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Fractalization of a torus and its transition to chaos in a quasiperiodically forced logistic map is reinvestigated
in relation to a strange nonchaotic attractor, with the aid of a functional equation for the invariant curve. The
existence of a fractal torus in an interval in parameter space is confirmed by the length and the number of
extrema of the torus attractor, as well as the Fourier mode analysis. Mechanisms of the onset of a fractal torus
and the transition to chaos are studied in connection with the intermittency.@S1063-651X~96!07412-0#

PACS number~s!: 05.45.1b

I. INTRODUCTION

The transition from a torus to chaos has been intensively
investigated@1#. Two types of instabilities exist, which cause
the collapse of tori: One is in the phase direction and the
other in the amplitude direction. The former instability has
already been studied in detail using the circle map, while the
oscillation and fractalization of tori have been reported due
to the instability in the amplitude direction. One of the au-
thors~K.K.! reported that the oscillation of tori gets stronger
with the increase of external forcing, until it reaches a fractal,
and then chaos appears@2#. Although the fractal nature of the
torus was confirmed at the onset of chaos, the strange oscil-
lation of a torus before the onset remained unclear.

The existence of strange nonchaotic attractors~SNAs!
was shown by Grebogiet al. @3#. Here the word ‘‘strange’’
refers to the geometry of the attractors and the word ‘‘cha-
otic’’ refers to the orbital instability of the dynamics. In a
model with quasiperiodic forcing similar to that for the frac-
talization of a torus, they showed analytically that the attrac-
tor has a nonpositive Lyapunov exponent but a complicated
geometry. Indeed, the attractor is not smooth on the set of
dense points. Although the original model by Grebogiet al.
@3# excludes the possibility of chaos, the SNA has generally
been observed in a system where chaos appears with the
increase of the forcing@4–10#, as it was discussed in the
fractalization of a torus@1,2#.

In the present paper, we study how the transition from a
smooth to a fractal torus occurs. We have confirmed that
there is a parameter region with a nonzero measure where the
SNA exists between the smooth torus and chaos. This leads
to the following scenario of destruction of the tori: Torus
→fractal torus~SNA!→chaos.

In the following sections, we will first characterize the
nature of a fractal torus as a SNA. Besides the direct simu-
lation of the quasiperiodically forced logistic map, we adopt
the functional map to obtain the invariant torus. The length
of the invariant curve, as well as the number of singular
points, shows how the fractalization occurs with the param-
eter change. In Sec. III, a perturbation expansion of the func-
tional equation is given, where the SNA is characterized by

the loss of the convergence in the Fourier mode expansion of
the derivative of the invariant curve. A comparison between
smooth and fractal tori is given in Sec. IV, where some dy-
namical signatures of the fractal torus are discussed, such as
the parameter sensitivity of the Lyapunov exponent and the
phase sensitivity. The onset of chaos from the SNA is inves-
tigated in Sec. V, where the transition is associated with the
intermittency from the fixed point in the functional map.

II. FRACTALIZATION OF A TORUS AS A SNA

The transition from a torus to chaos has been studied with
a variety of two-dimensional maps@1#. With the change of
the bifurcation parameter, the amplitude of oscillation gets
stronger, accompanied by phase lockings. To focus on the
amplitude instability by excluding the phase locking, we
choose the following two-dimensional map@2#, with a con-
stant rotation of the phase:

xn115 f ~xn!1«g~un!,
~1!

un115un1vmod1.

Here xn represents the amplitude, whileun corresponds to
the phase of oscillation. To exclude the phase lockings no
coupling fromx to u is included, wherev is an irrational
number representing the rotation number.

