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The effect of nonequilibrium charge screening in the kinetics of the one-dimensional, diffusion-controlled
A1B→0 reaction between charged reactants in solids and liquids is studied. The incorrectness of the static,
Debye-Hückel theory is shown. Our microscopic formalism is based on the Kirkwood superposition approxi-
mation for three-particle densities and the self-consistent treatment of the electrostatic interactions defined by
the nonuniform spatial distribution of similar and dissimilar reactants treated in terms of the relevant joint
correlation functions. Special attention is paid to the pattern formation due to a reaction-induced non-
Poissonian fluctuation spectrum of reactant densities. This reflects a formation of loose domains containing
similar reactants only. The effect of asymmetry in reactant mobilities (DA50, DB.0) contrasting the tradi-
tional symmetric case, i.e., equal diffusion coefficients (DA5DB), is studied. In the asymmetric case concen-
tration decay is predicted to beaccelerated, n(t)}t2a, a5

1
3, as compared to the well-established critical

exponent for fluctuation-controlled kinetics in the symmetric case,a5
1
4, and/or the prediction of the standard

chemical kinetics,a5
1
2. Results for the concentration decay and growth under permanent particle source are

compared with results of the mesoscopic theory.@S1063-651X~96!08112-3#

PACS number~s!: 05.40.1j, 05.70.Ln, 64.60.Cn, 82.20.Mj

I. INTRODUCTION

Bimolecular A1B→0 reactions are quite common in
condensed matter physics and physical chemistry; e.g., they
occur between primary radiation defects of two types,A and
B, which recombine when they approach each other during
diffusion walks to within some critical distancer 0. These
particles~Frenkel defects in solids and/or electrons and radi-
cals in liquids! could be neutral or charged. Empty anion
vacanciesVa and complementary interstitial anionsX2 ~the
so-calledI centers!, as well asF centers (Va which trapped
an electron! and X0 interstitial atoms ~called H centers!
could serve as examples of charged or neutral defects in
irradiated alkali-metal halide crystals, MeX.

Many-particle effects caused by the spatial fluctuations of
the reactant densities have been intensively studied in recent
years in the kinetics of bimolecular chemical reactions, in-
cluding the above-mentionedA1B→0 reaction. A number
of quite different techniques and methods were developed
for this purpose, including direct computer simulations@1#, a
mesoscopic approach@2,3#, and scaling@4#, as well as mi-
croscopic theory@5–7# ~see also references in@8# and review
articles @6,7#!. These studies clearly demonstrated that the
kinetic laws established long ago in standard chemical kinet-
ics @9# could be violated, usually at high particle concentra-
tions or long reaction times. In particular, the asymptotic
(t→`) concentration decay rate turns out to be
n(t)}t2d/4, whered<4 is the spatial dimension; i.e., it is
slower than the one in standard chemical kinetics,a5 1

2 and
1 and 1 ford51, 2, and 3, respectively. This effect, called
sometimes abnormal kinetics—abnormal from the standard
point of view—is directly related to the reaction-induced
nonuniform reactant distribution which is in contrast to the

main prediction of chemical kinetics that all reactants are
well stirred, and the reaction volume is homogeneous. As a
result, modern chemical kinetics uses the language ofcritical
exponents, correlation lengths, etc.,similar to the physics of
critical phenomena.

Presently almost all studies of fluctuation-controlled ef-
fects deal with neutral, noninteracting particles, thus ne-
glecting effects caused by their interaction. Rare exceptions
are to be found in Refs.@5,10–15#. In this paper, we study
many-particle effects between charged reactants, and show
that the generalization of the formalism developed earlier for
neutral particles, to the case of charged particles is not al-
ways trivial, and requires a careful restatement of the prob-
lem.

Two basic approaches to the fluctuation-controlled kinet-
ics are widely used nowadays: they are known as mesoscopic
@10–12# and microscopic @5,6,13–15# approaches. The
former does not treat the reaction event at all and focuses on
the calculation of the reactionasymptoticsat long reaction
times,t→`. As stated above, the critical exponenta in the
algebraic decay law for the reactant concentration depends
on the space dimensiond only. It is defined entirely by the
large-scale reactant density fluctuations characterized by the
length parameter called thediffusion length, j(t)5ADt,
whereD5DA1DB is the coefficient of the relative diffu-
sion. At long reaction times,j(t) exceeds any final length
parameter in the reaction system~e.g., the reaction radius
r 0 or radius of the effective reaction,Reff , between interact-
ing particles! and governs the kinetics.

The mesoscopic studies@10–12# are a good illustration of
what was stated above. The authors, following a pioneering
approach@2#, reduced the kinetic problem to a study of a
single nonlinear stochastic equation of the following kind:
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whereq(r ,t)5CA(r ,t)2CB(r ,t) is a local difference in re-
actant densities~particle concentrations!, w a parameter
characterizing particle interaction (w;D/kBT), and i a sto-
chastic particle flux in thed-dimensional volume~in the case
of particle production!. When deriving Eq.~1!, the macro-
scopic concentrations were assumed to be equal,
nA5nB5n(t), these concentrations are average values of the
local concentrations,nn5Cn(r ,t) andn5A andB. Proceed-
ing in this way, the time development of the macroscopic
concentrationn(t) could be expressed through the mean
value of the stochastic variableq(r ,t) and thus the critical
exponents could be calculated for both cases—the concentra-
tion decay after pulsed particle creation (i50), and the ki-
netics under the permanent particle source.

In order to solve the kinetic problem analytically, addi-
tional symmetry assumptions are imposed on the diffusion
coefficients DA5DB and the interaction potentials
Ulm(r )56elemu(r /rm), whereu(x) is some function and
uenu5e). Moreover,u(x) is assumed to be integrable, and
characterized by a finite action radiusrm . The two symmetry
conditions allow us to reduce the number of nonlinear sto-
chastic equations to be solved to one, whereas due to the
potential integrability condition the equation derived has no
nonlocal terms and permits us to characterize particle inter-
action by a single parameterw.

