper is devoted to the study of the statistical prop-
“mechanistic” point of view of what is going on at the mo- erties of dilute isothermal reactive systems evolving in an
lecular level8,9]. Consider, for instance, an ideal isothermal unstirred medium. We shall tackle the subject from two
chemical system at mechanical equilibrium. For the sake ofomplementary standpoints: microscopic simulations of re-
clarity, we first focus on the description of chemical pro- active fluids and the master equation description of reaction-
cesses alone, postponing until the next section the discussidaliffusion systems, the former being so far the only available
of the role of diffusion. The composition of the system canmethod for testing the results of the latter.
only change through reactive collisions, which, because of The local formulation of the master equation will be laid
the existence of activation energies, are typically rare eventdown in the next section where we review the main assump-
as compared to nonreactive ones. This suggests that one ctons at the basis of this description. Section Il is devoted to
lump all the microscopic(position-momenta degrees of the survey of the microscopic simulation of reactive fluids in
freedom and view the dynamics as a succession of jumpthe Boltzmann limit. We start our comparative analysis by
corresponding to the change of composition through chemieonsidering in Sec. IV a simple chemical model that allows a
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detailed discussion of the limit of validity of the reaction- tical situations. The local equilibrium assumption is also a
diffusion master equation. Section V is devoted to the studyecessary condition that allows one to approximate the ex-
of a three variable model that can exhibit multiple steadytremely complex motion of molecules by a simple random
state solutions. The main conclusions and perspectives awalk. This is a reasonable approximation provided the linear

presented in Sec. VI. dimensions of a cell remain at least of the order of the mean
free path, since otherwise the microscopic characteristics of
Il. REACTION-DIFFUSION MASTER EQUATION individual molecules, such as their velocity distribution func-

tion, must also be incorporated into the thefit$]. The cell

The basic lines of the master equation formulation ofsjze, however, cannot be chosen arbitrarily large, even for
reaction-diffusion systems can be summarized as followsnacroscopically homogeneous systems. In fact, the reaction-
[1,11-14. We subdivide the reaction volume into spatial diffusion master equation considers each cell as a perfectly
cells {AV,} and consider as variables the numbers of parcoherent entity, which in turn implies that the linear dimen-
ticles{U;,} of species =1,2, ... in these cells. We assume sjons of a cell must be smaller than the correlation length.
as before that the set of variablgs;,} defines a Markov Now, the correlation length is at least equal to the reactive
process. The random variablgs;,} change as a result of mean free path, defined as the average distance traveled by a
two processes: chemical reactions, which will be modeled aparticle before it undergoes a reactive collision. We therefore
before by a jump Markov process, and diffusion whereby aarrive at the conclusion that the linear dimensions of a cell
particle may jump to an adjacent cell. The latter will be should be typically of the order of the reactive mean free
assimilated to a random walk. The resulting probability dis-path. We will have the opportunity to check the above intui-
tribution P({U;,};t) obeys the so-callethultivariate master tive arguments in Sec. IV devoted to microscopic simula-

equation: tions of a simple isothermal chemical systems.

The master equatiof) provides an elegant and simple
EP({U L) generalization of reaction-diffusion equations. From a theo-
dt e retical point of view, it has been shown that in the close

vicinity of a pitchfork bifurcation point its solution can be
cast into the exponential of a “stochastic potential,” which

= E WU U HPHU ) turns out to be the Landau-Ginzburg potential familiar in

riVi equilibrium critical phenomenf7]. Away from the bifurca-
D tion point, it leads to the Langevin reaction-diffusion equa-

i _ : . :
+ > = {(U+DP(. .. U +1Ujs,—1, ... 1) tions with the correct fluctuation spectrum. In more complex
ro2dr7 situations, it can easily be studied numerically. Here, the
) evolution of the system is viewed as a random walk in a
—U;P(U;; 5} 2