In this paper we setf (x)5ax(12x), g(u)5sin2pu, and
v5(A521)/2 as the simplest nonlinear map with an exter-
nal driving force. For most simulations, we fixa53.0 and
vary « to see the change of the attractor. At«50, the map,
of course, is just a one-dimensional map ofxn with a fixed
point x*5121/a. Thus the attractor of the two-dimensional
map is just a straight-line torus. As« is increased, oscilla-
tions of the torus start to appear, which become fractal with
the dimension above one~as it is confirmed later by a direct
measurement of the length of the torus!. As « is increased
further, another transition from the fractal torus to chaos ap-
pears, by which the stability in thex direction is lost.

Three examples of the patterns of attractors are given in
Fig. 1 corresponding to the three types of attractors, while
the change of the Lyapunov exponent is plotted in Fig. 2.
The transition from a torus to chaos occurs at«;0.1573. As
it will be confirmed later, the torus loses its smoothness
around«;0.1553. Hence the SNA exists in an interval of
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the parameter, where the Lyapunov exponent has a sharp
sensitivity to«, as in the chaotic region.

To confirm that the attractor has a noninteger dimension,
we study the equation for the invariant torus, following the
argument of@2#. In our model~1! the attractor is expressed as
a single-valued function ofu, asx5X(u) (0<u<1). If this
function represents an invariant curve of the map, it must
satisfy the functional equation

X~u1v;mod1!5 f „X~u!…1«g~u!

5aX~u!@12X~u!#1«sin2pu. ~2!

This equation is postulated by the constraint that the point
(xn11 ,un11) should also be on the curve and is obtained by
substitutingxn by X(u) and xn11 by X(u1v) in the map

FIG. 1. Three types of attractors. The value of« in each figure is~a! «50.1,~b! «50.156, and~c! «50.18, respectively. We have plotted
30 000 points after discarding initial transients, wherea53.0 andv5(A521)/2.
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~1!. From this functional equation we can introduce the fol-
lowing ‘‘functional map,’’ which maps one function to an-
other function:

Xn11~u1v;mod1!5 f „Xn~u!…1«g~u!

5aXn~u!@12Xn~u!#1«sin2pu.

~3!

The attractor of the original map~1! is obtained as a fixed
point in the functional space, for the iteration of the func-

tional map~3!. This discussion stands only if the Lyapunov
exponent is negative and the attractor has a single valuex for
eachu.

Since the functional map~3! is an infinite-dimensional
dynamical system, one cannot compute it directly. We have
numerically computed it by approximatingv5(A521)/2 by
vk5Fk21 /Fk , where $Fk%k50,1, . . . is a Fibonacci series.
(vk→v ask→`.! This approximation transforms the func-
tional map to anFk-dimensional map that mapsFk lattice
points on theu coordinate onto themselves. We have com-
puted the attractor of thisFk-dimensional map to obtain the
approximate solution of the functional equation~2! as a
piecewise-linear function.

For the parameter regime corresponding to the torus at-
tractor, the convergence is rather fast. The convergence time
of the functional map to a fixed point gets longer as« ap-
proaches the onset of chaos, while for«.0.1573, corre-
sponding to the chaos region, the functional map does not
converge to a fixed point.

The functional equation enables us to compute the length
L j of X(u) as

L j5 (
i50

Fk21 AHXS i

Fk
D2XS i1 j

Fk
D J 21S j

Fk
D 2. ~4!

If the dimension of the attractor is 11a, L j must scale as
L j} j2a, where 0,a,1. The slope of this plota gives a
kind of fractal dimension. Figure 3 is an example of the
log-log plot of lengthL j versus the mesh widthj . Here we
have adoptedFk5317 811 for the approximation ofv.

FIG. 2. Lyapunov exponents plotted versus the parameter«.
Computed from the average over 106 iterations of the map~1!, after
discarding initial 5000 points of transient.

FIG. 3. Examples of a log-log plot of length versus mesh
(a53.0 andFk5317 811), obtained from the attractor of the func-
tional map.
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Hence j51 corresponds to the mesh size of
1/317 811;331026. Figure 4 is the plot of slopea versus
external force«.