However, these mathematical assumptions are often in
conflict with the actualphysicalproblem. In particular, the
mobility of the above-mentioned interstitial atoms typically
exceeds that of vacancies by 10–15 orders of magnitude
@16#. Moreover, in the case of the elastic interaction typical
for neutral particles, caused by the overlap of the lattice de-
formation fields around two close defects,uUAA(r )u
ÞuUBB(r )uÞuUAB(r )u. The interaction is attractive for pairs
of bothsimilar (AA,BB) and dissimilar (AB) particles. This
means that the parameterw in Eq. ~1! is negative. As noted
in @10#, in this case a singular solution occurs due to a col-
lapse in the system of similar particles. This demonstrates
clearly that the mesoscopic approach fails in the cases where
small-scale density fluctuations are important, and thus one
can no longer avoid the detailed treatment of the particle
interactions.

The above-mentioned collapse indeed manifests itself ex-
perimentally in the form of aggregates~colloids! of similar
radiation defects@17,18#. It is clear that the critical exponent
itself is not well suited for describing aggregation processes:
under permanent irradiation defect concentrations saturate at
some time,n(t→`)5ns5const. This means that the result
of the relevant discrete-lattice treatment of defects~taking
into account their finite sizes! is trivial, a→0. On the other
hand, it is known experimentally that the aggregation process
consists of many subsequent stages—the formation of defect
pairs ~dimers!, trimers, etc. is observed as time increases.
That is,spatiostructuralproperties, such as the time devel-
opment of a single defect concentration, that of dimers, etc.,
the mean size of aggregates and the number of particles in-
side it become of great importance. Moreover, these proper-
ties are closely related to the time development of the char-

acteristic correlation functions defining the relative spatial
distribution of particles and the relevantpattern formation
kinetics. We demonstrate below that the same is true for the
Coulomb interaction—a better understanding of peculiarities
in the kinetics due to many-particle effects can be achieved
through the detailed treatment of the time development of the
spatial reactant distribution.

The particle aggregation problem does not arise in the
mesoscopic theory forw.0 ~similar particle repulsion!.
Good example of such a situation is a screened Coulomb
interaction ~the Debye-Hu¨ckel potential! which guarantees
potential symmetry and integrability@10#. In this paper, we
study in detail the effects ofdynamicalCoulomb potential
screening in theA1B→0 reaction. In the following we
show that the additional assumption of the mesoscopic
theory about potential integrability in fact isnot fulfilled.
Depending on the particular mobility case~symmetric and/or
asymmetric! the asymptotic behavior of the reactant concen-
trations can be either similar to a system of noninteracting
particles, or quite different~which is a direct consequence of
the infinite-radius potential!.

Since the case ofd53 has been analyzed by us in Ref.
@14#, in the present paper we study the reaction peculiarities
for low dimensions, focusing ond51 ~reaction in capillar-
ies!. It will be shown that in this case the reaction radius
r 0 could be set to zero, which allows us to eliminate this
parameter and to compare directly our results with the me-
soscopic theory@10–12#. We also study the particleaccumu-
lation kinetics where the mesoscopic theory predicts devia-
tions from reaction kinetics known for neutral particles.

The paper is organized as follows. In Sec. II a set of
nonlinear kinetic equations for arbitrary space dimensiond is
presented, and its simplification for low dimensions is dis-
cussed. The screened interaction potentials are derived in
Sec. III, in the spirit of the Debye-Hu¨ckel approach in statis-
tical physics of dense Coulomb systems. The key point here
is that our effective potentials aredynamical, and directly
related to the time development of the spatial reactant distri-
bution. The reaction equations obtained are rewritten in di-
mensionless form in Sec. IV. Particle accumulation kinetics
is studied in Sec. V. Section VI presents an analysis of the
main results obtained, and their comparison with the mesos-
copic theory. The Appendix summarizes important details of
our difference scheme used for the nontrivial numerical so-
lution of nonlinear kinetic equations with singular potentials.

II. KINETIC EQUATIONS

The basic equations of our microscopic theory of interact-
ing particles have been derived and discussed recently for
d53 for the cases of Coulomb@14# and elastic@U(r )
}1/r 3# @15# interactions. Now, based on results of a review
article @7#, we generalize these equations for an arbitrary
space dimensiond. This helps us to show peculiarities in the
transition to low dimensions.

Use of the Kirkwood superposion approximation@19# for
decoupling the infinite hierarchy of equations for the corre-
lation functions leads to a minimum set of variables describ-
ing the fluctuation-controlled reaction kinetics. These are the
macroscopic concentrationsnA5nB5n(t), and three kinds
of joint correlation functions@6,7#—two for similar particles,
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Xn(r ,t) andn5A andB, and a third one for dissimilar par-
ticles,Y(r ,t), wherer is the relative distance between two
particles. These functions describe a spatial distribution of
pairsAA, BB, andAB, respectively, and are analogous to the
radial distribution function in statistical physics of dense
gases and liquids@20#. The physical meaning of these corre-
lation functions is the following @7,14#: CA

(a)(r ,t)
5n(t)XA(r ,t) andCB

(a)(r ,t)5n(t)Y(r ,t) are mean densities
of particlesA and B, respectively, at the relative distance
r , provided that a probe particleA is in the coordinate origin.
Introducing for simplicity a functionX(r ,t)5„XA(r ,t)
1XB(r ,t)…/2 the basic set of kinetic equations reads:

dn~ t !

dt
52K~ t !n2~ t !, K~ t !5gdr 0

d21u j ~r 0 ,t !u, ~2!

]Y~r ,t !/]t5“• j ~r ,t !22n~ t !K~ t !Y~r ,t !Jd@X#, ~3!

j ~r ,t !5~DA1DB!$“Y~r ,t !1b“UAB8 ~r ,t !Y~r ,t !%, ~4!