discrete phase spadspace of “numbers of particles” of
|different species for which transitions occur at randomly
spaced time intervals. The process being Markovian leads to
an exponential distribution of waiting tim¢&6]. From this
distribution and the transition probabilities associated to each
/2 elementary chemical step, explicit realizations of the process
Di:EDi , ©) can be constructed, along the lines of a Monte Carlo type of
simulation first developed by Gillespj&7,1§. Similar tech-
nigues are described in Refd.9,20.
In view of the above results, one is tempted to consider
the reaction-diffusion master equation as the starting point of
AV=/d 4) a _statisticgl mechanics of reactivg systems. The validity of
' this equation, however, rests mainly on arguments that, al-
Note that again the transition probabilities are extensivérthough highly plausible, ar.e'neverthelejss heurigtic and need
quantities proportional to the volumeV of the cells. to be c_:arefully _test_ed. Sufﬂmently precise experimental dgta
Before discussing the general properties of the masteP clanf)_/ th? sﬂuqtlon do n(_)t exist, to our knowledge. M'
equation(2), it is appropriate to review the conditions under croscopic S|mulat|o_ns remain therefore the most promising
which it is expected to describe correctly realistic reaction- 00! t0 shed some light on this important issue.
diffusion systems. Beside the Markovian hypothesis, the
very basics of any stochastic_ theory of reactive fluids reliequl MICROSCOPIC SIMULATION OF REACTIVE FLUIDS
on the fundamental assumption that the state of the system
can be completely specified in terms of a limited number of In this paper, we shall be mainly concerned with the mi-
macroscopic variables. For isothermal systems, these are justoscopic simulation of reactive fluids capable of exhibiting
the composition variables. The lumping of all microscopicnonequilibrium transitions. In this respect, we have to face
degrees of freedom except the composition variables casome basic difficulties that are directly related to the very
only be justified in systems remaining permanently in a locahature of chemical dynamics. A first problem arises in con-
thermal equilibrium state, which in turn requires a “large” nection with the validity of the macroscopic rate equations
number of molecules per cell. Detailed numerical studieslescribing the time evolution of the composition variables in
show that a few hundred molecules are enough in most praclilute (idea) mixtures. This implies that one needs to have

The sum/ runs over the first nearest neighbors of the cel

r andBi represents the mean jump frequency of speciés
is related to Fick’s diffusion coefficient of the species by

whered represents the space dimension ahi the charac-
teristic length of a cell:
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“enough” elastic collisions between consecutive reactivefect agreement with experimental ddial,24,29. For ex-
collisions in order to ensure mechanical and thermal equilibample, it correctly yields the density profile of a relatively
rium. As a consequence, only a fraction of the computinghigh Mach number ¥2) shock wave[26]. It also repro-
time will contribute effectively to the evolution of the sys- duces correctly the data obtained through hard sphere mo-
tem, which results in much wasted bookkeeping with a corlecular dynamics in extremely strong shock wave conditions
responding waste of CPU time. A second problem is relate§Mach number>100), a domain far beyond the validity of
to the fact that chemical time scales, such as, for ex- Navier-Stokes equatior27].
ample, the period of a limit cycle in an oscillating system, At the microscopic level, DSMC have also been used to
are frequently in the macroscopic range. To get reliable staStudy the behavior of fluctuation spectra in dilute gas sub-
tistics, one needs to run the corresponding microscopic simiécted to strong nonequilibrium constraints, both for systems
lation over an amount of time several times larger thgn ~ Under temperature gradieii8,29 and velocity gradient
This again implies an extremely large amount of runningl30] (shea). The results were shown to be in very good
time. agreement with those obtained by the Landau-Lifshitz fluc-
To cope with these difficulties, one is forced to simplify tuating hydrodynamicg31], whose validity is now well es-
as much as possible both the Newtonian and the chemicifPlished[32—34. We can therefore conclude that the Bird
dynamics. This can be done by limiting the simulation toglgonthm reproduces perfectly both t'he macroscopic behav-
hard sphere dynamics and by considering dilute mixtures ifer @nd the fluctuation spectrum of dilute gases, even under
the Boltzmann limit. In this respect, a legitimate question isS€vere nonequilibrium regimes. _
whether it is possible to set up a simple algorithm, specially Note finally that there are other techniques, such as the
designed for Boltzmann dynamics, instead of using the exad@ttice gas cellular automatd GCA) or the lattice Boltz-
Newtonian dynamics. This question was answered positivel\]?nann method, that allow the simulation of reactive fluids
by Bird [21], who proposed an algorithm known dgect 35,36 So_ far, hovv_ever, it is not clear whether thes_e meth-
simulation Monte Carlo methotDSMC). The original pur- st contain more mforr_n_at!on than the macroscopic equa-
pose of the method was to deal with problems where the ushons, at least in nonequilibrium systems. It has only receqtly
of the standard hydrodynamic descriptions becomes que?—ee“ shov_vn tha; _LGCA reproduces correctly the fluctuation
tionable, such as the computation of high Knudsen numbefP€ctrum in equilibrium systen87,38, _
flows of a rarefied gas past an objdetg., high altitude We next define what we mean by “reactive hard sphere
flight). Bird’s method has become popular since it is in ex-collisions” [39,40. We assign to each species a “color.” A
cellent agreement with experimental and molecular dynamiéeactive collision occurs if the colliding particles have
data. Its basic steps can be summarized as fol[@2% “enough” energy, i.e., if their relative kinetic energy ex-