The slope starts to be nonzero at the transition point at
about «;0.1548. The slope jumps toa;0.62 and stays
around the value with the increase of« up to the vicinity of
the onset of chaos.

In the region between«'0.1548 and 0.1553, the expo-
nent is roughly 0.3 up to fine mesh scales~e.g., 1/317 811),
but there appears a saturation at a finer mesh. In Fig. 5 we
have plotted the length versus mesh, takingFk59 227 465.
There is a crossover to a smooth behavior at the scale about
10/9 227 465 for«50.1548. Here we call this parameter re-
gime a ‘‘pre-fractal torus,’’ since this region is distinguished
from the smooth and fractal torus regimes. Indeed, the cross-
over to a smooth curve is seen only at a much finer scale than
for a smooth-torus regime, while this crossover scale in-
creases as« approaches the onset parameter for the fractal
torus. The slope at the scaling regime~i.e., scales with a
larger mesh beyond the crossover! has a jump at the onset of
the fractal torus: The exponenta in the scaling regime jumps
from 0.3 to 0.62, when the parameter« crosses 0.1553, the
border between pre-fractal- and fractal-torus regimes.

For «.0.1573,Xn(u) does not converge to a fixed curve.
Indeed, the Lyapunov exponent of the two-dimensional map
is positive in this regime and the attractor here is chaotic.
Summing up the results of the fractal exponent of Fig. 4 and
the Lyapunov exponent of Fig. 2, one can conclude that the
fractal torus exists at least in the region
0.1553,«,0.1573.~By numerical means, one cannot com-
pletely exclude the possibility that the fractal nature of the
torus disappears as the mesh scale goes down to a much finer
scale and the fractal torus exists only at the onset of chaos.
Indeed, this suspicion has led to the report, in@2#, of the

fractal torus only at a single parameter point. We assume that
the scaling with the exponenta lasts to an infinitesimal scale
since the increase of the crossover size near 0.1553 is so
strong that it is distinguished from the pre-fractal-torus re-
gion.!

We have also measured the distribution of local dimen-
sions, by varying«, which is shown in Fig. 6. The distribu-
tion is single humped, with slight asymmetry. At the pre-
fractal torus, the distribution has a peak around zero.

We have also calculated the number of extremal points of
the functionX(u). Here the numberNj of extremal points
for a given mesh is defined as follows. First count the num-
ber of the mesh pointi such that

HXS i1 j

Fk
D2XS i

Fk
D J HXS i12 j

Fk
D2XS i1 j

Fk
D J ,0 ~5!

is satisfied: ThenNj is obtained by dividing this number by
j . Figure 7 gives some examples of the log-log plot ofNj
versusj .

The numberNj increases as the meshj is reduced, which
means that the finer the mesh one uses, the more extrema
appear. This is consistent with the fractal nature of the torus.
However, we note thatNj scales not asNj; j21 but as
Nj; j2b, where 0,b,1. This means that the fraction of
singular points decreases with the mesh. In other words, the
extremal points lie on a Cantor set on theu axis.

The dependence ofb on the parameter« is plotted in Fig.
4. The exponent stays around 0.75, while the fractal dimen-
sion stays around 0.6. Near the onset of chaos«50.1573, the
exponentb increases, until it takes 1.0 at the onset. In other
words, the ruggedness of the torus fills the space down to
any small scale when the torus loses stability and is replaced
by chaos.

FIG. 4. Change of the slopea versus external forcing«
(a53.0 andFk5317 811). The slope is estimated from the length
at the five smallest mesh scales. The error bar is not explicitly
given, but it is about 0.05 –0.1.

