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Fractalization of a torus as a strange nonchaotic attractor
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Fractalization of a torus and its transition to chaos in a quasiperiodically forced logistic map is reinvestigated
in relation to a strange nonchaotic attractor, with the aid of a functional equation for the invariant curve. The
existence of a fractal torus in an interval in parameter space is confirmed by the length and the number of
extrema of the torus attractor, as well as the Fourier mode analysis. Mechanisms of the onset of a fractal torus
and the transition to chaos are studied in connection with the intermittE8t963-651X96)07412-Q

PACS numbeps): 05.45+b

I. INTRODUCTION the loss of the convergence in the Fourier mode expansion of

- . . the derivative of the invariant curve. A comparison between
The transition from a torus to chaos has been intensively, - o - fractal tori is given in Sec. IV, where some dy-

investigated 1]. Two types of instabilities exist, which cause ,ica) signatures of the fractal torus are discussed, such as
the collapse of tori: One is in the phase direction and they,q parameter sensitivity of the Lyapunov exponent and the
other in the amplitude direction. The former instability hasypase sensitivity. The onset of chaos from the SNA is inves-
already been studied in detail using the circle map, while thgigated in Sec. v, where the transition is associated with the
oscillation and fractalization of tori have been reported dugntermittency from the fixed point in the functional map.

to the instability in the amplitude direction. One of the au-

thors(K.K.) reported that the oscillation of tori gets stronger Il. ERACTALIZATION OF A TORUS AS A SNA

with the increase of external forcing, until it reaches a fractal,

and then Chaos appeé@ A|though the fracta' nature of the The transition from a -torUS to chaos haS been studied with
torus was confirmed at the onset of chaos, the strange oscft Variety of two-dimensional magd]. With the change of
lation of a torus before the onset remained unclear. the bifurcation parameter, the amphtude of oscillation gets

The existence of strange nonchaotic attract(BdlAg  Stronger, accompanied by phase lockings. To focus on the
was shown by Grebogt al. [3]. Here the word “strange” amplitude mstabll_lty by ex_cludln_g the phase_locklng, we
refers to the geometry of the attractors and the word “cha—Choose th_e following two-dimensional m@pl, with a con-
otic” refers to the orbital instability of the dynamics. In a stant rotation of the phase:
model with quasiperiodic forcing similar to that for the frac- -
talization of a torus, they showed analytically that the attrac- Xn+1= 1) +£0(0n), 1
tor has a nonpositive Lyapunov exponent but a complicated @)
geometry. Indeed, the attractor is not smooth on the set of Onr1=0,+ omodl.
dense points. Although the original model by Grebegal.

[3] excludes the possibility of chaos, the SNA has generallyHere x,, represents the amplitude, whilg, corresponds to
been observed in a system where chaos appears with tfige phase of oscillation. To exclude the phase lockings no
increase of the forcing4—10], as it was discussed in the coupling fromx to ¢ is included, wherew is an irrational
fractalization of a toru$i,2]. number representing the rotation number.

In the present paper, we study how the transition from a In this paper we set(x) =ax(1—x), g(6) =sin2m6, and
smooth to a fractal torus occurs. We have confirmed that=(y/5—1)/2 as the simplest nonlinear map with an exter-
there is a parameter region with a nonzero measure where timal driving force. For most simulations, we fa= 3.0 and
SNA exists between the smooth torus and chaos. This lead&ry e to see the change of the attractor. &t 0, the map,
to the following scenario of destruction of the tori: Torus of course, is just a one-dimensional mapxqfwith a fixed
—fractal torus(SNA)— chaos. pointx* =1—1/a. Thus the attractor of the two-dimensional

In the following sections, we will first characterize the map is just a straight-line torus. As is increased, oscilla-
nature of a fractal torus as a SNA. Besides the direct simutions of the torus start to appear, which become fractal with
lation of the quasiperiodically forced logistic map, we adoptthe dimension above or@s it is confirmed later by a direct
the functional map to obtain the invariant torus. The lengthmeasurement of the length of the torués ¢ is increased
of the invariant curve, as well as the number of singularfurther, another transition from the fractal torus to chaos ap-
points, shows how the fractalization occurs with the parampears, by which the stability in the direction is lost.
eter change. In Sec. I, a perturbation expansion of the func- Three examples of the patterns of attractors are given in
tional equation is given, where the SNA is characterized byFig. 1 corresponding to the three types of attractors, while

the change of the Lyapunov exponent is plotted in Fig. 2.