As with usual molecular dynamic methods, the state ofceeds some threshold related to the activation energy of the
the system is the set of particle positions and velocities,reaCtiO”- If this is the case, then the colors of the particles are

{rivi},i=1,... N whereN is the total number of particles. changed, according to the chemical step under consideration.
The evolution is decomposed in time steps, typically a This procedure, however, leads to a continuous energy trans-
fraction of the mean collision time for a particle. Within a fer from reactants to products that induce a deformation of
time step, the free flight motion and the particle interactiondh® Maxwell-Boltzmann distribution and can thus modify
(collisions are assumed to be decoupled. The free flight moSignificantly the values of the rate constafiél,42. To
tion for each particle i is computed as avoid these nonequilibrium effects, the frequency of reactive
r(t+At)=r;(t)+vi(t)At, along with the appropriate collisions must be significantly smaller than the frequency of

boundary conditions. After all the particles have beenelastic collisions, entailing important waste of CPU time.

moved, they are sorted into spatial cells, typically a fractionO"€ Way to overcome this difficulty is to further simplify the
reactive collision rules by the following procedure. Let us

of a mean free path in length. A set of representative colli- X ) X X
sions, for the time stept, is chosen in each cell. For each cOnsider a typical bimolecular chemical step:
selected pair a random impact parameter is generated and the
collision is performed. After the collision process has been
completed in all cells, the particles are moved according to
their updated velocities and the procedure is repeated as be-
fore. Note that very recently Bird proposed several modifi-with
cations to DSMC that improve the performance and the flex-
ibility of his original algorithm[23]. E

The major hypothesis in Bird’'s algorithm is that the cells k=v exp[ - ﬁ] =vKp, (6)
are assumed to be perfectly homogeneous; i.e., all particles B
within a cell are considered to be potential collision partners,
regardless of their exact positions. This assumption simpliwherev is the collision frequency. After a collision between
fies considerably the dynamics and allows the algorithm tdwo particlesA and B has occurred, we choose randomly
be up to three orders of magnitude faster than the correk,% of the collisions to be reactive, whekg stands for the
sponding exact hard sphere dynamics. On the other hand, Atrrhenius factor defined in Eq6). Obviously, this proce-
also raises questions as to the reliability of the algorithm. dure avoids the deformation of the Maxwell-Boltzmann dis-

From a macroscopic point of view, extensive use oftribution, since it does not involve any systematic energy
DSMC by Bird and others, in a variety of problems dealingtransfer between reactants and products. It is, however, re-
with nonequilibrium gas dynamics, has always shown perstricted to isothermal chemical systems.

k
A+B—C+D (5)
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+U=S+
IV. MICROSCOPIC SIMULATION OF AN EXACTLY S Urgs S (7b)