FIG. 5. Length of attractors with the mesh scalej .
Fk59 227 465 anda53.0.
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The linear increase of the extremum point agrees with the
picture of a random curve. Consider, for example, a curve
C( i ) ~with i lattice point! generated by
C( i11)5dC( i )1h with h a random number distributed
over @21,1# andd<1. The number of extremum points in-
creases linearly with the number of mesh points. The in-
crease is given by 2N/3 for d50, while the increase is
slower with a smaller proportional coefficient ford.0, until
it is given byN/2 for d51. Since the increase is given by
0.58N at the onset of chaotic~and also in the chaos region! in
our simulation, the critical torus can be approximated by a

FIG. 6. Distribution of the local dimension obtained through the
measurement of the local length. We have measured the length of
X(u) at each lattice point using 6000 lattice points around it. By
computing the local dimension over all lattice points and sampling
the number with the bin size 0.01, the distribution is obtained.
(a53.0.)

FIG. 7. Number of extremal points versus mesh size. See the
text for the method of computation. (a53.0 andFk5317 811.!

FIG. 8. ~a! and ~b! Change of the Lyapunov exponent with the
parameter« @a52.8 andv5(A521)/2#. ~b! is the blowup of~a!
for 0.204,«,0.208. The exponent is computed from the average
of 106 steps after discarding initial 5000 steps.
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correlated random curve. This behavior and the coefficient
characterize how the fractal torus collapses and is replaced
by chaos in the two-dimensional map Eq.~1!.

To close the present section, it is interesting to note the
universality of our results. In the discovery of a fractal torus
by @2#, the parametera521 was adopted, where successive
transitions from a torus to a fractal torus and then to chaos
was found with the increase of«. We have reexamined the
simulation using larger mesh sizes. Here again, a fractal
torus exists for a finite interval of parameters, where the
fractal dimension increases from 0.6 to about 0.88 with«.
The number of extremal points again increases with a frac-
tional power, while it increases linearly at the onset of chaos.

Another interesting set of examples is given fora52.8.
The Lyapunov exponent is plotted in Fig. 8, while the fractal
dimension and the number of extremal points obtained from
the functional equation~with the mesh 317 811! are given in
Fig. 9.

From this figure one can see that windows of a fractal
torus~FT! and a smooth torus~ST! appear beyond the onset
of chaos. Indeed there are transition sequences among the
ST, FT, and chaos, as seen in Figs. 8 and 9. At«;0.204 the
FT appears, which is replaced by chaos at«;0.206. For

«;0.207, the ‘‘inverse’’ bifurcation from chaos to a FT and
then to a ST~at «;0.211) proceeds. Further bifurcations to
a FT and chaos and back to a ST are seen for larger«. Again
at the boundary between chaos and a fractal torus, the in-
crease of the extremum points is almost linear.

III. FRACTAL TORUS VIEWED FROM A FUNCTIONAL
MAP

In this section we apply the Fourier mode analysis to the
functional equation~2!. First we consider the Fourier expan-
sion ofX(u),

X~u!5 (
k52`

`

X̂~k!e2p iku, ~6!

X̂~k!5E
0

1

X~u!e22p ikudu, ~7!

and substitute it into~2!. Then we have

X̂~k!e2p ikv5aX̂~k!2a (
k852`

`

X̂~k8!X̂~k2k8!

2
i«

2
~dk,12dk,21!. ~8!

Next we expand each Fourier modeX(k) with respect to the
powers of«,

X̂~k!5 (
n50

`

«nX̂n~k!. ~9!

Substituting this into~8! and comparing the terms of the
same power of« on both sides of the equation, we get

X̂n~k!e2p ikv5aX̂n~k!2a (
k852`

`

(
m50

n

X̂m~k8!X̂n2m~k2k8!

2
i

2
dn,1~dk,12dk,21! ~10!

for eachn. It is straightforward to show thatX̂(k) has only
terms«n such thatn>uku. This means that the term«n only
has a Fourier mode with the wave number no more thann.
The first three terms ofX̂n(k), X̂(k), andX(u) are given as

X̂0~k!5S 12
1

aD dk,0 , ~11!