The transition from a torus to chaos occurg at0.1573. As
“Present address: Deparment of Mathematics, University of Maryit will be confirmed later, the torus loses its smoothness
land at College Park, College Park, MD 20742. arounde ~0.1553. Hence the SNA exists in an interval of
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FIG. 1. Three types of attractors. The valuesah each figure iga) e =0.1,(b) £ =0.156, andc) £ =0.18, respectively. We have plotted
30 000 points after discarding initial transients, whare3.0 andw= (15— 1)/2.

the parameter, where the Lyapunov exponent has a sharp  X(6+ w;mod1)=f(X(6))+eg(6)
sensitivity toe, as in the chaotic region.
To confirm that the attractor has a noninteger dimension, =aXxX(O)[1-X(o)]+esin2wo.  (2)
we study the equation for the invariant torus, following the
argument of 2]. In our model(1) the attractor is expressed as
a single-valued function of, asx=X(6) (0<#<1). Ifthis  This equation is postulated by the constraint that the point
function represents an invariant curve of the map, it mus{x,+1,6,+1) should also be on the curve and is obtained by
satisfy the functional equation substitutingx,, by X(6) andx,.; by X(6+ w) in the map
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FIG. 3. Examples of a log-log plot of length versus mesh
(a=3.0 andF,=317 811), obtained from the attractor of the func-
tional map.

0.01

tional map(3). This discussion stands only if the Lyapunov
exponent is negative and the attractor has a single vafae
eaché.

Since the functional mag3) is an infinite-dimensional
dynamical system, one cannot compute it directly. We have
numerically computed it by approximating= (15— 1)/2 by
w=Fy_1/Fy, where{F\}y_01 ... is a Fibonacci series.
(wx— w ask—o.) This approximation transforms the func-
tional map to anF,-dimensional map that magds, lattice
points on thed coordinate onto themselves. We have com-
puted the attractor of this,-dimensional map to obtain the
approximate solution of the functional equati¢®) as a
piecewise-linear function.

-0.06 : . : : ' . ' . ! For the parameter regime corresponding to the torus at-

0.15 0.152 0.154 0.156 0.158 0.16 . .
€ tractor, the convergence is rather fast. The convergence time
of the functional map to a fixed point gets longer asip-
proaches the onset of chaos, while for-0.1573, corre-

FIG. 2. Lyapunov exponents plotted versus the parameter sponding to the chaos region, the functional map does not
Computed from the average overlierations of the mayl), after converge to a fixed point.
discarding initial 5000 points of transient. The functional equation enables us to compute the length

L; of X(#) as
(1). From this functional equation we can introduce the fol-
lowing “functional map,” which maps one function to an-
other function: Pt i
(X( Fk)
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If the dimension of the attractor is4le, Lj must scale as
(3 Ljxj~ where 0<a<1. The slope of this plot gives a
kind of fractal dimension. Figure 3 is an example of the
The attractor of the original mafl) is obtained as a fixed log-log plot of lengthL; versus the mesh width Here we
point in thefunctional spacefor the iteration of the func- have adoptedr,=317 811 for the approximation ob.

Xn+1(8+ @;modl) = f(X,(6))+e9(0)
=aXy()[1—X,(0)]+esin2mé.
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FIG. 4. Change of the slopex versus external forcing j

(a=3.0 andF,=317 811). The slope is estimated from the length
at the five smallest mesh scales. The error bar is not explicitly FIG. 5. Length of attractors with the mesh scale

given, but it is about 0.05 —0.1. F=9 227 465 anch=3.0.

