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The effect of nonequilibrium charge screening in the kinetics of the one-dimensional, diffusion-controlled
A+B—0 reaction between charged reactants in solids and liquids is studied. The incorrectness of the static,
Debye-Hickel theory is shown. Our microscopic formalism is based on the Kirkwood superposition approxi-
mation for three-particle densities and the self-consistent treatment of the electrostatic interactions defined by
the nonuniform spatial distribution of similar and dissimilar reactants treated in terms of the relevant joint
correlation functions. Special attention is paid to the pattern formation due to a reaction-induced non-
Poissonian fluctuation spectrum of reactant densities. This reflects a formation of loose domains containing
similar reactants only. The effect of asymmetry in reactant mobilitizs<0, Dg>0) contrasting the tradi-
tional symmetric case, i.e., equal diffusion coefficieris, € Dg), is studied. In the asymmetric case concen-
tration decay is predicted to keccelerated n(t)oct™¢, azé, as compared to the well-established critical
exponent for fluctuation-controlled kinetics in the symmetric case3, and/or the prediction of the standard
chemical kineticsp= % Results for the concentration decay and growth under permanent particle source are
compared with results of the mesoscopic the¢81063-651X96)08112-3

PACS numbg(s): 05.40:+j, 05.70.Ln, 64.60.Cn, 82.20.M;j

[. INTRODUCTION main prediction of chemical kinetics that all reactants are
well stirred, and the reaction volume is homogeneous. As a

Bimolecular A+B—0 reactions are quite common in result, modern chemical kinetics uses the languageital
condensed matter physics and physical chemistry; e.g., theaxponents, correlation lengths, etsimilar to the physics of
occur between primary radiation defects of two typegnd  critical phenomena.

B, which recombine when they approach each other during Presently almost all studies of fluctuation-controlled ef-
diffusion walks to within some critical distanag,. These fects deal with neutral, noninteracting particles, thus ne-
particles(Frenkel defects in solids and/or electrons and radiglecting effects caused by their interaction. Rare exceptions
cals in liquids could be neutral or charged. Empty anion are to be found in Ref§5,10-13. In this paper, we study
vacancies/, and complementary interstitial anioXs (the  many-particle effects between charged reactants, and show
so-calledl center$, as well ask centers ¥, which trapped that the generalization of the formalism developed earlier for
an electron and X° interstitial atoms (called H centery  neutral particles, to the case of charged particles is not al-
could serve as examples of charged or neutral defects iways trivial, and requires a careful restatement of the prob-
irradiated alkali-metal halide crystals, Me lem.

Many-particle effects caused by the spatial fluctuations of Two basic approaches to the fluctuation-controlled kinet-
the reactant densities have been intensively studied in receifis are widely used nowadays: they are known as mesoscopic
years in the kinetics of bimolecular chemical reactions, in{10-123 and microscopic[5,6,13-1% approaches. The
cluding the above-mentioneti+B—0 reaction. A number former does not treat the reaction event at all and focuses on
of quite different techniques and methods were developethe calculation of the reactioasymptoticsat long reaction
for this purpose, including direct computer simulatiph a  times,t—o. As stated above, the critical exponenin the
mesoscopic approad?,3], and scaling 4], as well as mi- algebraic decay law for the reactant concentration depends
croscopic theory5-7] (see also references|i] and review on the space dimensiahonly. It is defined entirely by the
articles[6,7]). These studies clearly demonstrated that thdarge-scale reactant density fluctuations characterized by the
kinetic laws established long ago in standard chemical kinetiength parameter called thiffusion length &(t)=\Dt,
ics [9] could be violated, usually at high particle concentra-where D=D 5+ Dy is the coefficient of the relative diffu-
tions or long reaction times. In particular, the asymptoticsion. At long reaction timesé(t) exceeds any final length
(t—=) concentration decay rate turns out to beparameter in the reaction systef®.g., the reaction radius
n(t)«t~ %, whered<4 is the spatial dimension; i.e., it is r, or radius of the effective reactioR., between interact-
slowerthan the one in standard chemical kinetias; 3 and  ing particle$ and governs the kinetics.