X̂1~k!5
6 idk,61

2~e62p iv1a22!
, ~12!

X̂2~k!5
2a$2X̂1~21!X̂1~1!dk,01@X̂1~21!#2dk,221@X̂1~1!#2dk,2%

e2p ikv1a22
, ~13!

FIG. 9. Fractal dimensiona ~obtained by measuring the length!
and the exponentb on the number of extremal points, plotted ver-
sus«. Computed from the attractor of the functional map. (a52.8
andFk5317 811.!
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X̂~0!5X̂0~0!1«2X̂2~0!1«4X̂4~0!1•••, ~14!

X̂~61!5«X̂1~61!1«3X̂3~61!1«5X̂5~61!1•••,
~15!

X̂~62!5«2X̂2~62!1«4X̂4~62!1•••, ~16!

A

X~u!5X̂0~0!1«$X̂1~1!e2p iu1X̂1~21!e22p iu%1«2$X̂2~0!

1X̂2~2!e4p iu1X̂2~22!e24p iu%1«3$X̂3~1!e2p iu

1X̂3~21!e22p iu1X̂3~3!e6p iu1X̂3~23!e26p iu%

1•••. ~17!

When « is gradually increased from zero, the terms of
higher-frequency modes become larger in order. This ex-
plains the amplification of the torus oscillation for larger«,
as well as the slower decay of the Fourier coefficient with the
wave number.

We have numerically calculated the power spectrum
P(k)5uX̂(k)u2 for the three types of attractors, by using the
largest 2N points possible out ofFk points of the attractor of
the functional map~1!. The power spectraP(k) are plotted
in Fig. 10 for a53.0 and «50.15,0.156,0.16, where
Fk5317 811 and 2N52185262 144.

When the invariant curve is fractal, the first derivative of
the Fourier series~6! is expected to lose its convergence.
Indeed, the spectraP(k) decrease withk slowly for the frac-
tal torus. The maximum of the envelope ofP(k) decays

FIG. 10. Power spectrumP(k)5uX̂(k)u2 for a53.0 and~a! «50.15,~b! «50.156, and~c! «50.16 obtained by averaging 100 different
phase shiftsu0 ~shift of lattice points within the range of 1/Fk). (Fk5317 811 and 2N52185262 144.!
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slower than k22, which means thatX̂(k);k2a, where
0,a,1. The fractal nature is seen in the power spectra. For
a smooth torus the spectra decay faster than or equal to
k22.

It is interesting to note the analogy with the cascade pro-
cess in turbulence. Equation~8! has a form similar to the
Fourier expansion of the Navier-Stokes equation as regard-
ing the formation of the cascade process by the term
X̂(k)X̂(k2k8). In the case of fluid turbulence, this term
brings about Kolmogorov’s energy cascade. In contrast to
the time dependence in turbulence, the Fourier modes of our
functional equation fall into time-independent values at the
fractal-torus regime. In fluid turbulence, the intermittency
leads to sporadicalness in the vortex cascade, which brings
about the deviation from Kolmogorov’s 5/3 law. In our prob-
lem this corresponds to the sporadicalness of the extremal
points. The degree of the sporadicalness changes with the
parameter«, as in the intermittency effect in turbulence,
while the sporadicalness is lost at the the onset of chaos in
the cascade of the functional equation. It will be interesting
to search for a quantity in our problem corresponding to the
energy cascade in turbulence.

IV. FRACTAL TORUS VERSUS SMOOTH TORUS

Let us reconsider the difference between smooth and frac-
tal tori from a dynamical system viewpoint. Of course, the
largest difference between the two types of tori is the length.
The length of the fractal torus is infinite, in contrast to the
smooth torus. This also leads to a difference in the orbital
instability for the dynamics of the two types of tori. Smooth
and fractal tori are both stable against the perturbation in the
x direction. Although no exponential divergence of orbits
exists for both, they are different from each other in terms of
the phase sensitivity. Pikovsky and Feudel@4# have shown
that two points on the SNA with closeu values separate from
each other by introducing the following phase sensitivity ex-
ponent: For this, note that the absolute value of the first
derivative of the orbitu]xn /]unu fluctuates with time and
sometimes has a large burst. An arbitrarily large burst can
appear when the map is iterated for infinite time steps. By
differentiating Eq.~1! with respect tou, one obtains

]xn11

]u
5 f 8~xn!