]Xn~r ,t !/]t5“• j n~r ,t !22n~ t !K~ t !Xn~r ,t !Jd@Y#, ~5!

j n~r ,t !52Dn$“Xn~r ,t !1b“Unn8 ~r ,t !Xn~r ,t !%. ~6!

In Eqs. ~2!–~6! the black-sphere recombination model is
assumed implicitly: anyAB pair recombines instantly when
two reactants during their diffusive walks approach each
other to within some critical distancer 0 @6,7#. This fact is
incorporated into the~Smoluchowski! boundary condition
for the correlation function of dissimilar particles;
Y(r<r 0 ,t)50 in Eq. ~3!. This correlation function defines
the quantity of primary importance—thereaction rate K(t)
which is a flux of particles over the recombination sphere’s
surface (gd52, 2p, and 4p for d51, 2, 3, respectively!.
For a finiter 0 the reaction rate reads

K~ t !5gdr 0
d21]Y~r ,t !/]r ur5r0

.

The nonlinear terms in Eqs.~3! and~5! containing the func-
tionals Jd@Z# arise directly from the Kirkwood approxima-
tion @19# ~see@6,7,14#!. Their expressions ford51, 2, and 3
are given in Ref.@7#. In particular,

J1@Z#5„Z~r1r 0 ,t !1Z~ ur2r 0u,t !…/221. ~7!

Expressions for the flux densitiesj ~r,t! and j n~r,t!
(b51/kBT) are also nonlinear, since the effective potential
energiesUlm8 (r ,t) receive contributions of both direct (lm
pair! and indirect lateral particle interactions through sur-
rounding particles. The technique for their calculation in the
case of a short-range potential has been discussed in Ref.
@15#, and that for the Coulomb potentials in Ref.@14#.

Low-dimensional (d51 and 2! systems with Coulomb
interaction reveal a peculiarity which allows us to reduce the
number of independent variables and to simplify the kinetic
equations. That is, we can perform the limiting transition
r 0→0, retaining the finite reaction rate. Physically this
means that the reaction rate is governed by the effective ra-
dius. This radius is the largest one of the scale lengths in the
system. For the Coulomb systems such a scale is called the
Onsager radius, R5e2/«kBT @14#. This is a distance at

which the thermal energy equals the attraction energy; when
approaching to withinR two reactants cannot separate, and
thus they inevitably recombine. UsuallyR@r 0 and thusR
determines the reaction rate. Neglecting many-particle ef-
fects, the latter has a very simple form:K54pDReff @7,9#.
In the limiting case ofr 0→0 the functionalJd@Z# in Eqs.~3!
and ~5! is greatly simplified,

Jd@Z#5Z~r ,t !21.

This limiting transition is also very useful for the study of
accumulation kinetics~Sec. V!.

III. EFFECTIVE COULOMB INTERACTION:
DYNAMICAL CHARGE SCREENING

Consider now the calculation of the particle electrostatic
interactions in low dimensions taking place on a surface
(d52, motion on thexy plane! or in capillaries (d51, mo-
tion along thex axis!. Rewrite the Poisson equation

nf~x,y,z!52
4p

«
r~x,y,z! ~8!

in the integral form

f~r !5E r~r 8!

«ur2r 8u
dxdydz. ~9!

Following the well-known Debye-Hu¨ckel approach@20#
let us place a probe chargeen in the coordinate origin, which
induces the excess charge densityrn(r ,t), and calculate the
relevant effective potentialfn(r ,t). In d53, due to a spheri-
cal symmetry of the induced charge distribution this problem
has a simple solution@20#. The differential form of the Pois-
son equation is very convenient for the numerical calcula-
tions @14#. In d52 one is interested in the potential on the
surface,Fn(r ,t) with r5Ax21y2. The obvious ansatz here
is a substitution for the induced charge density
rn(x,y,z,t)5sn(r ,t)d(z), where sn(r ,t) is a two-
dimensional charge density at the distancer from the coor-
dinate origin, andd is the Dirac delta function.

More delicate is the situation ind51, where one needs to
find the potential along thex axis, Fn(r ,t) where r5uxu.
The trivial treatment of the 1d string with
rn(x,y,z,t)5sn(r ,t)d(y)d(z), where sn(r ,t) is the 1d
charge density, fails, since the potential of a charged string is
singular ~logarithmically divergent! on this string. That is,
the cased51 should be considered as a quasi-1d motion
where the particle coordinates have some distribution along
the y andz axes~a capillary of the finite radiusr c) but the
recombination is governed by thex coordinate. In a one-
parameter model, one obtains

Fn~r ,t !5
en

«r
1E sn~ uz8u,t !

«A~r2z8!21r c
2
dz8. ~10!

Equation ~10! contains the potential of a probe charge
en placed in the coordinate origin, and assumes that the in-
duced charge is distributed symmetrically with respect to the
coordinate origin. In other words, Eq.~10! describes the case
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where the screening particles are distributed over the capil-
lary surface with a radiusr c . For the self-consistent calcu-
lation of the induced potential, Eq.~10! should be extended
by the effective density of induced charges. For this purpose
the physical meaning of the correlation function should be
used~Sec. II!: the mean charge densities ofA andB particles
are nothing but

eACA
~a!~r ,t !5eAn~ t !XA~r ,t !

and

eBCB
~a!~r ,t !5eBn~ t !Y~r ,t !,

respectively, provided that a probe particleA is in the coor-
dinate origin. Sincee5eA52eB , one obtains a charge den-
sity induced by a particle of typen

sn~r ,t !5enn~ t !„Xn~r ,t !2Y~r ,t !…. ~11!

The effective potential interaction energies in Eqs.~4! and
~6! are

Unn8 ~r ,t !5enFn~r ,t !

and

UAB8 ~r ,t !52„UAA8 ~r ,t !1UBB8 ~r ,t !…/2,

respectively. That is, the spatial distribution ofA andB par-
ticles described in terms of the joint correlation functions
determines the spatial charge distribution and the relevant
potentials~10! in which these charges are moving. In other
words, we havea self-consistenttreatment of particle motion
and the potentials where they move.