1 and 1 ford=1, 2, and 3, respectively. This effect, called The mesoscopic studi¢s0—12 are a good illustration of
sometimes abnormal kinetics—abnormal from the standar@hat was stated above. The authors, following a pioneering
point of view—is directly related to the reaction-induced approach[2], reduced the kinetic problem to a study of a
nonuniform reactant distribution which is in contrast to thesingle nonlinear stochastic equation of the following kind:
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Jq . acteristic correlation functions defining the relative spatial
E:(D+W|Q|)AQ+WSQF(CI)(VQ) +i, (1) distribution of particles and the relevapattern formation
kinetics. We demonstrate below that the same is true for the
Coulomb interaction—a better understanding of peculiarities
whereq(r,t)=Cx(r,t) —Cg(r,t) is a local difference in re- in the kinetics due to many-particle effects can be achieved
actant densitieg(particle concentrations w a parameter through the detailed treatment of the time development of the
characterizing particle interactionv(-D/kgT), andi a sto-  spatial reactant distribution.
chastic particle flux in thel-dimensional voluméin the case The particle aggregation problem does not arise in the
of particle production When deriving Eq(1), the macro- mesoscopic theory fow>0 (similar particle repulsion
scopic concentrations were assumed to be equal;ood example of such a situation is a screened Coulomb
na=ng=n(t), these concentrations are average values of thinteraction (the Debye-Huakel potential which guarantees
local concentrations),=C,(r,t) andv=A andB. Proceed- potential symmetry and integrabilifi0]. In this paper, we
ing in this way, the time development of the macroscopicstudy in detail the effects aflynamicalCoulomb potential
concentrationn(t) could be expressed through the meanscreening in theA+B—0 reaction. In the following we
value of the stochastic variabtg(r,t) and thus the critical Show that the additional assumption of the mesoscopic
exponents could be calculated for both cases—the concentrffleory about potential integrability in fact isot fulfilled.
tion decay after pulsed particle creation=0), and the ki- Depending on the particular mobility caggymmetric and/or
netics under the permanent particle source. asymmetri¢ the asymptotic behavior of the reactant concen-
In order to solve the kinetic problem analytically, addi- trations can be either similar to a system of noninteracting
tional symmetry assumptions are imposed on the diffusiofParticles, or quite differenwhich is a direct consequence of
coefficients D,=Dg and the interaction potentials the infinite-radius potential _
U, .(r)==e,e,u(r/ry), whereu(x) is some function and _ Since the case ai=3 has been analyzed by us in Ref.
|e,,r= e). Moreover,u(x) is assumed to be integrable, and [14], in the present paper we study the reaction peculiarities
characterized by a finite action radius. The two symmetry for low dimensions, focusing od=1 (reaction in capillar-
conditions allow us to reduce the number of nonlinear stoi€9-. It will be shown that in this case the reaction radius
chastic equations to be solved to one, whereas due to tHe could be set to zero, which allows us to eliminate this
potential integrability condition the equation derived has noParameter and to compare directly our results with the me-
nonlocal terms and permits us to characterize particle interS0scopic theory10—12. We also study the particieccumu-
action by a single parameter. lation kinetics where the mesoscopic theory predicts devia-
However, these mathematical assumptions are often ilons from reaction kinetics known for neutral particles.
conflict with the actuabhysicalproblem. In particular, the ~ The paper is organized as follows. In Sec. Il a set of
mobility of the above-mentioned interstitial atoms typically nonlinear kinetic equations for arbitrary space dimensias
exceeds that of vacancies by 10-15 orders of magnitudgresented, and its simplification for low dimensions is dis-
[16]. Moreover, in the case of the elastic interaction typica|cussed. The screened interaction potentials are derived in
for neutral particles, caused by the overlap of the lattice deSec. lll, in the spirit of the Debye-tbkel approach in statis-
formation fields around two close defectsliaa(r)|  tical physics of dense Coulomb systems. The key point here
#|Ugg(r)| #|Uag(r)|. The interaction is attractive for pairs IS that our effe_zctlve potentials attd,ynamlcaj_ and dlrectly_ _
of both similar (AA,BB) and dissimilar AB) particles. This rela_\ted to the time develop_ment of the spatial reactant (_jlstr_l-
means that the parameterin Eq. (1) is negative. As noted butlon. The reaction equations ob.tamed are rewritten in _d|—
in [10], in this case a singular solution occurs due to a C0|__men5|qnle$s form in Sec. . Particle accumulation .klnetlcs
lapse in the system of similar particles. This demonstratet$ Studied in Sec. V. Section VI presents an analysis of the
clearly that the mesoscopic approach fails in the cases whefBain results obtained, and their comparison with the mesos-
smalkscale density fluctuations are important, and thus on&°Pic theory. The Appendix summarizes important details of
can no longer avoid the detailed treatment of the particlé®Ur difference scheme used for the nontrivial numerical so-

interactions. lution of nonlinear kinetic equations with singular potentials.
The above-mentioned collapse indeed manifests itself ex-
perimentally in the form of aggregatésolloids) of similar II. KINETIC EQUATIONS

radiation defect$17,18. It is clear that the critical exponent

itself is not well suited for describing aggregation processes: The basic equations of our microscopic theory of interact-
under permanent irradiation defect concentrations saturate #tg particles have been derived and discussed recently for
some timen(t—«)=n,=const. This means that the result d=3 for the cases of Coulompl4] and elastic[U(r)

of the relevant discrete-lattice treatment of defe¢éking «1/r3] [15] interactions. Now, based on results of a review
into account their finite sizgss trivial, «—0. On the other article [7], we generalize these equations for an arbitrary
hand, it is known experimentally that the aggregation processpace dimensiod. This helps us to show peculiarities in the
consists of many subsequent stages—the formation of defetrtansition to low dimensions.

pairs (dimer9, trimers, etc. is observed as time increases. Use of the Kirkwood superposion approximatidr®] for
That is, spatiostructuralproperties, such as the time devel- decoupling the infinite hierarchy of equations for the corre-
opment of a single defect concentration, that of dimers, etclation functions leads to a minimum set of variables describ-
the mean size of aggregates and the number of particles iiRg the fluctuation-controlled reaction kinetics. These are the
side it become of great importance. Moreover, these propemacroscopic concentratioms,=ng=n(t), and three kinds
ties are closely related to the time development of the charef joint correlation functiong§6,7]—two for similar particles,
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X,(r,t) andv=A andB, and a third one for dissimilar par- which the thermal energy equals the attraction energy; when
ticles, Y(r,t), wherer is the relative distance between two approaching to withirR two reactants cannot separate, and
particles. These functions describe a spatial distribution othus they inevitably recombine. Usualg>r, and thusR
pairsAA, BB, andAB, respectively, and are analogous to thedetermines the reaction rate. Neglecting many-particle ef-
radial distribution function in statistical physics of densefects, the latter has a very simple fortd=47D Ry [7,9].
gases and liquid20]. The physical meaning of these corre- In the limiting case of ;— 0 the functionally[ Z] in Egs.(3)
lation functions is the following [7,14: C®(r,t) and(5) is greatly simplified,

=n(t)Xa(r,t) andC@(r,t)=n(t)Y(r,t) are mean densities
of particlesA and B, respectively, at the relative distance
r, provided that a probe partickeis in the coordinate origin.
Introducing for simplicity a function X(r,t)=(Xa(r,t)

+ Xg(r,t))/2 the basic set of kinetic equations reads:

JdZ1=2(r,t)-1.