SOLUBLE MODEL where the concentration & particles(hereafter referred to

Our main objective in this paper is to check the validity of as “solvent” particle$ is supposed to remain constant. This
the reaction-diffusion master equation in the vicinity of acan be achieved by introducing one more participant, say
bifurcation point, through a microscopic simulation of a rep-moleculesA. Every time anS particle is createddestroyed
resentative chemical model. Testing phenomenological thegn a collision, anS (A) particle is chosen at random in the
ries through microscopic simulations is not always easy, as game collisional cell and replaced by Ar(S) particle. Since
involves a number of pitfalls one should be aware of befordhe A molecules do not participate in any reaction, they
drawing any definitive conclusions. This is especially truemerely constitute a reservoir of particles maintaining the sol-
for reactive systems so that it is instructive to concentraterent concentration fixef0]. We further restrict ourselves to
first on the following simple model, which can be solved a one-dimensional system with periodic boundary condi-

exactly[43,44]: tions, i.e., a long thin torus.
We first consider the master equation formulation. Divid-
Ky ing the system length into N, cells and following the ar-
S+U—U+U, (79 guments developed in Sec. Il, one can write

d Ne
ap({Ui};tF; [v(Ui—DP(... . Ui—1,...t) —v(U)P{Ui} ;) + w(Ui+P(.. . Ui+ 1,. .. 1) —u(UpP{U D]

=N
D C
32 2 [UH+DPC. Ui+ LUL— 1. )= (U)PHULD] (8a)
|
with g,j=(8U;8U;)—(U) 5. (12)
_ s(S—1) _ As this equation is subjected to periodic boundary condi-
v(Ui)—klsUi+k3—2 . mUi)=kssUi, (8D tions, Eq.(9), it can be solved through lattice Fourier trans-

form. After some calculation, one finds
wheres andS represent the mole fraction and the number of
solvent particles per cell, respectively, and the factor 1/2 in 2k;s(U)a
Eq. (8b) takes into account the fact that tf®S reaction 9iiT= 5 Ne_
) ; , . - D(a*—1)(a"c—1)
involves a pair of the same particles. Owing to the periodic

[ali=il4 gNe-li=il],

boundary conditions, li—j]|=0,1... N.—1, (13
Un+1=U1, Ug=Uy,. (99  where we have set
The master equatiof8) admits a stationary solution pro- a=(1+BID)+(1+B/D)?-1 (143

vided k,>k; since otherwise the random variablds;} be- )
come unboundedly large &s»o°. In this case, the stationary with

probability distribution possesses translational symmetry, B _

e, Py(Ui=a,Uj=b)=Pg(U;=a,U . =b), Vijk. B=s(ko=ky). (14D
For instance, the average number Wf particles per cell

reads For the microscopic simulation, we consider a system

made of an assembly &f=42 000 hard spheres of diameter
Ky(S—1) d confined in a rectangular box &f=3780d long with a
V= oo =(U), Vi (10  humber densityn=5x 10"* particles perd® (the mean free
2(kp—kq) path\ is about 45). All the particles have the same mass
) . . o ) and diameter, regardless of their chemi@ablor) identity.
The static spatial correlation function is readily found to g, practical convenience, lengths and masses are scaled by

(U

obey the sphere diametef and the particle mass), respectively;
5 i.e., we taked=m=1. Similarly, by an appropriate scaling
Zd e td . —20i ) — _ o Kr of ime and velocities, the temperature and thermal velocity
5 (Gi+1j+Gi-1=201]) ~s(ka—ky) i kis{U) i are set to unity. In these units, the diffusion coefficient

D =29.92 and the collision frequenay=0.025. The system
ih,j=1,2... N, (1 is divided into 84 collisional cells of 4blong, each contain-
ing an average of 500 particléthe cell volume is of about
where we have defined 1.1\%). The other parameters are chosen as follows:
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FIG. 1. Spatial correlation functiog;; , Eq.(12), as a function FIG. 2. Spatial correlation functiog;; , Eg. (12), as a function
of i —j|. The solid curve corresponds to the solution of the mastewf |i —j|. The solid curve corresponds to the numerical solution of

equation, Eq(13), whereas the squares are obtained through a mithe master equation, E8), where the diffusion of solvent particles
croscopic simulation based on Bird’s algorithm. The estimated stahave has been included, whereas the squares are obtained through a
tistical errors are less than 4%. The parameters are given in Egnicroscopic simulation based on Bird’s algorithm. The parameters
15). are given in Eq(15).