IV. DIMENSIONLESS KINETIC EQUATIONS

After eliminating the reaction radiusr 0 two ~one! length
scale remains in the kinetic problem: in the 1d case the cap-
illar radius r c and the Onsager radiusR, or, in the 2d case,
only the Onsager radiusR. It is convenient to introduce the
dimensionless parametersr 85r /R, r c85r c /R, t85Dt/R2,
Dn852Dn /D, n8(t8)5gdr 0

dn(t), Un(r 8,t8)5bUnn8 (r ,t), and
U(r 8,t8)5bUAB8 (r ,t).

In variables~primes are omitted below! our kinetic equa-
tions read

dn~ t !

dt
52K~ t !n2~ t !, K~ t !5 limr→0 j ~r ,t !, ~12!

]Y~r ,t !/]t5] j ~r ,t !/]r22n~ t !K~ t !Y~r ,t !@X~r ,t !21#,
~13!

with

j ~r ,t !5]Y~r ,t !/]r1]U~r ,t !/]rY~r ,t !, ~14!

and

]Xn~r ,t !/]t5] j n~r ,t !/]r22n~ t !K~ t !Xn~r ,t !@Y~r ,t !21#,
~15!

with

j n~r ,t !5Dn$]Xn~r ,t !/]r1]Un~r ,t !/]rXn~r ,t !%. ~16!

The Smoluchowski boundary condition for Eq.~13! is

Y~0,t !50. ~17!

The boundary condition for similar particles,

lim
r→0

j n~r ,t !50, ~18!

means thatAA and BB particle pairs do not interact, but
reflect each other upon particle collisions~we neglect the
size of the particles!.

Due to the short-range nature of the spatial particle corre-
lations and the normalization condition, one obtains

lim
r→`

Y~r ,t !,Xn~r ,t !51. ~19!

We assume a random initial distribution of reactants,

Xn~r ,0!5Y~r ,0!51.

The set of Eqs.~12!, ~13!, and~15! has to be extended by
the effective interaction potentials. In 1d these potentials are

Un~r ,t !51/r1n~ t !E
0

`

G~r ,r 8;r c!@Xn~r 8,t !2Y~r 8,t !#dr8,

~20!

where

G~r ,r 8;r c!5$@~r2r 8!21r c
2#21/21@~r1r 8!21r c

2#21/2%/2.
~21!

Therefore, the recombination kinetics is defined by the
following dimensionless parameters:~i! the initial particle
concentrationn(t50)5n(0), ~ii ! thepartial diffusion coef-
ficient k5DA /D @note that dimensionless diffusion coeffi-
cients are related by the conditionDA1DB52, i.e.
DA52k, DB52(12k)#, and~iii ! the capillary radiusr c ~in
the 1d case!.

As is well known, the asymptotic decay law does not
depend on the initial particle concentration. The latter defines
only the critical time when such an asymptotics occurs: the
largern(0), theshorter a transient time. In contrast, the as-
ymptotic law could depend on the relative mobility param-
eter k since a difference in particle diffusion coefficients
leads to different spatial distributions,XA(r ,t)ÞXB(r ,t).
The same is true for the particle screening, Eq.~21!.

V. PARTICLE PRODUCTION

Let us now incorporate into the kinetic equations the ef-
fect of permanent particle production with the ratep per
volume unit and time. An example is a production of Frenkel
defects in solids under irradiation@16#. We neglect the initial
spatial correlation withingeminate ABpairs of dissimilar
particles created simultaneously~high energy irradiation!. As
is known @21#, the main problem of the accumulation kinet-
ics arises in the calculation of the volume fraction occupied
by the recombination spheres aroundA particles. SomeB
particle newly created inside this prohibited volume
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(v5gdr 0
d/d) recombines immediately with anA particle,

which results in the reduction of the number ofA particles by
one, and an unchanged number ofB particles ~and vice
versa, if B is created outside this volume!. However, the
limiting transition in 1d r0→0 lifts this problem, since the
accumulation kinetics turns out to be purely diffusion con-
trolled. The relevant kinetic equations are also simplified.
Using results of Ref.@21# we write the relevant kinetic equa-
tions in the following form:

dn~ t !

dt
5z2K~ t !n2~ t !, ~22!

]Y~r ,t !/]t5] j ~r ,t !/]r12z@12Y~r ,t !#/n~ t !

22n~ t !K~ t !Y~r ,t !@X~r ,t !21#, ~23!

]Xn~r ,t !/]t5] j n~r ,t !/]r12z@12Xn~r ,t !#/n~ t !

22n~ t !K~ t !Xn~r ,t !@Y~r ,t !21#. ~24!

Equations~22!–~24! contain a dimensionless parameter
z5gdpR

d12/D characterizing the efficiency of particle pro-
duction. This parameter could be presented in the form of a
ratio z5tD /tp , where tD5R2/D is the time for particle
diffusion over the recombination sphere of radiusR, and
tp;1/pRd is the time between two sequential events of par-
ticle creation within a sphere of the same radiusR. That is,
small z values correspond to the situation when diffusion
dominates over the particle creation, and vice versa for large
z. Since no particles exist before the particle source is
switched on, the initial condition isn(0)50, i.e., the initial
concentration, is no longer one of the parameters of the
theory.

VI. RESULTS

A. Concentration decay

The kinetics of the concentration decay has been calcu-
lated for high initial concentrationn(0)51 and long dimen-
sionless timet5108. At this moment the particle concentra-
tion drops by three orders of magnitude.~Further
concentration decay could hardly be measured experimen-
tally.! To make results more obvious, in Fig. 1 we plotted not
the very kinetic curves,n5n(t), but their slopes on a loga-
rithmic scale which defines the so-calledcurrent critical ex-
ponents

a~ t !52
dlnn~ t !

dlnt
. ~25!