This limiting transition is also very useful for the study of
accumulation kineticgSec. \).

dn(t) o Ill. EFFECTIVE COULOMB INTERACTION:
——=—K(®nt), KO=yqr§ i(ro,), (2 DYNAMICAL CHARGE SCREENING

Consider now the calculation of the particle electrostatic
aY(r,t)/at=V-j(r,t)=2n()K(t)Y(r,t)Iq[X], (3) interactions in low dimensions taking place on a surface
(d=2, motion on thexy plane or in capillaries =1, mo-
J(r,)=(Da+Dg{VY(r,t)+ BVUp(r,)Y(r,1)}, (4  tion along thex axis). Rewrite the Poisson equation

X, (r =V-j(r,t)—2n(t)K(t)X,(r Y A7
d V( !t)/(?t v JV( ,t) (t) (t) 1/( 1t)‘]d[ ]1 (5) A(,{)(X,y,Z):_?p(X,y,Z) (8)

j,(r,t)=2D {VX,(r,t)+B8VU. (r,t)X,(r,t)}. (6)

in the integral form
In Egs. (2)—(6) the black-sphere recombination model is

assumed implicitly: anyAB pair recombines instantly when p(r'")
two reactants during their diffusive walks approach each #(r)= f
other to within some critical distanag, [6,7]. This fact is
incorporated into thg Smoluchowski boundary condition Following the well-known Debye-Hkel approach20]
for the correlation function of dissimilar particles; |et us place a probe charge in the coordinate origin, which
Y(r=ro,t)=0 in Eq. (3). This correlation function defines induces the excess charge dengityr,t), and calculate the
the quantity of primary importance—ttreaction rate Kt)  relevant effective potentiab,(r,t). In d=3, due to a spheri-
which is a flux of particles over the recombination sphere’scal symmetry of the induced charge distribution this problem
surface =2, 27, and 47 for d=1, 2, 3, respectively  has a simple solutiof20]. The differential form of the Pois-

g|r—r’|dXdde 9

For a finiter the reaction rate reads son equation is very convenient for the numerical calcula-
a1 tions[14]. In d=2 one is interested in the potential on the
K(O)=yaro “dY(r,0)/or|r=r,. surface,® (r,t) with r = \X?+yZ2. The obvious ansatz here

) ) o is a substitution for the induced charge density
The nonlinear terms in Eq$3) and(5) containing the func- p,(X.y,zt)=0c,(r,t)5(z), where o,(r,t) is a two-
tionals J4[ Z] arise directly from the Kirkwood approxima- dimensional charge density at the distanceom the coor-
tion [19] (see[6,7,14). Their expressions fad=1, 2, and 3 ginate origin, ands is the Dirac delta function.
are given in Ref[7]. In particular, More delicate is the situation iti=1, where one needs to

_ find the potential along the axis, ®,(r,t) wherer=|x|.

NW[Z]=@(r+ro )+ Z(|r—rol,t)/2-1. @) The trivial treatment of the d string with
p.(X,y,z,t)=0c,(r,t)8(y) 8(z), where o,(r,t) is the U
Icharge density, fails, since the potential of a charged string is
singular (logarithmically divergenton this string. That is,

Expressions for the flux densitieg(r,t) and j,(r,t)
(B=1/kgT) are also nonlinear, since the effective potential

energiesuiﬂ(r,t) receive contributions of both direch fx the cased=1 should be considered as a quadi-hotion

pair) and indirect lateral particle interactions through sur- . . Som
: : . : 2 where the particle coordinates have some distribution along
rounding particles. The technique for their calculation in the,

case of a short-range potential has been discussed in Ré?.ey an_dz_axe:;(a capillary of the finite r.ad'USC) but the
[15], and that for the Coulomb potentials in REFA]. recombination is governed by the coordinate. In a one-

Low-dimensional =1 and 2 systems with Coulomb parameter model, one obtains
interaction reveal a peculiarity which allows us to reduce the ,
number of independent variables and to simplify the kinetic ®(r )= i+ o (1Z'],1) dz' . (10)
equations. That is, we can perform the limiting transition ’ er e r—z’)2+r§
ro—0, retaining the finite reaction rate. Physically this
means that the reaction rate is governed by the effective ra- Equation(10) contains the potential of a probe charge
dius. This radius is the largest one of the scale lengths in the, placed in the coordinate origin, and assumes that the in-
system. For the Coulomb systems such a scale is called tliced charge is distributed symmetrically with respect to the
Onsager radius R=e?/¢kgT [14]. This is a distance at coordinate origin. In other words, E(LO) describes the case
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where the screening particles are distributed over the capil-
lary surface with a radius.. For the self-consistent calcu-
lation of the induced potential, E410) should be extended
by the effective density of induced charges. For this purpose

jo(r,t)y=D {aX,(r,t)/dr+ U (r,t)/arX,(r,t)}. (16)