k;=0.1y, k,=0.15y, kz=0.4v, s=0.1. (15 The origin of this last discrepancy is deeper and, in a way,
more difficult to understand than the previous one. Neverthe-
less, the simplicity of the model together with the flexibility
A time average over f&;o”isions per par“c'éCPF’ was of the Bird algorithm leads to a Complete clarification of the
performed to measure the spatial static correlation functionProblem. As already stated in Sec. I, the linear dimensions
after the stationary state had been reactambut 16 cPP.  ©of a cell in the reaction-diffusion master equation cannot be
The result is presented in Fig. 1, together with that obtaine@hosen arbitrarily. Too large a cell size violates the cell sta-
from the master equation, EGL3). The agreement is defi- tl;tlcal homogenelty assumptions, .v'vhereas too small a cell
nitely not good. Note that traditional hard-disk and hard-Size may compromise the separability of reaction and diffu-
sphere molecular dynami¢MD) simulations have led in the Sion viewed as elementary processes. Intuitive arguments,
past to basically the same type of resyis]. developed in Section Il, lead to the conclusion that the cell
Detailed analysis shows that the origin of the observecizes should be typically of the order of the reactive mean
discrepancy is closely related to the way the solvent concerifee path. In other words, the reaction-diffusion master equa-
tration is kept constant in the microscopic simulation. Astion cannot probe correctly processes arising on a scale
already underlined, each time a solvent partBlis created Smaller than the reactive mean free path. For the parameter
(destroyedl in a collision with the other species & (A)  Vvalues we have chosen, the largest kinetic contgat0.4,
particle is chosen at random in the same collisional cell ang0_that the reactive mean free path exceeds necessarily
replaced by am (S) particle. This procedure ensures the 2-5\, wherex denotes the usual “elastic” mean free path.
conservation of solvent particles in reactive collisions, but _TO check the above intuitive arguments, we consider our
does not prevent them from moving freely from cell to cell. Microscopic simulation, with the same number of collisional
In other words, the number of solvent particles in a cellcells as before, but now we divide the system into 28 “sta-
fluctuates, but the fluctuations arise only because of diffufistical” cells; i.e., we group the cells three by three and
sion. The effect is negligibly small in macroscopic systemsmeasure the statistical properties of the system over these
but not in microscopic simulations where the number of parenlarged cells. Similarly, we solve numerically the master
ticles per cell is generally quite small. For instance, in ouréquation divided also into 28 cells. The results are depicted
case the average number of solvent particles per cell is onli? Fig. 3, which now shows perfect agreement. Furthermore,
50. a careful comparison of Fig. 2 with Fig. 3 reveals that the
To check the validity of the above arguments, we consideforrelation functions corresponding to the master equation
once more the model Eq7), but now we allow the solvent are the same for both cases. In other words, the system re-
particles to diffuse as well. The corresponding master equahains statistically homogeneous over length scales smaller
tion proves to be much more difficult to handle analytically, than the reactive mean free path. Obviously, this behavior
mainly because the transition probabilities are now nonlineafolds only at the level of the master equation formulation
functions of the state variablds); ,S}. It can nevertheless and breaks down in a more refined description where the
be solved numerically and the results are shown in Fig. 2velocity distribution of the chemicals is taken into account as
where a much better agreement with the microscopic resultaell.
is observed. Still, the agreement is not totally satisfactory. In
particular, near the origin the discrepancy is about 9%, well
above the expected statistical errpd$0). Wenote that such
a relatively small discrepancy would be quite difficult to de-
tect through hard sphere molecular dynamic simulations, Simple chemical models exhibiting complex behavior,
since here the statistical errors associated with the measursdch as the Brusselator or the Sajilmodel, involve trimo-
ment of fluctuations can hardly be lowered below 8% withinlecular collisions[1,2]. The Bird algorithm, however, is re-
a reasonable CPU time of present day computers. stricted to binary collisions only, i.e., to second-order chemi-

V. MICROSCOPIC SIMULATION OF A MODEL
CONTAINING A PITCHFORK BIFURCATION
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V with the reservoir;D,, D,, and D,, are the diffusion
coefficients; andi;, v; are the mole fractions df andV in
the reservoirfeed mole fractions respectively. The system
is assumed impermeable .

The transfer coefficient of a species depends on the diffu-
sion coefficient of that species as well as on the property of
the membrane separating the system with the reservoir. For
simplicity, in our microscopic simulation we shall assign to
all of the particles the same mass and sphere diameter, re-
gardless of their chemical identity. This implies that the dif-
fusion coefficients, and consequently the transfer coeffi-

FIG. 3. Same as in Fig. 2, except that here the statistics is take@ients, are equal:
over enlarged cells of about 3 mean free paths long.