To demonstrate the importance of the effect ofnon-
equilibrium charge screening neglected in many previous
studies, we present results for three different approximations
as follows.

~i! The traditional, Debye-like treatment of the reaction
kinetics with unscreened Coulomb interaction@22#. Many-
particle effects are neglected, and the kinetic equations arise
due to linearization of Eqs.~12!–~16! for the correlation
functions. As a result, the equation for the correlation func-
tion of similar particlesXn(r ,t) no longer affects the kinet-

ics. In fact, the latter is defined entirely by the joint correla-
tion function of dissimilar particles obeying the simple
kinetic equation

]Y~r ,t !

]t
5

]

]r H ]

]r
Y~r ,t !1Y~r ,t !

]

]r
U~r !J , ~26!

where U(r )521/r is the unscreened Coulomb potential.
After linearization of a set of kinetic equations, their solution
no longer depends on the partial diffusion coefficientk ~solid
and dashed lines in Fig. 1!. At long times the solution of Eq.
~26! is practically defined by the diffusion lengthj5At, i.e.
the decay kinetics obeys the classical algebraic law,n(t)
}t2a, a 5 1

2.
~ii ! The complete set of Eqs.~12!–~16! incorporating

many-particle effects~via nonlinear terms! but with linear-
ized potentials,UA(r ,t)5UB(r ,t)52U(r ,t)51/r . In this
intermediate approximation the kinetics under study begins
to depend on the mobility parameterk but asymptotically it
still follows the kinetics known for neutral, noninteracting
particles withU(r )50.

~iii ! The complete set of kinetic equations is combined
with nonequilibrium treatment of charge screening making
now no linearization. The dimensionless capillary radius was
chosen asr c50.1. ~Its reduction to the value of 0.01 results
in a small, logarithmic correction which does not affect the
critical exponent.! Curve 1 in Fig. 1 shows that in the time
interval considered the critical exponent rather rapidly ap-
proaches its limiting classical value of12. Curves 2, incorpo-
rating many-particle effects, approach theirquasi-steady-
state after nearly the same time, but their further approach
from above to another asymptote witha5 1

4 has a logarith-
mically slow character. For example, for the symmetrical
mobilities a(t5108)50.264. In the asymmetric mobility
case the deviation from the asymptote is larger,
a(t5108)50.280. Such a behavior results from the long-
range nature of the Coulomb interaction between particles.

FIG. 1. The critical exponent characterizing the algebraic con-
centration decay, Eq.~25!, as a function of dimensionless reaction
time ~decadic logarithm!. Solid curves—symmetric reactant mobili-
ties,DA5DB ; dashed curves—asymmetric mobilities,DA50. Dot-
ted lines show the two expected asymptotes:a5

1
4 and

1
3. Curves 1

correspond to the Debye theory, curves 2 to a solution of the kinetic
Eqs. ~12!–~16! incorporating spatial reactant correlations but ne-
glecting dynamical charge screening, and curves 3 to the case when
all screening effects are incorporated.
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Strictly speaking, thea5 1
4 law of the fluctuation-controlled

kinetics ind51 is proved only for noninteracting particles
@1–8#. It was generalized for interacting particlesprovided
that their interaction potential is short-range and does not
lead to the similar-particle collapse@10–12#. In fact, this law
was proved for the case when the largest length parameter in
the problem is the diffusion length, which is the case if the
interaction potential is Debye-Hu¨ckel-like, as assumed in
Refs. @10–12#. However, the unscreened Coulomb potential
U(r )521/r has aninfinite interaction radius, and thus de-
fines the asymptotics of the correlation functions at large
distances. The approach to the asymptotic character is very
slow, it has a diffusion-controlled character. Moreover, in the
asymmetric case there is no mechanism of smoothing the
fluctuations of the immobile particle distribution at all. This
is why the results of our second model of the kinetic problem
are far from trivial.

Lastly, curves 3 in Fig. 1 show a considerable difference
for the symmetric and asymmetric mobilities which is more
pronounced than that in curves 2. However, due to a very
slow approach to their limiting values, it is not clear whether
and by how much the relevant critical exponents differ as
t→`. Arguments are given below that in the symmetric case

a5 1
4 ~as for non-interacting particles!, whereas for asymmet-

ric mobilities the critical exponent islarger and the reaction
occurs respectively faster,a5 1

3. Note that a similarreaction
accelerationbetween charged particles with asymmetric mo-
bilities was predicted earlier in the 3d case@14#. We found
there thata5 5

4, to be compared witha51 known in the
standard chemical kinetics, anda5 3

4 in the fluctuation-
controlled theory. Analogously, in 2d@23# we predicta5 1

2

and 3
4 for symmetric and asymmetric mobilities, respectively.

Before making estimates of additional critical exponents,
first consider the kinetics of the pattern formation in the par-
ticle spatial distribution.

B. Spatial reactant distributions

Figure 2 shows the time development of the joint corre-
lation functions~note the logarithmic scale on thex axis and
the same scale for immobile similar particlesXA). A key role
of the diffusion lengthj(t)5At is evident here: the charac-
teristic relative distancej8 at which no AB pairs exist
@Y(r,j8,t)!1# increases in time asAt: j8 increases by an
order of magnitude as time increased bytwo orders of mag-
nitude,j85j(t).

FIG. 2. The joint correlation function of dis-
similar particles,Y(r ,t) ~solid curve!, and that of
similar particles,XA(r ,t) ~dot-dashed curve! and
XB(r ,t) ~dashed curve!. Curves 1–3 correspond
to the dimensionless times 104, 106, and 108, re-
spectively. ~a! Symmetric mobility case,
DA5DB . ~b! Asymmetric case,DA50. Note
that in case~a! XA(r ,t)5XB(r ,t)5X(r ,t); in
case~b! XA(r ,t) is plotted on a logarithmic scale.
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Irrespective of thek value, the correlation functions of
mobile particlesXn(rt ), have a plateau at the same scale
r,j8, and decrease rapidly to zero atr,1. ~This comes
from the repulsion of similar particles at the relative dis-
tances which are short compared to the Onsager radius!. In
the asymmetric case the correlation functions of similar im-
mobile particles have singularities at shortr , where
XA(r ,t) drops by several orders of magnitude in a narrow
interval rP(0,1).