The Smoluchowski boundary condition for E4.3) is

the physical meaning of the correlation function should be Y(0,)=0. (17)
used(Seg:. [): the mean charge densitiesAfandB particles The boundary condition for similar particles,
are nothing but
limj,(r,t)=0, 18
enCH(r 1) =ean(t)Xa(r ) imJAry 18

and
esCP(r,t)=egn()Y(r,1),

respectively, provided that a probe partiéles in the coor-

dinate origin. Since=e,= —eg, one obtains a charge den-

sity induced by a particle of type
o, (r,H)=e,ntX,(r,t)=Y(r,t)). 11

The effective potential interaction energies in E@ds.and
(6) are

U, (r,t)y=e,®(r,t)
and
Uag(r, )= —(Uaa(r,t) + Ugg(r,1))/2,

respectively. That is, the spatial distributionAfandB par-

ticles described in terms of the joint correlation functions

means thatAA and BB patrticle pairs do not interact, but
reflect each other upon particle collisiofiwe neglect the
size of the patrticles

Due to the short-range nature of the spatial particle corre-
lations and the normalization condition, one obtains

imY(r,t),X,(r,t)=1.

r—oo

19

We assume a random initial distribution of reactants,
X, (r,00=Y(r,00=1.

The set of Egs(12), (13), and(15) has to be extended by
the effective interaction potentials. Irdthese potentials are
Uy(r,t)z1/r+n(t)fmG(r,r’;rc)[XV(r’,t)—Y(r',t)]dr',

’ (20)

ere

determines the spatial charge distribution and the relevant
potentials(10) in which these charges are moving. In other G(r r’;r )={[(r—r')2+r2] Y2+ [(r+1")2+r2]" 132,

words, we havea self-consistertreatment of particle motion

and the potentials where they move.

IV. DIMENSIONLESS KINETIC EQUATIONS

After eliminating the reaction radiug, two (one length
scale remains in the kinetic problem: in thd tase the cap-
illar radiusr . and the Onsager radi@, or, in the 2 case,

only the Onsager radiuB. It is convenient to introduce the

dimensionless parameters =r/R, r.=r./R, t'=Dt/R?,
D!=2D,/D,n’(t')=y4rdn(t), U,(r',t')=pU" (r,t), and
U(r’,t")=BUpg(r,t).

In variables(primes are omitted belomour kinetic equa-
tions read

dn(t) ) . .
T =—K(t)n4(t), K(t)=Ilim,_,j(r,t), (12
AY(r,t) at=9j(r,t)/ar —2n(t)K(t)Y(r,t)[ X(r,t)—1],
(13
with
jr,t)y=aY(r,t)/or+aoU(r,t)/orY(r,t), (14
and

X, (r,t)/at=2aj,(r,t)/or —2n(t)K(t) X, (r,O)[Y(r,t)—1],
(15)

with

(21)

Therefore, the recombination kinetics is defined by the
following dimensionless parameter§) the initial particle
concentratiom(t=0)=n(0), (ii) the partial diffusion coef-
ficient k=D, /D [note that dimensionless diffusion coeffi-
cients are related by the conditioD,+Dg=2, i.e.
D,=2k, Dg=2(1-«)], and(iii) the capillary radius (in
the 1d case.

As is well known, the asymptotic decay law does not
depend on the initial particle concentration. The latter defines
only the critical time when such an asymptotics occurs: the
largern(0), theshorter a transient time. In contrast, the as-
ymptotic law could depend on the relative mobility param-
eter k since a difference in particle diffusion coefficients
leads to different spatial distributions§a(r,t) # Xg(r,t).
The same is true for the particle screening, &1).

V. PARTICLE PRODUCTION

Let us now incorporate into the kinetic equations the ef-
fect of permanent particle production with the rgieper
volume unit and time. An example is a production of Frenkel
defects in solids under irradiati¢ti6]. We neglect the initial
spatial correlation withingeminate ABpairs of dissimilar
particles created simultaneoughigh energy irradiation As
is known[21], the main problem of the accumulation kinet-
ics arises in the calculation of the volume fraction occupied
by the recombination spheres arouAdparticles. SomeB
particle newly created inside this prohibited volume
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(vzydrgld) recombines immediately with aA particle, 05
which results in the reduction of the numberfoparticles by

one, and an unchanged number Bfparticles (and vice 0.4 |
versa, if B is created outside this volumeHowever, the

limiting transition in 1d ry— 0 lifts this problem, since the 03

accumulation kinetics turns out to be purely diffusion con- €
R . . . - =]

trolled. The relevant kinetic equations are also simplified.

Using results of Refl.21] we write the relevant kinetic equa-

tions in the following form: or l

dn(t) )
TZé'— K(t)n<(t), (22 0.0 ‘ . :
-2 0 2 4 6

aY(r,t)ylat=9j(r,t)lor+2Z[1—=Y(r,t)]/n(t)
FIG. 1. The critical exponent characterizing the algebraic con-
—2n(OKOY(r,HIX(r,H-1], (23 centration decay, E(25), as a function of dimensionless reaction
) time (decadic logarithm Solid curves—symmetric reactant mobili-
X, (r,)fat=aj,(r,t)/or +2¢[1—=X,(r,1)]/n(t) ties,D =Dy ; dashed curves—asymmetric mobiliti®, =0. Dot-

B B ted lines show the two expected asymptotes:3 and 3. Curves 1

2n(OKOX,(rOY(r,H—1]. (24 correspond to the Debye theory, curves 2 to a solution of the kinetic

Egs. (12)—(16) incorporating spatial reactant correlations but ne-

Equat(ij(ir;s(ZZ)—(24) contain a dimensionless parameter yjeqting dynamical charge screening, and curves 3 to the case when
{=1v4pR""“/D characterizing the efficiency of particle pro- 5 screening effects are incorporated.

duction. This parameter could be presented in the form of a

ratio {=75/7,, where rp=R?/D is the time for particle ics. In fact, the latter is defined entirely by the joint correla-

diffusion over the recombination sphere of radis and  tijon function of dissimilar particles obeying the simple

Tp~1/de is the time between two sequential events of parinetic equation

ticle creation within a sphere of the same radrisThat is,

small ¢ values correspond to the situation when diffusion aY(r,t) a9 d d

dominates over the particle creation, and vice versa for large o a—rY(r,t)+Y(r,t)EU(r) (26

{. Since no particles exist before the particle source is

switched on, the initial condition ia(0)=0, i.e., the initial  where U(r)=—1/ is the unscreened Coulomb potential.

concentration, is no longer one of the parameters of th@fter linearization of a set of kinetic equations, their solution

theory. no longer depends on the partial diffusion coefficierisolid

and dashed lines in Fig).JAt long times the solution of Eq.