]xn
]u

1«g8~u!. ~18!

Using this equation, one can compute the evolution of
]xn /]u starting from some initial point (x0 ,u0) and
]x0 /]u50. The phase sensitivity of Pikovsky and Feudel,
then, is defined as

GN5min
x0 ,u0

max
0<n<N

U ]xn
]u U.

This quantity must grow infinitely for a SNA with some
power ~and exponentially for a chaotic attractor! @4#. In our
example, this quantity increases with power 2.5–3 for a frac-
tal region, as it is shown in Fig. 11~a!. At the pre-fractal-
torus regime the quantity increases up to 106 steps~which

corresponds to the mesh scale of 1026) and then saturates, as
is consistent with the results of the length in Sec. II obtained
from the functional equation.

ThisGN corresponds to the largest derivative of the attrac-
tor X(u) of the functional map~3! for the mesh size about
N3~number of samples for minx0,u0). The larger the iteration

numberN, the larger the length of the attractor at the mesh.
The second difference between smooth and fractal tori

lies in the parameter dependence of our invariant curve. For
a fractal torus, there is sensitivity of the curve to the param-
eter« at least for some value ofu. To confirm the sensitivity,
we introduce the parameter sensitivity in the same way as

FIG. 11. ~a! GN and ~b! GN
(«) obtained for a53.0 and

v5(A521)/2. We have chosen 100 initial points (x0 ,u0) ran-
domly and iterated Eqs.~18! and~19! for each initial point, starting
from ]x0 /]u50.GN andGN

(«) are obtained as the minimum of these
100 trajectories.
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GN @4#: By differentiating the first equation of~1! with re-
spect to«, we obtain

]xn11

]«
5 f 8~xn!

]xn
]«

1g~u!. ~19!

Then we define

GN
~«!5min

x0 ,u0

max
0<n<N

U ]xn
]« U.

In Fig. 11~b! we have plotted this parameter sensitivity.
Again this quantity grows with some power for the fractal
torus. In our model this power is identical to that forGN , i.e.,
the power 2.5–3@see Fig. 11~b!#. This is expected since Eq.
~18! for GN

(«) has the same form asGN @Eq. ~19!#, except that
the last term is smooth. The power-law increase ofGN

(«) im-
plies that the fractal torus always has this kind of parameter
sensitivity.

Such parameter dependence is also reflected in the
Lyapunov exponent of each attractor. The sensitivity of the
Lyapunov exponent to the parameter« is relatively sharp in
the region of the fractal torus, while the parameter depen-
dence is smooth in the region of normal torus, as we have
mentioned earlier.

The third difference lies in the loss of convergence in the
derivative ofX(u) for the fractal torus. Indeed, the Fourier
expansion ofX(u) decays faster than or equal to 1/k for a
smooth torus, while for the fractal one, it decays slower than
1/k, as discussed in Sec. III in terms ofP(k).

This loss of convergence corresponds to the power spec-
trum of the time series of xn since the relation
u5vn1const(mod1) leads to a direct correspondence be-
tweenu and time. It is shown in@5# that the power spectrum
of the time series is singular for SNAs. There the number of
singular points whose power is larger than a threshold de-
creases with some power with the threshold, while it decays
exponentially for a smooth torus. This characteristic is an-
other manifestation of the loss of convergence in the Fourier
modes of the derivative.