Hence j=1 cogres.ponds ‘to the mesh size of fractal torus only at a single parameter point. We assume that
1/317 813X 10 °. Figure 4 is the plot of slope versus  the scaling with the exponent lasts to an infinitesimal scale
external forces. since the increase of the crossover size near 0.1553 is so

The slope starts to be nonzero at the transition point agtrong that it is distinguished from the pre-fractal-torus re-

I+]

Fk —X

i+ 2]
Fy

about £~0.1548. The slope jumps te~0.62 and stays gion)
around the value with the increase ®1lp to the vicinity of We have also measured the distribution of local dimen-
the onset of chaos. sions, by varyinge, which is shown in Fig. 6. The distribu-

In the region betweer~0.1548 and 0.1553, the expo- tion is single humped, with slight asymmetry. At the pre-
nent is roughly 0.3 up to fine mesh scalesy., 1/317 811), fractal torus, the distribution has a peak around zero.
but there appears a saturation at a finer mesh. In Fig. 5 we We have also calculated the number of extremal points of
have plotted the length versus mesh, takifig=9 227 465.  the functionX(#6). Here the numbeN; of extremal points
There is a crossover to a smooth behavior at the scale abofgr a given mesh is defined as foIIows First count the num-
10/9 227 465 fore =0.1548. Here we call this parameter re- ber of the mesh poirit such that
gime a “pre-fractal torus,” since this region is distinguished _ o
from the smooth and fractal torus regimes. Indeed, the cross- l_)] X —X(ﬂ) <0 (5
over to a smooth curve is seen only at a much finer scale than Fi Fy
for a smooth-torus regime, while this crossover scale in-
creases as approaches the onset parameter for the fractais satisfied: Them; is obtained by dividing this number by
torus. The slope at the scaling regirfiee., scales with a j. Figure 7 gives some examples of the log-log ploth\yf
larger mesh beyond the crossoveas a jump at the onset of versusj.
the fractal torus: The exponeatin the scaling regime jumps The numbeN; increases as the meslis reduced, which
from 0.3 to 0.62, when the parametercrosses 0.1553, the means that the finer the mesh one uses, the more extrema
border between pre-fractal- and fractal-torus regimes. appear. This is consistent with the fractal nature of the torus.

For e>0.1573,X,,(#) does not converge to a fixed curve. However, we note thaN; scales not asN;~]j ~1 put as
Indeed, the Lyapunov exponent of the two-dimensional maN; ~j ~B, where 0<g8<1. Th|s means that the fraction of
is positive in this regime and the attractor here is chaochmguIar points decreases with the mesh. In other words, the
Summing up the results of the fractal exponent of Fig. 4 andgxtremal points lie on a Cantor set on thexis.
the Lyapunov exponent of Fig. 2, one can conclude that the The dependence ¢ on the parameter is plotted in Fig.
fractal torus exists at least in the region 4. The exponent stays around 0.75, while the fractal dimen-
0.1553<e<0.1573.(By numerical means, one cannot com- sion stays around 0.6. Near the onset of chae$.1573, the
pletely exclude the possibility that the fractal nature of theexponentB increases, until it takes 1.0 at the onset. In other
torus disappears as the mesh scale goes down to a much fireords, the ruggedness of the torus fills the space down to
scale and the fractal torus exists only at the onset of chaosny small scale when the torus loses stability and is replaced
Indeed, this suspicion has led to the report[2), of the by chaos.
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FIG. 6. Distribution of the local dimension obtained through the
measurement of the local length. We have measured the length of
X(6) at each lattice point using 6000 lattice points around it. By
computing the local dimension over all lattice points and sampling
the number with the bin size 0.01, the distribution is obtained. -0.01
(a=3.0.)
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FIG. 8. (a) and(b) Change of the Lyapunov exponent with the
parameters [a=2.8 andw=(y/5—1)/2]. (b) is the blowup of(a)
for 0.204<£<0.208. The exponent is computed from the average
of 10° steps after discarding initial 5000 steps.