VI. RESULTS (26) is practically defined by the diffusion length= 1, i.e.

the decay lkinetics obeys the classical algebraic lagt)

xt™ % a =3.

The kinetics of the concentration decay has been calcu- (i) The complete set of Eq9.12)—(16) incorporating
lated for high initial concentration(0)=1 and long dimen- many-particle effectgvia nonlinear termsbut with linear-
sionless time=10%. At this moment the particle concentra- ized potentials,U(r,t)=Ug(r,t)=—U(r,t)=1/r. In this
tion drops by three orders of magnitudgFurther intermediate approximation the kinetics under study begins
concentration decay could hardly be measured experimerio depend on the mobility parameterbut asymptotically it
tally.) To make results more obvious, in Fig. 1 we plotted notstill follows the kinetics known for neutral, noninteracting
the very kinetic curvesp=n(t), but their slopes on a loga- particles withU(r)=0.

A. Concentration decay

rithmic scale which defines the so-calledrrent critical ex- (i) The complete set of kinetic equations is combined
ponents with nonequilibrium treatment of charge screening making
now no linearization. The dimensionless capillary radius was

a(t)=— dinn(t) . (25 chosen as . =0.1. (Its reduction to the value of 0.01 results

in a small, logarithmic correction which does not affect the
critical exponen). Curve 1 in Fig. 1 shows that in the time
To demonstrate the importance of the effect wbn- interval considered the critical exponent rather rapidly ap-
equilibrium charge screening neglected in many previousproaches its limiting classical value ef Curves 2, incorpo-
studies, we present results for three different approximationgating many-particle effects, approach thejuasisteady-
as follows. state after nearly the same time, but their further approach
(i) The traditional, Debye-like treatment of the reactionfrom above to another asymptote with=; has a logarith-
kinetics with unscreened Coulomb interactii2f]. Many-  mically slow character. For example, for the symmetrical
particle effects are neglected, and the kinetic equations arisaobilities «(t=10°)=0.264. In the asymmetric mobility
due to linearization of Eqs(12)—(16) for the correlation case the deviation from the asymptote is larger,
functions. As a result, the equation for the correlation func-a(t=10%)=0.280. Such a behavior results from the long-
tion of similar particlesX,(r,t) no longer affects the kinet- range nature of the Coulomb interaction between particles.

dint



54 EFFECT OF REACTANT SPATIAL DISTRIBUTION IN ... 6133

15 T T T T T TTTTI T T T T T T T N Trrrrry
. D,=Ds
=1
© R i -
.: r” \\
2 10 . \ 1
= ’ v
L™ // \
[om) A
'9 // T T T —~ \\
E // -7 \\ \\
e 5t d \ \ |
s / // ——— = —— \ \
(&) r, . \\ \ \
ly \ \ J
1, s \\ \ \
/,// 1 2 3
/,
0 T — L FIG. 2. The joint correlation function of dis-
101 100 1ot 102 103 104 105 s!m!lar partl_cles,Y(r,t) (solid curve, and that of
similar particles X(r,t) (dot-dashed curyeand
@ I Xg(r,t) (dashed curye Curves 1-3 correspond
. tothe dimensionless times 40.0°, and 16, re-
15 LAY B R e L0 spectively. (a) Symmetric mobility case,
-3 D,o=Dg. (b) Asymmetric case D,=0. Note
- T~ D,=0 1105 that in case(a) Xa(r,t)=Xg(r,t)=X(r,t); in
g '~ - case(b) Xa(r,t) is plotted on a logarithmic scale.
L3 ) .
k3 10 _\\2 N e — - -— j10*
g NG S N
(i ~.,7 ~, \
= | AN N \ ne
g T ~ // >, R \\
s ~.  _-"7 N '
O 3 rNs ~, SN \ 1102
= S 7 7N . \
- , . ~N \
o ‘ e o - : N
3) v, -7 TN N | )
| ///// .\ \\‘ \\\ \ 110
0% N AN 2\
45 . .
101 100 101 102 103 104 105
(b) T