The question remains what causes the transition from a
smooth to a fractal torus. One possible route to the SNA is
the crisis between stable and unstable invariant curves@7#. In
our model, however, the unstable torus~continued from the
unstable fixed point of the logistic map! lies far away from
the stable one and has nothing to do with the fractalization.
Hence there must be another possible mechanism for the
emergence of SNAs. In the functional equation, this can be
seen in the loss of convergence in the Fourier series. How is
the loss of smoothness expressed in terms of dynamical sys-
tems for the original two-dimensional map?

FIG. 12. Graph of theFk map forFk555 andu050.

6122 54TAKASHI NISHIKAWA AND KUNIHIKO KANEKO



To study this problem, we have introduced the following
Fk map. If we approximatev by Fk21 /Fk and start itera-
tions from any point (x0 ,u0), the orbit will be periodic in
u with period Fk . @uFk5u01Fkv5u01Fk21

5u0(mod1).# Thus a composition one-dimensional map is
constructed as theFk-times iterations of the original two-
dimensional map. Let us call this composition map anFk
map. TheFk map is a function ofx if we fix the initial u0.
The shape of the graph of theFk map depends on the initial
u0, «, andk. Figure 12 gives a sequence of examples of the
Fk map. The map converges to the functional map ask goes
to infinity. We can infer the behavior of the functional map
from theFk map.

In Fig. 13 we have plotted the bifurcation diagram of the
Fk map by takingFk5987. ~This rather small value ofFk is
chosen so that the characteristic feature of the one-
dimensional map is visible.! Since the onset of the fractal
torus and chaos can slightly differ betweenvk5Fk21 /Fk

andv5(A521)/2, we have to take into account the possible
shift of the bifurcation parameter to compare the result of the
Fk map with that of the functional map.

Let us look at the SNA region~0.1542<«< 0.1573! in
Fig. 13. First, we can see a sensitive dependence on«, as we
have discussed earlier. Second, we can see some points
where the map does not approach a fixed point and instead
shows chaotic behavior. By the definition of a SNA, theFk
map must have a fixed point whenk goes to infinity. When
v is approximated by a rational~say, by Fk21 /Fk with
Fk5987), this does not have to be true. It seems that there
always exists at least one chaotic point for some initialu0 at
every value of« in the SNA region. From this result we

propose the following picture of a SNA viewed from the
Fk map. In the SNA region, theFk map has dense« values
leading to chaotic behavior for someu0, whose measure goes
to zero with the increase of the mesh sizeFk . This kind of
‘‘partially chaotic’’ behavior may be related to the existence
of a positive local Lyapunov exponent discussed by Pik-
ovsky and Feudel@4#.

We also note that theFk map has a strong sensitivity to
u0 for the SNA. A change ofFk(x;u0) with u0 becomes
faster ask goes to infinity. This feature of theFk map is
consistent with the fractal nature of the torus.

V. FROM A FRACTAL TORUS TO CHAOS

What characterizes the transition from a fractal torus to
chaos? First, it is clear that the functional map~3! loses its
convergence. This is interpreted as the loss of stability of the
fixed point in the functional space. The functional map
shows chaotic dynamics~possibly having a high-dimensional
attractor! there, although the snapshot pattern ofXn(u) re-
mains fractal with the power 0.88–1. Beyond the onset of
chaos, the chaotic fluctuation ofuXn11(u)2Xn(u)u2 in-
creases with«. It is interesting to study the transition from a
fixed point to chaos in the functional space as a high-
dimensional dynamical system. As for the bifurcation to
chaos, this transition might be referred to as intermittent
chaos in the functional space.

To verify this idea we have again considered theFk map,
the composite one-dimensional map, given in Fig. 12. From
the graph a kind of intermittent transition is seen at about
«;0.1561. Indeed there is a tangent bifurcation from the
fixed point, by which the attractor of theFk map changes to
a chaotic one. This dependence on« does not change quali-
tatively with k, if k is large enough. Then the intermittent
character of the transition from a fractal torus to chaos in the
functional map is inferred by taking the limitk→`.