0 10 20 |i-Jl

D,=b,=D,=D, (183
cal reactiond46]. It has been shown that the trimolecular
step can be approximated by a pair of bimolecular steps in- o= a,=a. (18b
volving different time scales, so that an adiabatic elimination ) _
of a fast variable leads to an effective trimolecular §#. For certain ranges of parameter values, the macroscopic

Nevertheless, such a scheme is inappropriate for microscopRduations(17) can admit multiple steady states and limit-
simulation because the species represented by the slow vafiycle oscillations. In this paper we concentrate on a possible
ables undergo far fewer reactive collisions per unit time tharPccurrence of a pitchfork bifurcation. We first note that the
those represented by fast variables. We thus look here for gfationary state mole fractions obey the following relations:
chemical model satisfying the following three constraifts:

it consists of binary collisions onlyji) it has no significant =£ 2 __ @
. . s WS US ] uS Uf y (196)
separation of time scale§ii) it involves as few reactants as skn kyws+a
possible. As was shown in R¢#8], the above requirements
are fully satisfied by the following chemical model: Kok (k+ a)vg— akqky(us+ vf)v§+ akn(k+ a)vs— a?knvs
ky =0, (19b)
U+W—V+W, (169
) where we have used the conditi¢tB) and set
V+V2WHS, 16b
k-2 (160 k=Kkss, kp=k_ss. (20
k
V+ S—3>S+S (169  Asis well known, the general solution of the cubic equation

(19b) can be entirely described in terms of two parameters
where the concentration of th® particles is supposed to only (see, for examplg51]). Thus, without loss of general-
remain constant. The reactants are confined in a long thiily, we are allowed to impose a certain number of suitable
tube, laterally in contact with a “reservoir’ with which it relations among the various parameters of the problem. One
can exchange particles through a semipermeable membrargyideline stems from the fact that at a pitchfork bifurcation
The reactor thus operates effectively as a one-dimensiongoint the cubic equatio19b) must admit a triple root. On
system. Note that laboratory reactors dealing with unstirredhe other hand, the stationary state mole fractions of the
systems are quite similar to the one we just describe¢hemically active components, and that of solvent molecules,

[49,50. should not be significantly different from each other for, oth-
The macroscopic rate equations corresponding to therwise, the microscopic simulation of the model will become
model (16) read highly inefficient.
5 Keeping the above comments in mind, we find after some
du d algebra that if we set
az—kluw+au(uf—u),+Dumu, (17a 9
1 kik, (ustuv
q kz—(uf+vf)\/2aﬁg—a (21)
v _ 2 3 Km (Ut—2v¢)
a—kluw_Z(kzv —k_2WS)—k3vS+ CYU(Uf_U)
) then Eq.(19b) reduces to the following simple form:
J
+D,=—v, (17b 4
2 _,y3y ¢ fm o _ =
(vs—vg )+ U o) I(lkz(vf ut/8)(vs—vs")=0,
dw ) @ (22)
m=k2v —k_,ws+ DW(TXZW’ (179

where we have introduced the “reference” stationary state
whereu, v, w, ands are the mole fractions df, V, W, and
S, respectivelyk..; are the rate constants of tita reaction; = l (Ug+vy) e 23)
a, and a, are the transfer coefficientéeed rat¢ of U and s 3 T "kt
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u 2
0.25 &2 Stable S+S=S+U, (269
‘ b
i Stabl S,
0.2 Unstable_ _ _ niend S+ S\E S+ V. (26b)
0.15 F : The forward reaction corresponds to inflow and the reverse
; reaction to outflowa. andb. are the fractions of reactive
Stable S collisions for these two reactions. Furthermore, S8 reac-
0.1 : : : ! : ! tion can result in the production of eith&r or V molecules.
-0.02 -0.01 0 0.01