Strictly speaking, ther= 3 law of the fluctuation-controlled =3 (as for non-interacting particlgsvhereas for asymmet-
kinetics ind=1 is proved only for noninteracting particles ric mobilities the critical exponent irger and the reaction
[1-8]. It was generalized for interacting particlpsovided  occurs respectively fastes,= 3. Note that a similareaction
that their interaction potential is short-range and does noaccelerationbetween charged particles with asymmetric mo-
lead to the similar-particle collap$&0—-12. In fact, this law  bilities was predicted earlier in the 3d cgdel]. We found
was proved for the case when the largest length parameter there thata=2, to be compared wittw=1 known in the
the problem is the diffusion length, which is the case if thestandard chemical kinetics, and=2 in the fluctuation-
interaction potential is Debye-ltkel-like, as assumed in controlled theory. Analogously, in 23] we predicta=3
Refs.[10-12. However, the unscreened Coulomb potentialand$ for symmetric and asymmetric mobilities, respectively.
U(r)=—1/k has aninfinite interaction radius, and thus de- Before making estimates of additional critical exponents,
fines the asymptotics of the correlation functions at largdirst consider the kinetics of the pattern formation in the par-
distances. The approach to the asymptotic character is veticle spatial distribution.
slow, it has a diffusion-controlled character. Moreover, in the
asymmgtric case t_here is_ no m_echanism o_f smoothing.the B. Spatial reactant distributions
fluctuations of the immobile particle distribution at all. This _ _ o
is why the results of our second model of the kinetic problem Figure 2 shows the time development of the joint corre-
are far from trivial. lation functions(note the logarithmic scale on thxeaxis and
Lastly, curves 3 in Fig. 1 show a considerable differencethe same scale for immobile similar partickég). A key role
for the symmetric and asymmetric mobilities which is moreof the diffusion lengthé(t) =t is evident here: the charac-
pronounced than that in curves 2. However, due to a verjeristic relative distance’ at which no AB pairs exist
slow approach to their limiting values, it is not clear whether[ Y(r<¢',t)<<1] increases in time agt: ¢’ increases by an
and by how much the relevant critical exponents differ asorder of magnitude as time increasedtlo orders of mag-
t—oo. Arguments are given below that in the symmetric casenitude, &' = &(t).
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Irrespective of thex value, the correlation functions of fusion case for both noninteracting and interacting particles,
mobile particlesX,(rt), have a plateau at the same scalemobile B reactants remain randomly distributed within their
r<é&', and decrease rapidly to zero 1. (This comes domains, whereas immobilé reactants form compact
from the repulsion of similar particles at the relative dis- clusters—a kind of “raisins in dough(14,24.
tances which are short compared to the Onsager radius
the asymmetric case the correlation functions of similar im-

mobile particles have singularities at short where Assuming that the kinetics of a diffusion-controlled reac-
Xa(r,t) drops by several orders of magnitude in a narrowjon, is defined by the diffusion lengté(t), one should ex-
intervalr € (0,1). pect that, in line with results presented by curves 2 in Fig. 1
A comparison of these results with earlier findings forthe electrostatic interaction does not change the critical ex-
noninteracting particlef24] shows their remarkable similar- ponents of the reaction. However, it is demonstrated below
ity. The main difference lies in the depletion in the correla-that this isnot true for the asymmetric diffusion case. Figure
tion functions of similar mobile particles at short relative 3 shows how the effective interaction energy depends on the
distances caused by particle repulsion, whereas for neutrapatial reactant distribution. In the symmetric cdsg all
particles the correlation functions are finite es:0. For  energies are identicalJ(r,t)=Ug(r,t)=—U(r,t). For
noninteracting particles and symmetric diffusion such a becomparison the unscreened Coulomb potential, & also
havior of the correlation functions led to the conclusion thatplotted. In the asymmetric cagb) the potential for mobile
the pattern formatioroccurs in a form of alternatindomains B particles remains the same as shown in ¢aseand thus is
of similar particlesA or B, with linear size£(t) [1-7]. This  not shown here. The largest change takes place for immobile
reaction-induced reactant structure greatly differs from theA particles. However, since these particles are immobile they
basic assumption of standard chemical kinetics about welleannot affect the reaction kinetics, add(r,t) is also omit-
stirred and homogeneous reactant distribution. In the doted. The only essential potential energy remai(s,t).
main, the structure reaction occurs only at the boundaries of In the symmetric case both similaAA, BB) and dissim-
domains of particles of different type. In the asymmetric dif-milar (AB) particle pairs do not exist at short relative dis-

C. Interaction potentials
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tancesy <1, due to Coulomb repulsion and reaction, respec-  ,,
tively. This is why the induced charge is zero and the
effective potential energies coincide with the ones of the un-
screened Coulomb potential. In contrast, in the interval L5
1<r<{(t) the effective potentials are constant. This means
that no forces act on the particle$(r,t)=—dU(r,t)/
dr=~0. In other words, reactants inside domains of size
£(t) behave aseutral particles since the electrostatic forces
acting on any particle from other particles cancel each other. 05
This does not take place at the domain boundarieg(t),
where dissimilar particles begin to recombine and forces
f(r,t) are large. The relative motion of dissimilar particles 73 -
has a form of a drift in the field created by the opposite- log(t)
domain charge. This is why the potentialrat £(t) has very
simple asymptoticslJ(r,t)=—&,/r, where a scale param-
eteré, could be associated with the mean number of simila
particles in the domainé,=N=n(t)&(t)%. In the 1d case
characterized byr= 3, £, £(t)'2 i.e., the length scale is in
fact defined by the diffusion length but plays no significant
role due to its slow growth.

n(t)

1.0

FIG. 4. The accumulation kinetics for the symmetric case,
rDA=DB (solid curveg, and the asymmetric casB,=0 (dashed
curve (decadic logarithm

with Re, one obtains thak (t) DR £(t)%2 Keeping in
mind thatN=n(t)£(t), its substitution into Eq(2) in the
1d case gives us the critical exponent 3. In other words,
in the asymmetric case the reaction kinetics is accelerated as

A qualitatively different potential behavior is observed in compared tdoth the noninteracting particles and the sym-
the asymmetric casfFig. 2(b)]: immobile A particles do  metric case of interacting particles € ). This confirms our
coexist at the short relative distances, and the characteristfrevious results for the 8 case[14].
spatial structurdraisins in dough produces induced charge
already at these short relative distances. The potential E. 2d case
U(r,t) strongly changes its behavior—it reaches the asymp-
totic value ofU(r,t)=—¢&,/r already atr>1 (the Onsager
radius in usual coordinatesnstead of at the much larger
distance, which is the diffusion leng#{(t) observed for the
symmetric cas¢curves 3 in Fig. &)]. That is, the potential
U(r>1t) behaves like an unscreened one produced by g
superparticle with a chargeN placed at the coordinate ori-
gin.