As k is increased, the sensitivity on« will be sharper, not
only for a fractal torus but also for a chaotic attractor. The
sensitivity of the shape of the graph leads to sensitivity of the
Lyapunov exponent. This gives an explanation of the sensi-
tive dependence of the Lyapunov exponent on«, previously
mentioned.

VI. SUMMARY AND DISCUSSION

We have verified the existence of the SNA in our quasi-
periodically forced logistic map by measuring the Lyapunov
exponent and the length and the number of extrema of the
attractor and power spectra. We have found that the SNA
exists in a finite interval in the parameter space and con-
cluded that the SNA is no other than the fractalization of the
torus in @2#. It should be noted that Anishchenkoet al. @8#
have also recently discussed the fractalization of a torus to
chaos as a SNA by using a forced circle map.

To understand the mechanism of fractalization and transi-
tion to chaos, we have introduced afunctional map (func-
tional equation). The attractor of the two-dimensional map is
represented as a fixed point of the functional map in the
functional space. From this viewpoint, fractalization of the
torus is expressed as the change of the fixed point solution of
the functional map, from a smooth to a nonsmooth one. The

FIG. 13. Bifurcation diagram obtained from theFk map for
Fk5987. A sequence ofxn generated by theFk map is plotted over
100 steps after 2900 points are discarded. The time series is plotted
for each« value. The initial condition for the next« value is chosen
from the orbit xn for the previous«, while « is incremented by
0.0001 between 0.154 and 0.1585.
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transition to chaos might be regarded as an intermittent chaos
in the functional space.

We have also introduced theFk map, a composition of the
map overFk steps. ThisFk map is a kind of cross section of
the functional map. With this map, the origin of the fractal-
ization of the torus is related to the sensitive dependence on
the initial phaseu0, while the transition to chaos is associ-
ated with the intermittency from the fixed point in thisFk
map.

There has been a general interest in the search for a dif-
ferent type of dynamics in a forced system@11#, as it has
been pioneered by Moser@12#. There the instability arising
from the off-diagonal element@13# in the Jacobi matrix may
lead to a different dynamical behavior. Such instability is
also seen in the convective instability in the open flow prob-
lem @14#, where the instability due to the off-diagonal ele-
ment leads to a rich variety of dynamics@15#. The strange
nonchaotic attractor in our model is also due to the instability
by the off-diagonal element, as it is characterized by the
phase sensitivity of the amplitude. It is interesting to explore
dynamical systems with such a type of instability in general,
where the present functional map method may be useful.

The study of the functional equation itself is an interesting
topic. In particular, the attractor of the functional map is
high-dimensional chaos, when the fractal torus is replaced by
chaos. The one-dimensional stringX(u) is spatially fractal
and temporally chaotic, as in the problem of developed tur-
bulence. In this sense, the model may provide a different
class of spatiotemporal chaos. Indeed, the functional equa-

tion can be viewed as a coupled map with a long-range cou-
pling, by which each lattice point is coupled with the point at
a distance ofFk21 sites.

It may be interesting to note an analogy between our func-
tional equation and the so-called Weierstrass function. The
Weierstrass function is defined as

W~u!5 (
n50

`

ancosbnpu ~ab>1, 0,a,1!. ~20!

The topological dimension of the Weierstrass function is
one, but its fractal dimension is believed to be more than
one. The Fourier coefficient ofW(u) decreases as
k211 ln(ab)/lnb with the wave numberk. As Yamaguchi and
Hata @16# have demonstrated, the fractal nature of Weier-
strass~and Takagi! functions are derived from the functional
equation. Unfortunately, their analysis is not applicable to
ours since their functional equation is linear in contrast to
ours. Still some analytical studies on the functional equation
as well as the renormalization-group analysis@17# for the
perturbation series~10! should be of importance in the fu-
ture.
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