The linear increase of the extremum point agrees with the
picture of a random curve. Consider, for example, a curve
C() (with i lattice  poin}  generated by
C(i+1)=6C(i)+n with » a random number distributed
over[ —1,1] and §<1. The number of extremum points in-
creases linearly with the number of mesh points. The in-
crease is given by IR/3 for §=0, while the increase is

3 slower with a smaller proportional coefficient fér0, until
it is given by N/2 for §=1. Since the increase is given by

FIG. 7. Number of extremal points versus mesh size. See th®.58N at the onset of chaoti@nd also in the chaos regipim

text for the method of computationa$ 3.0 andF,=317 811) our simulation, the critical torus can be approximated by a
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£~0.207, the “inverse” bifurcation from chaos to a FT and

1.2 T T T T . .
then to a ST(at e~0.211) proceeds. Further bifurcations to
haos a FT and chaos and back to a ST are seen for largAgain
B:Number of Extrema no convergence) at the boundary between chaos and a fractal torus, the in-
r T crease of the extremum points is almost linear.
Ill. FRACTAL TORUS VIEWED FROM A FUNCTIONAL
08 [ E MAP
In this section we apply the Fourier mode analysis to the
functional equatior{2). First we consider the Fourier expan-
o 06 T sion of X(4),
oal ] X(6)= 2 X(k)e?m’, )
- 1 ,
X(k)= J X(60)e~2mkidg, 7
02 . 0
and substitute it intd2). Then we have
0 4 > A =~ 0
0.2 0.202 0.204 o.ioe 0.208 0.21 0.212 X ( k)ez’”k‘”—aX( K) —a 2 X (k') X (k—K')
k'=—o
FIG. 9. Fractal dimension (obtained by measuring the length _i_8(5 — 6 1) ®)
and the exponeng on the number of extremal points, plotted ver- kil k=1
suse. Computed from the attractor of the functional map=(2.8 ) ]
andF, =317 811) Next we expand each Fourier modé€k) with respect to the
powers ofe,
correlated random curve. This behavior and the coefficient R S
characterize how the fractal torus collapses and is replaced X(k)= 2 "X (k). 9)
n=0

by chaos in the two-dimensional map Ed).

To close the present section, it is interesting to note th
universality of our results. In the discovery of a fractal torus
by [2], the parametea= —1 was adopted, where successive
transitions from a torus to a fractal torus and then to chaos o no R
was found with the increase ef We have reexamined the X (k)ezﬁ'kw—ax (k)— E > Xin(K) X m(k—k)
simulation using larger mesh sizes. Here again, a fractal =—w M=0
torus exists for a finite interval of parameters, where the i
fractal dimension increases from 0.6 to about 0.88 with —=6,1(8k1— 8k —1) (10)
The number of extremal points again increases with a frac- 2 '
tional cﬁﬁgf%gﬂ;‘gﬂﬁg‘;reetajfZi'gfn%ﬁ'g’sa};geiv‘;’r‘f;:;_‘g_‘aosfor eachn. It is straightforward to show thaX(k) has only
The Lyapunov exponent is plotted in Fig. 8, while the fracta Iterm53 such thain=|k|. This means that the teref only
dimension and the number of extremal points obtained fronk1615 a Fourier mode with the wave number no more than
the functional equatiofwith the mesh 317 8)lare given in ' e first three terms aKy(K), X(K), andX(6) are given as
Fig. 9.

From this figure one can see that windows of a fractal )A(O(k): 1— 1
torus(FT) and a smooth toru6ST) appear beyond the onset a
of chaos. Indeed there are transition sequences among the )
ST, FT, and chaos, as seen in Figs. 8 and % AD.204 the X4(k)= 101
FT appears, which is replaced by chaosesat0.206. For ! 2(e*?mM0+a—2)’

%ubstltutlng this into(8) and comparing the terms of the
same power of on both sides of the equation, we get

Sk,0 (11

(12

. —al2X,(—1)X4(1) 8y o+ [Xe(—1)]28 _o+[X1(1)]26
(k) = af2Xxy( )1()k02m[kwja)2] k—2+t[Xe(1)] kz} 13
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FIG. 10. Power spectru(k) = |)A((k)|2 for a=3.0 and(a) £=0.15,(b) e=0.156, andc) £=0.16 obtained by averaging 100 different
phase shiftg, (shift of lattice points within the range of B). (F, =317 811 and ¥=28=262 144)

X(0)=Xo(0)+£2X(0)+£*X,(0)+ -+, (14
X(£1)=eXy(+1)+e3Xa(+1)+eXg(= 1)+ -,

(15

X(+2)=2Xo(£2)+e4Xg(+2)+ - -, (16)

X(6)=Xo(0) +8{Xa(1)€*™ "+ Xy(~ )& 27"} +52(X,(0)
+X(2)*T 4+ X, — 2)@ 747 ) + £3(X5(1)€27 ¢
+Xa(— 1) 204 Xg(3)€0T O+ Xg( — 3)e 074}

+..., (17)

When ¢ is gradually increased from zero, the terms of
higher-frequency modes become larger in order. This ex-
plains the amplification of the torus oscillation for larger
as well as the slower decay of the Fourier coefficient with the
wave number.