It is convenient to use dimensional scale parameters. A
was mentioned above, ird3the effective radius for interact-
ing particlesR.¢, is the larger of the two: the contact radius
ro or the Onsager radiuR [22]. Usually R>r,, and the

D. Critical exponent for the asymmetric case

Let us compare now very briefly the main differences
between the d and A cases(the latter to be discussed in
detail elsewherd23]). The Al kinetics was studied until
t=10°, when the concentration decreases by four orders of
agnitude.

(i) The Debye theory predicts the classical critical expo-
nent,a=1. Our treatment of the unscreened Coulomb inter-
gction(analog of curves 2 in Fig.)yields a = 3, the same as
obtained earlier for noninteracting particles. Incorporation of
nonequilibrium screeningmany-particle effecjsinto the ef-
fective interaction potentials results in the splitting of the
latter determines the reaction kinetics. In out dase we set Kinetic curves,=a(t), for the symmetric and asymmetric

- : cases. In the former case the reaction asymptotics remains
ro=0, andR remains theonly length scale of the problem . .
the same as for neutral particles, whereas in the latter case

(from the point of view of standard chemical kinedicén- -
; : , we expect a larger value af=3/4. In all cases the approach
corporation of many-particle effects brings another scale pa:

rameter into the kinetics under study—the diffusion length ° the asymptotic values is very S.IOW' . . .
Lo . ; (i) The behavior of the correlation functions is essentially
&(t). As follows from curves 2 in Fig. 1, the long-time ki- .
netics is defined by the largest scale, which is n&{t) the_§ame as in d'. : . .
The 1d reaction asvmptotics witrau,=1 means not.onl (iii) The effective potentials remind us of those shown in
the relevant concentr;tio% decay Iawgtgoct‘”“ but alsoy Fig. 3, but with different asymptotics. In the symmetric case
the asymptotics of the reaction rate(t)ct 34 Eq.(2). The the scale parameted, coincides with the diffusion length,

reaction rateK(t) is the structural characteristic of the sys- whereas in the asymmetric cagg/(t) 0, since the con-

tem, since it is determined by the gradient of the CorreIationcemr{jltlon decays faster than in the symmetric case.

function Y(r,t) and thus should be asymptotically a simple
function of the characteristic lengths of the probldRand
&(t). Their only combination of length dimension i§(t) The accumulation kinetics was calculated for the follow-
«DRY% ¢(1)%2, ing parameters{=1, r,=0.1, andn(0)=0. Figure 4 dem-

In the asymmetric case a superparticle consisting of imenstrates that our microscopic kinetics differs considerably
mobile A particles should be characterized by another reacfrom the results of mesoscopic theof¥0—-12 predicting
tion radius,R.s=NR instead ofR (recall that the Onsager algebraic concentration growth(t)ot* with @= 2. In con-
radius is proportional to the product of particle chajges trast, our study shows that in the symmetric cagg in-
Combining the above-derived expression for the reaction ratereases only logarithmically over three orders of magnitude

F. Accumulation kinetics
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domain sizes increase a§ and their surface decreases
(where the reaction takes plac€oulomb repulsion of simi-

lar particles preventing the formation of their dense aggre-
gates is not completely equivalent to a hard-sphere model of
finite-size particles. In fact, if the domain size is fixed, a
permanent production of similar particles inside the domain
volume would lead to an infinite growth of the concentration
and thus to a decrease of the minimum distance between
particles. This is why the restriction of dense-aggregate for-
mation is related to the domasurface

A simple estimate of the number of particles inside a do-
main, N=n(t)£(t)¢, even assuming for the reactant concen-
tration n(t) = const, gives an important result which folllows
from the potential asymptotidd(r)=— &, /r. The scale pa-
rameter¢ in the 1d case coincides with the diffusion length
&(t), i.e. at larger the effective potential reveals a scaling
behavior U(r,t)(r/&(t)) L. In this case one naturally
should expect a change of the asymptotic reaction law as
compared to the case of both noninteracting particles and
particles with a short-range potential.

Note that under the algebraic concentration growth pre-
dicted by mesoscopic theory the parameigrat some time
would exceed the diffusion length and thus becamantrol
parameter determining the accumulation kinetics. This is
why the condition ¢&,=£&(t) is a crossover between
diffusion- and non-diffusion-controlled reactions. From this
condition comes the observed restriction of the concentration

(b) T
growth (see Fig. 4.
FIG. 5. The joint correlation function of dissimilar particles,
Y(r,t) (solid curvg, and that of similar particlesXs(r,t) (dot-
dashed curveand Xg(r,t) (dashed curve Curves 1-3 correspond
to the dimensionless times 4,0.(?, and 18, respectively(a) Sym-
metric caseP,=Dg. (b) Asymmetric caseD ,=0. Note that for
case(@) Xa(r,t)=Xg(r,t)=X(r,t), whereas for cas@), X,(r,t) is
plotted on a logarithmic scale.