A comparison of these results with earlier findings for
noninteracting particles@24# shows their remarkable similar-
ity. The main difference lies in the depletion in the correla-
tion functions of similar mobile particles at short relative
distances caused by particle repulsion, whereas for neutral
particles the correlation functions are finite asr→0. For
noninteracting particles and symmetric diffusion such a be-
havior of the correlation functions led to the conclusion that
thepattern formationoccurs in a form of alternatingdomains
of similar particles,A or B, with linear sizej(t) @1–7#. This
reaction-induced reactant structure greatly differs from the
basic assumption of standard chemical kinetics about well-
stirred and homogeneous reactant distribution. In the do-
main, the structure reaction occurs only at the boundaries of
domains of particles of different type. In the asymmetric dif-

fusion case for both noninteracting and interacting particles,
mobileB reactants remain randomly distributed within their
domains, whereas immobileA reactants form compact
clusters—a kind of ‘‘raisins in dough’’@14,24#.

C. Interaction potentials

Assuming that the kinetics of a diffusion-controlled reac-
tion is defined by the diffusion lengthj(t), one should ex-
pect that, in line with results presented by curves 2 in Fig. 1
the electrostatic interaction does not change the critical ex-
ponents of the reaction. However, it is demonstrated below
that this isnot true for the asymmetric diffusion case. Figure
3 shows how the effective interaction energy depends on the
spatial reactant distribution. In the symmetric case~a! all
energies are identical,UA(r ,t)5UB(r ,t)52U(r ,t). For
comparison the unscreened Coulomb potential, 1/r , is also
plotted. In the asymmetric case~b! the potential for mobile
B particles remains the same as shown in case~a!, and thus is
not shown here. The largest change takes place for immobile
A particles. However, since these particles are immobile they
cannot affect the reaction kinetics, andUA(r ,t) is also omit-
ted. The only essential potential energy remainsU(r ,t).

In the symmetric case both similar (AA, BB) and dissim-
milar (AB) particle pairs do not exist at short relative dis-

FIG. 3. Calculated self-consistent interaction
energies as a function of the distancer . Solid
curves 1–3 correspond to the reaction times
104, 106, and 108, respectively. The dashed curve
shows the unscreened potential,U(r )51/r . ~a!
Symmetric case,DA5DB . Potential 2U(r ,t)
5UA(r ,t)5UB(r ,t). ~b! Asymmetric case,
DA50. The potential2U(r ,t) is plotted.
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tances,r,1, due to Coulomb repulsion and reaction, respec-
tively. This is why the induced charge is zero and the
effective potential energies coincide with the ones of the un-
screened Coulomb potential. In contrast, in the interval
1,r,j(t) the effective potentials are constant. This means
that no forces act on the particles,f (r ,t)52]U(r ,t)/
]r'0. In other words, reactants inside domains of size
j(t) behave asneutralparticles since the electrostatic forces
acting on any particle from other particles cancel each other.
This does not take place at the domain boundariesr5j(t),
where dissimilar particles begin to recombine and forces
f (r ,t) are large. The relative motion of dissimilar particles
has a form of a drift in the field created by the opposite-
domain charge. This is why the potential atr.j(t) has very
simple asymptotics,U(r ,t)52jU /r , where a scale param-
eterjU could be associated with the mean number of similar
particles in the domain,jU5N5n(t)j(t)d. In the 1d case
characterized bya5 1

4, jU}j(t)1/2, i.e., the length scale is in
fact defined by the diffusion length but plays no significant
role due to its slow growth.

D. Critical exponent for the asymmetric case

A qualitatively different potential behavior is observed in
the asymmetric case@Fig. 2~b!#: immobile A particles do
coexist at the short relative distances, and the characteristic
spatial structure~raisins in dough! produces induced charge
already at these short relative distances. The potential
U(r ,t) strongly changes its behavior—it reaches the asymp-
totic value ofU(r ,t)52jU /r already atr.1 ~the Onsager
radius in usual coordinates! instead of at the much larger
distance, which is the diffusion lengthj(t) observed for the
symmetric case@curves 3 in Fig. 3~b!#. That is, the potential
U(r.1,t) behaves like an unscreened one produced by a
superparticle with a chargeeN placed at the coordinate ori-
gin.

It is convenient to use dimensional scale parameters. As
was mentioned above, in 3d the effective radius for interact-
ing particles,Reff , is the larger of the two: the contact radius
r 0 or the Onsager radiusR @22#. Usually R@r 0, and the
latter determines the reaction kinetics. In our 1d case we set
r 050, andR remains theonly length scale of the problem
~from the point of view of standard chemical kinetics!. In-
corporation of many-particle effects brings another scale pa-
rameter into the kinetics under study–the diffusion length
j(t). As follows from curves 2 in Fig. 1, the long-time ki-
netics is defined by the largest scale, which is nowj(t).

The 1d reaction asymptotics witha5 1
4 means not only

the relevant concentration decay law,n(t)}t21/4, but also
the asymptotics of the reaction rate,K(t)}t23/4, Eq. ~2!. The
reaction rateK(t) is the structural characteristic of the sys-
tem, since it is determined by the gradient of the correlation
functionY(r ,t) and thus should be asymptotically a simple
function of the characteristic lengths of the problem,R and
j(t). Their only combination of length dimension isK(t)
}DR1/2/j(t)3/2.