The fraction of “reactive” S-S collisions resulting in the
production of aU molecule isus/(us+uv;) and the fraction
FIG. 4. Stability diagram for the modél6). § is defined in Eq.  Of “reactive” collisions resulting in the production of ¥
(24) and the parameters are given in E25). molecule is then jusi¢/(us+vy). It can be easily checked

that the reaction&26) lead indeed to the correct macroscopic
As can be seen, fov;>u;/8 the stationary solution is transfer terms, provided we set
unique, i.e.,vs=v{", whereas for;<u;/8 one has three
stationary solutions, showing clearly that the system under- a _2ayy _ 2avy a=p =2 27)
goes a bifurcation ai;=u/8. More detailed analysis shows A
that the latter corresponds to a pitchfork bifurcation point. ) . )
This is illustrated in Fig. 4, where the stability diagram for Note that the factor 2 in the above relations or andb., is
the variableu is depicted. The parametet in this figure related to the fact that the forward reactioi@$) involve a

represents the “distance” from the bifurcation point, definedPair of the same molecules. _ _
as One last problem remains, which arises whenever the

concentration of some of the species has to be kept constant
‘ all along the simulation. For the modell6), this is the case
vi=g t9. (24)  of the S particles that undergo reactive collisions with the
other species and participate, in addition, in reactions de-
signed to mimic the exchange of particles with the reservoir.
As already discussed in the previous section, this can be
ki=v, ko=v/2, kp=v/26, u;=1/4, a=0.28, achieved t_)y introducin_g one more participant, say molt_ecules
(25)  A. Every time anS particle is createddestroyed in a colli-
sion, anS(A) particle is chosen at random in the same col-
wherev represents the collision frequency. Note that in writ- lisional cell and replaced by aA(S) particle. Since theA
ing the relation (21) we have implicitly assumed that molecules do not participate in any reaction, they merely
us— 2v¢>0, which is clearly satisfied beyond€0) and in ~ constitute a reservoir of particles maintaining t8emole
the vicinity of the bifurcation pointg~0. fraction fixed. We note that the simulation procedure is com-
We first consider the stochastic simulation of the modepletely specified in terms of kinetic constants, transfer rate
(16), for which we can write a reaction-diffusion master and the mole fraction o8 particles.
equation similar to Eq(8), with periodic boundary condi- For the microscopic simulation, we consider the same ba-
tions allowing theS particles to diffuse as well. We us®  Sic parameters as those chosen for the simple model7&g.
defined in Eq.(24), as the control parameter and set thei.e., N=42 000 hard spheres of diametsrL =3780d, and
values of the other parameters according to @§). Long n=5x10"2 particles perd®. We also use the same scaling
before the bifurcation point, the dynamics can be linearizeds before, so that the diffusion coefficiddt=29.92 and the
around the reference state so that the behavior of the systegollision frequencyy=0.025, in system units. The system is
is basically the same as in the case of the m@delAs we  divided into 84 collisional cells, of about 1 mean free path
move towards the bifurcation poinf—0, we observe a dra- long, and statistics are collected over each such cell as well
matic increase in the fluctuation lifetime, with a correspond-as over groups of 2, 4, and 7 cells.
ing increase of their amplitude. Detailed analysis shows that We first consider positive values df, i.e., before the
the local fluctuations exhibit markedly non-Gaussian behavbifurcation point and run the simulation for two different
ior for values of5 ranging from about 107 to —1072. The  values of the bifurcation parameters=10"2 and
associated probability distribution, however, remains always’=3x103. In both cases, the system exhibits significant
unimodal, regardless of the value 8f This behavior seems long life fluctuations so that to lower the statistical errors
to indicate that the nonequilibrium transition associated tdelow 8% in the evaluation of the correlation functions, we
pitchfork bifurcations is probably destroyed in a one-had to run the simulation about 5 times longer than in the
dimensional system. The full discussion of this problem,case of mode(7). With the parameter valug5), the reac-
however, is beyond the scope of the present paper and witlve mean free path is close ta.2According to our previous
be reported elsewhere. analysis(cf. Sec. I\), the cell size in the master equation
We next concentrate on the microscopic simulation of theformulation must also be set to about.20n the other hand,
model(16). In order to carry out a microscopic modeling of given the close vicinity of the bifurcation point, the system
the transfer process with the reservoir, we introduce twaexhibits long range spatial correlation so that larger cell sizes
more pairs of reactions: should also be allowed. This is demonstrated in Fig. 5 where