VIl. DISCUSSION AND CONCLUSION

We compare in the conclusion the main results of the
mesoscopi¢10—12 and the present, microscopic formalism
for the diffusion-controlled A+B—0 reaction between
charged particles in thedlcase. The former theory claims
that the critical exponents in the concentration algebraic de-
in time. In the asymmetric casgt) reaches anaximumand  cay is the same for charged and neutral partighesyided
then decreases slowly. The former case reminds us of th@) similar particles AA, BB) repel each other, angi) the
2d case for neutral particleglogarithmic growth [21], pair interaction potential is not divergerie.g. like the
whereas the latter case is qualitatively similar to tllecBse  Debye- Hickel potential.

(the same concentration saturadiomhis behavior could be The microscopic theory generalizes this regulilid for
understood qualitatively assuming that similar-particle repulthe case of symmetric particle mobilitiefor the unscreened
sion is analogous to the finite size of particles due to which(divergen} Coulomb potential. Moreover, we have studied
similar particles cannot approach each other to within a disthe case of asymmetric mobilitie®{ =0, Dg>0) and pre-
tance less than some critical value. dicted reaction acceleration, i.e., the existence of a critical

This is supported by the behaviour of the correlation func-exponenta=3. We demonstrated that this peculiarity is a
tions (Fig. 5). Similarly to the concentration decd¥ig. 2 direct consequence of the specific spatial distribution of re-
the domain structure is characterized by the diffusion lengttactants studied by us in terms of the joint correlation func-
£. Att>1 the reactant concentration is higt{t)~1 and the tions for both similar and dissimilar reactants.
domain volume is densely filled by particles. This results in A large discrepancy between the two approaches is found
large induced charge. MobilB particles repel each other for the accumulation kinetics under a permanent particle
and do not exist at the relative distangesO0.1. If recently  source. Unlike the mesoscopic prediction of the infinite con-
createdB particles are produced closely to preexistiBg centration growtm(t)cct®, for point particles with the equi-
particles, they also repel each other. This results in the agibrium Debye-Hickel potential, we observe a much slower,
pearance of a local maximum in the correlation functions)ogarithmic growth—in the case of symmetric mobilities,
Xg, atr<0.1, well seen at=10°. For immobileA particles  and concentration quasisaturation for asymmetric mobilities.
such an effect does not take place—these particles forrfihis is a direct consequence of the fact that the use of a

dense clusters—Fig.(B). At high concentrations mobhil& model, equilibrium Debye-Htkel potential is not justified.
particles due to their repulsion drift to the domain boundariedn fact, the effective potential should be related to the spatial
at which reaction takes place. This is why a slow concentradistribution of reactants which makes it time dependent and

tion growth occurs mainly due t8B particle segregation  nonequilibrium.
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Our study[23] of the 2d case shows a very different pared to the 8 case[14], where numerical solution of the
situation: at long times both the particle concentration andelevant differential Eq(9) could be easily done. Numerical
the correlation functions reveateady-statdehaviour, prac- solution of ordinary differential equationd2) and (22) is
tically independent on the diffusion leng#{t). This could also trivial. The main problem arises due to the necessity of
be understood following our previous qualitative analysis: insolving nonlinear, partial differential EqgL3), (15) or (23),
2d the crossover conditioi;= £(t) cannot be realize¢as-  (24) with singular potentials.
suming that the behaviour of the correlation functions is de- To illustrate our method of their solution, consider the
fined by the diffusion length typical equations
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aj[g]gi—1+bi[g]gi-1—ci[glgi—hi(9)g; important that the exponent expy has the argument rap-
0 idly changing on the scalar and thus also changes rapidly
—gi/At=—gilAt, (A3)  as compared to the slowly varying functiopsand JU/dr .

where coefficients, , b;, andc; arise due to the approxima- This is why the integral

tion of 9j(r,t)/dr. These coefficients depend &H g,r,t],
and thus are functionals of Solution of Eq(A1) is obtained f jexpU)dr=wi—wj_1 (A5)
by means of quasi-linearizatiorE:g? is used as initial
guess, EqA1) is solved in the standard way, then we sub-¢oyld be estimated in the intervak[r;_;,r;] as
stituteg;=g;, and the iterative process continues until con-
vergence is achieved within a required tolerance. In this way [ _
we avoid a problem of the nonlinearity of the kinetic equa- leXp(U)dr“Ji—1/2/(¢9U/¢9r)i—1/2f expU)du
tions.

The approximation ofj(r,t)/dr is less trivial. Use of =Ji—12/(9U1r); _ 1 (eXp(U;) —exp(U;_1))
finite differences for derivatives fails for the singular poten- (exp(U;) —exg(U;_1))
tials since negative coefficiengs or b; become so large that ~ii_1 ! i-1
this cannot be compensated for by any reduction of the time (Ui—Ui-)
increment,At. We suggested the procedure where always
a;,b;,c;=0. This allows to perform calculations for suffi-
ciently largeAt values. This is of key importance for deter-
mining the asymptotict(— o) kinetic law.

The procedure is as follows. To obtain a conservative W/ Ar

: : : . ) i

difference scher_ne, the !ntegral in the interval Jic1=(GiexXp¥) ~0i— 1) oo (A7)
e[ri_12.Fi+1] With ri.10= (i =1/2)Ar reads expWi)—1

Ar. (AB)

Now returning from the intermediate functiom to g
sought for, one obtains the basic relation for the difference
scheme coefficients

whereV;=U;—U;_;. As it should be, the flux density de-
f (djlor)dr=ji 1= Ji-1s- (A4)  pends not on the very potentia) but on its derivative
W,=Ar(dUldr) at r=r;_4». The expression derived is
In the equation for the flux density=4ag/dr+(dU/dr)g  also used in determining the reaction rkig), Eq.(12), and
substitutiong=exp(—U)w gives j=(dw/dr)exp(=U). It is  for the boundary conditions imposed on E#7).
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