In the asymmetric case a superparticle consisting of im-
mobileA particles should be characterized by another reac-
tion radius,Reff5NR instead ofR ~recall that the Onsager
radius is proportional to the product of particle charges!.
Combining the above-derived expression for the reaction rate

with Reff , one obtains thatK(t)}DReff
1/2/j(t)3/2. Keeping in

mind thatN5n(t)j(t), its substitution into Eq.~2! in the
1d case gives us the critical exponenta5 1

3. In other words,
in the asymmetric case the reaction kinetics is accelerated as
compared toboth the noninteracting particles and the sym-
metric case of interacting particles (a5 1

4!. This confirms our
previous results for the 3d case@14#.

E. 2d case

Let us compare now very briefly the main differences
between the 1d and 2d cases~the latter to be discussed in
detail elsewhere@23#!. The 2d kinetics was studied until
t5106, when the concentration decreases by four orders of
magnitude.

~i! The Debye theory predicts the classical critical expo-
nent,a51. Our treatment of the unscreened Coulomb inter-
action~analog of curves 2 in Fig. 1! yieldsa5 1

2, the same as
obtained earlier for noninteracting particles. Incorporation of
nonequilibrium screening~many-particle effects! into the ef-
fective interaction potentials results in the splitting of the
kinetic curves,a5a(t), for the symmetric and asymmetric
cases. In the former case the reaction asymptotics remains
the same as for neutral particles, whereas in the latter case
we expect a larger value ofa53/4. In all cases the approach
to the asymptotic values is very slow.

~ii ! The behavior of the correlation functions is essentially
the same as in 1d.

~iii ! The effective potentials remind us of those shown in
Fig. 3, but with different asymptotics. In the symmetric case
the scale parameterjU coincides with the diffusion length,
whereas in the asymmetric casejU /j(t)→0, since the con-
centration decays faster than in the symmetric case.

F. Accumulation kinetics

The accumulation kinetics was calculated for the follow-
ing parameters:z51, r c50.1, andn(0)50. Figure 4 dem-
onstrates that our microscopic kinetics differs considerably
from the results of mesoscopic theory@10–12# predicting
algebraic concentration growth,n(t)}ta with a5 1

5. In con-
trast, our study shows that in the symmetric casen(t) in-
creases only logarithmically over three orders of magnitude

FIG. 4. The accumulation kinetics for the symmetric case,
DA5DB ~solid curve!, and the asymmetric case,DA50 ~dashed
curve! ~decadic logarithm!.
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in time. In the asymmetric casen(t) reaches amaximumand
then decreases slowly. The former case reminds us of the
2d case for neutral particles~logarithmic growth! @21#,
whereas the latter case is qualitatively similar to the 3d case
~the same concentration saturation!. This behavior could be
understood qualitatively assuming that similar-particle repul-
sion is analogous to the finite size of particles due to which
similar particles cannot approach each other to within a dis-
tance less than some critical value.

This is supported by the behaviour of the correlation func-
tions ~Fig. 5!. Similarly to the concentration decay~Fig. 2!
the domain structure is characterized by the diffusion length
j. At t.1 the reactant concentration is high,n(t);1 and the
domain volume is densely filled by particles. This results in
large induced charge. MobileB particles repel each other
and do not exist at the relative distancesr,0.1. If recently
createdB particles are produced closely to preexistingB
particles, they also repel each other. This results in the ap-
pearance of a local maximum in the correlation functions,
XB , at r,0.1, well seen att5103. For immobileA particles
such an effect does not take place—these particles form
dense clusters—Fig. 5~b!. At high concentrations mobileB
particles due to their repulsion drift to the domain boundaries
at which reaction takes place. This is why a slow concentra-
tion growth occurs mainly due toAB particle segregation:

domain sizes increase asj, and their surface decreases
~where the reaction takes place!. Coulomb repulsion of simi-
lar particles preventing the formation of their dense aggre-
gates is not completely equivalent to a hard-sphere model of
finite-size particles. In fact, if the domain size is fixed, a
permanent production of similar particles inside the domain
volume would lead to an infinite growth of the concentration
and thus to a decrease of the minimum distance between
particles. This is why the restriction of dense-aggregate for-
mation is related to the domainsurface.

A simple estimate of the number of particles inside a do-
main,N5n(t)j(t)d, even assuming for the reactant concen-
trationn(t)5const, gives an important result which folllows
from the potential asymptoticsU(r )52jU /r . The scale pa-
rameterjU in the 1d case coincides with the diffusion length
j(t), i.e. at larger the effective potential reveals a scaling
behavior U(r ,t)}„r /j(t)…21. In this case one naturally
should expect a change of the asymptotic reaction law as
compared to the case of both noninteracting particles and
particles with a short-range potential.

Note that under the algebraic concentration growth pre-
dicted by mesoscopic theory the parameterjU at some time
would exceed the diffusion length and thus becomea control
parameterdetermining the accumulation kinetics. This is
why the condition jU5j(t) is a crossover between
diffusion- and non-diffusion-controlled reactions. From this
condition comes the observed restriction of the concentration
growth ~see Fig. 4!.

VII. DISCUSSION AND CONCLUSION

We compare in the conclusion the main results of the
mesoscopic@10–12# and the present, microscopic formalism
for the diffusion-controlledA1B→0 reaction between
charged particles in the 1d case. The former theory claims
that the critical exponents in the concentration algebraic de-
cay is the same for charged and neutral particles,provided,
~i! similar particles (AA, BB) repel each other, and~ii ! the
pair interaction potential is not divergent~e.g. like the
Debye- Hückel potential!.

The microscopic theory generalizes this result~valid for
the case of symmetric particle mobilities! for theunscreened
~divergent! Coulomb potential. Moreover, we have studied
the case of asymmetric mobilities (DA50, DB.0) and pre-
dicted reaction acceleration, i.e., the existence of a critical
exponenta5 1

3. We demonstrated that this peculiarity is a
direct consequence of the specific spatial distribution of re-
actants studied by us in terms of the joint correlation func-
tions for both similar and dissimilar reactants.