The other parameters are set to
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FIG. 5. Spatial correlation functiog;; , Eq.(12), as a function FIG. 7. Probability distribution of th& variable for the model
of |i—j| for the model(16). The solid and the dashed curves cor- (16) with §=—3X 10" 3. The solid curve corresponds to results of

respond to the numerical solution of the master equation fothe master equation whereas the circles are obtained through a mi-
5=3%10"2 and §=10"2, respectively. The circles are obtained croscopic simulation over enlarged cells of about 4 mean free paths
through the corresponding microscopic simulation based on Bird’dong. The dashed curve represents the probability distribution cor-

algorithm. The statistics is taken over enlarged cells of about 4esponding to the global master equation with 2000 particles. The

mean free paths long. The parameters are given in(ZE5y. other parameters are given in Hg5).

and the microscopic simulation remain unimodal, in perfect
gquantitative agreement with each other. On the contrary, the
the spatial correlation function, evaluated for groups of 4global master equation leads to a bimodal probability distri-
cells (about 4), is depicted, which indeed shows quantita- bution, each of the maximum being centered around stable
tive agreement with results obtained from the master equastationary solutions of the macroscopic equations. This ma-
tion. The agreement, however, becomes gradually less gogar discrepancy is in part due to the pathological properties
as we consider larger cell sizes. Figure 6 illustrates this faclef one-dimensional systems. It nevertheless underlines the
where the master equation results, obtained for groups of ihadequacy of a global description of unstirred media.
cells, are compared with the corresponding results of the
microscopic simulations. The agreement is indeed less good,
the discrepancy exceeding the estimate statistical errors VI. CONCLUDING REMARKS
(8%). Again this result seems to indicate the destruction of
the pitchfork bifurcation in a one-dimensional system.
We next consider negative values 6f i.e., above the

The main purpose of this work was to use microscopic
simulations of chemical systems to study the limit of validity

bifurcation point. Here again, the static correlation function of the stochastic formulation of reaction-diffusion systems

show quantitative agreement with master equation predic-ased on the master equation. Contrary to the Langevin ap-

tions. Furthermore, the probability distribution associated too_rotachz the mﬂstzr equ§t|ontf3]rmular|on Iprciwdeis_;_’:lhme::fga-
local composition variables remains unimodal. This is illys-"IStC view ot the dynamics at the molecular level. the state

trated in Fig. 7 fors= —3x 103, where the probability dis- variables are the number of particles of chemical compo-

tributions of theU variable, sampled over enlarged cells of n_ents, WhiCh are sampled in spatial cells whose linear dimeq-
about 4 mean free paths I’ong are depicted. Besides the nﬁlon/ is considered as an adjustable parameter. Each cell is

croscopic and the reaction-diffusion master equation result%?tshl:?ﬁd rto bﬁ i%errfeé:tly Somorg]]gigett)us; :tﬁr aIfI rparpcles_
we have also reported the probability distribution obtain are considered to be ca ate partners for a reac

from the “global” master equation. The latter reflects the tive collision, regardless of their exact positions. Within each

behavior of a zero-dimensional system, containing the sam%e"’ th? dy”*”?m'cs IS qecomposeq in two independent pro-
number of particles as the sample cells we used in the micesses: reaction and diffusion, which are modeled as a birth

T ; . . ....and death process and random walk, respectively.
croscopic simulations, i.e., 2000 particles. The probability The vali%ity of the above stochastic F;ormula){ion rests

distributions for both the reaction-diffusion master equation . ) . :
upon an adequate choice 6f Too large a cell size violates

the cell statistical homogeneity assumptions, whereas too
small a cell size may compromise the separability of reaction
and diffusion viewed as independent elementary processes.
In the absence of any further information as to the range of
spatial correlations, the linear dimensions of a cell must re-
main of the order of the reactive mean free path, defined as
the average distance traveled by a sample particle between
two reactive collisions. In fact, expanding the reaction-
diffusion master equation in the inverse power 4f al-
though mathematically correct, may lead to unphysical re-
sults contradicting the macroscopic reaction-diffusion
equationg52].

FIG. 6. Same as in the Fig. 5, except that here the statistics is After analyzing in detail the statistical properties of a
taken over enlarged cells of about 7 mean free paths long. simple model, we have next considered a more complex
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