A large discrepancy between the two approaches is found
for the accumulation kinetics under a permanent particle
source. Unlike the mesoscopic prediction of the infinite con-
centration growthn(t)}ta, for point particles with the equi-
librium Debye-Hückel potential, we observe a much slower,
logarithmic growth—in the case of symmetric mobilities,
and concentration quasisaturation for asymmetric mobilities.
This is a direct consequence of the fact that the use of a
model, equilibrium Debye-Hu¨ckel potential is not justified.
In fact, the effective potential should be related to the spatial
distribution of reactants which makes it time dependent and
nonequilibrium.

FIG. 5. The joint correlation function of dissimilar particles,
Y(r ,t) ~solid curve!, and that of similar particles,XA(r ,t) ~dot-
dashed curve! andXB(r ,t) ~dashed curve!. Curves 1–3 correspond
to the dimensionless times 101, 102, and 103, respectively.~a! Sym-
metric case,DA5DB . ~b! Asymmetric case,DA50. Note that for
case~a! XA(r ,t)5XB(r ,t)5X(r ,t), whereas for case~b!, XA(r ,t) is
plotted on a logarithmic scale.
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Our study @23# of the 2d case shows a very different
situation: at long times both the particle concentration and
the correlation functions revealsteady-statebehaviour, prac-
tically independent on the diffusion lengthj(t). This could
be understood following our previous qualitative analysis: in
2d the crossover conditionjU5j(t) cannot be realized~as-
suming that the behaviour of the correlation functions is de-
fined by the diffusion length!.
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APPENDIX

Numerical calculation of the effective potentials, Eq.~21!,
could be done using the trapezoid method. There are no
problems here except for a long computational time as com-

pared to the 3d case@14#, where numerical solution of the
relevant differential Eq.~9! could be easily done. Numerical
solution of ordinary differential equations~12! and ~22! is
also trivial. The main problem arises due to the necessity of
solving nonlinear, partial differential Eqs.~13!, ~15! or ~23!,
~24! with singular potentials.

To illustrate our method of their solution, consider the
typical equations

]g~r ,t !/]t5] j ~r ,t !/]r2h@g,r ,t#g~r ,t !, ~A1!

j ~r ,t !5]g~r ,t !/]r1]U@g,r ,t#/]rg~r ,t !. ~A2!

Hereh@g,r ,t#, U@g,r ,t# are functionals ofg(r ,t) sought
for, andU@g,r ,t# has a singularity inr : U@g,r ,t#51/r as
r→0. After the discretization of the equation using
a standard method,r i5 inr , tm5mnt, g(r i ,tm)5gi

0 ,
g(r i ,tm11)5gi , andh(g,r i ,tm11)5hi(ḡ), we arrive at the
difference equation which could be presented in a quasilin-
earized traditional form

FIG. 6. Self-consistent potentials in the accu-
mulation kinetics. Solid curves 1–3 correspond to
the reaction times 101, 102, and 103, respectively.
The dashed curve is the Coulomb potential
U(r )51/r . ~a! Symmetric case,DA5DB . Poten-
tial 2U(r ,t)5UA(r ,t)5UB(r ,t). ~b! Asymmet-
ric case,DA50. The potential2U(r ,t) is plot-
ted.
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ai@ ḡ#gi211bi@ ḡ#gi112ci@ ḡ#gi2hi~ ḡ!gi

2gi /nt52gi
0/nt, ~A3!

where coefficientsai , bi , andci arise due to the approxima-
tion of ] j (r ,t)/]r . These coefficients depend onU@g,r ,t#,
and thus are functionals ofg. Solution of Eq.~A1! is obtained
by means of quasi-linearization:ḡi5gi

0 is used as initial
guess, Eq.~A1! is solved in the standard way, then we sub-
stitute ḡi5gi , and the iterative process continues until con-
vergence is achieved within a required tolerance. In this way
we avoid a problem of the nonlinearity of the kinetic equa-
tions.

The approximation of] j (r ,t)/]r is less trivial. Use of
finite differences for derivatives fails for the singular poten-
tials since negative coefficientsai or bi become so large that
this cannot be compensated for by any reduction of the time
increment,Dt. We suggested the procedure where always
ai ,bi ,ci>0. This allows to perform calculations for suffi-
ciently largeDt values. This is of key importance for deter-
mining the asymptotic (t→`) kinetic law.

The procedure is as follows. To obtain a conservative
difference scheme, the integral in the intervalr
P@r i21/2,r i11/2# with r i61/25( i61/2)nr reads

E ~] j /]r !dr5 j i11/22 j i21/2. ~A4!

In the equation for the flux densityj5]g/]r1(]U/]r )g
substitutiong5exp(2U)v gives j5(]v/]r )exp(2U). It is

important that the exponent exp(U) has the argumentU rap-
idly changing on the scaleDr and thus also changes rapidly
as compared to the slowly varying functionsj and ]U/]r .
This is why the integral

E jexp~U !dr5v i2v i21 ~A5!

could be estimated in the intervalrP@r i21 ,r i # as

E jexp~U !dr' j i21/2/~]U/]r ! i21/2E exp~U !dU

5 j i21/2/~]U/]r ! i21/2„exp~Ui !2exp~Ui21!…

' j i21/2

„exp~Ui !2exp~Ui21!…

~Ui2Ui21!
nr . ~A6!

Now returning from the intermediate functionv to g
sought for, one obtains the basic relation for the difference
scheme coefficients

j i21/25~giexp~C i !2gi21!
C i /nr

exp~C i !21
, ~A7!

whereC i5Ui2Ui21. As it should be, the flux density de-
pends not on the very potentialU but on its derivative
C i5nr (]U/]r ) at r5r i21/2. The expression derived is
also used in determining the reaction rateK(t), Eq. ~12!, and
for the boundary conditions imposed on Eq.~17!.
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