We have numerically calculated the power spectrum
P(k)=|X(k)|? for the three types of attractors, by using the
largest 2' points possible out o points of the attractor of
the functional magl). The power spectr®(k) are plotted
in Fig. 10 for a=3.0 and £=0.15,0.156,0.16, where
F,=317 811 and P=2%%=262 144.

When the invariant curve is fractal, the first derivative of
the Fourier serieg6) is expected to lose its convergence.
Indeed, the spectia(k) decrease wittk slowly for the frac-
tal torus. The maximum of the envelope Bik) decays
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slower thank~?, which means thatX(k)~k~ ¢, where
0<a<1. The fractal nature is seen in the power spectra. For
a gmooth torus the spectra decay faster than or equal to 1012
k<.

It is interesting to note the analogy with the cascade pro- 10
cess in turbulence. Equatiai®) has a form similar to the
Fourier expansion of the Navier-Stokes equation as regard-
ing the formation of the cascade process by the term 10
X(k)X(k—k'). In the case of fluid turbulence, this term
brings about Kolmogorov's energy cascade. In contrast to In ¢
the time dependence in turbulence, the Fourier modes of our
functional equation fall into time-independent values at the

4]
fractal-torus regime. In fluid turbulence, the intermittency 10
leads to sporadicalness in the vortex cascade, which brings
about the deviation from Kolmogorov’s 5/3 law. In our prob- 10]
lem this corresponds to the sporadicalness of the extremal
points. The degree of the sporadicalness changes with the 1
parametere, as in the intermittency effect in turbulence, -1

while the sporadicalness is lost at the the onset of chaos in
the cascade of the functional equation. It will be interesting

to search for a quantity in our problem corresponding to the
energy cascade in turbulence.

IV. FRACTAL TORUS VERSUS SMOOTH TORUS

Let us reconsider the difference between smooth and frac-
tal tori from a dynamical system viewpoint. Of course, the
largest difference between the two types of tori is the length. 10%
The length of the fractal torus is infinite, in contrast to the
smooth torus. This also leads to a difference in the orbital n |
instability for the dynamics of the two types of tori. Smooth
and fractal tori are both stable against the perturbation in the

x direction. Although no exponential divergence of orbits 107 iy
exists for both, they are different from each other in terms of e0.154 |
the phase sensitivity. Pikovsky and Feu@#] have shown 108 =015 4

that two points on the SNA with closevalues separate from
each other by introducing the following phase sensitivity ex-

ponent: For this, note that the absolute value of the first 1 T
derivative of the orbit|dx,/d6,| fluctuates with time and ! VY R v ,
sometimes has a large burst. An arbitrarily large burst can 1 16 100 10 N L A A

appear when the map is iterated for infinite time steps. By

differentiating Eq.(1) with respect tof, one obtains
FIG. 11. (8 I'y and (b) ' obtained for a=3.0 and

ox oX w=(/5—1)/2. We have chosen 100 initial pointgy(6,) ran-
nti :f'(xn)_” +eg'(6). (18) domly and iterated Eq$18) and(19) for each initial point, starting
a0 a9 from dx,/90=0.Ty andI'{{) are obtained as the minimum of these

100 trajectories.

Using this equation, one can compute the evolution of

dxnld6 starting from some initial point Xy,60,) and

dXgld6=0. The phase sensitivity of Pikovsky and Feudel,

then, is defined as

corresponds to the mesh scale of $pand then saturates, as
is consistent with the results of the length in Sec. Il obtained
from the functional equation.

ThisT'y corresponds to the largest derivative of the attrac-
tor X(0) of the functional map3) for the mesh size about
N X (number of samples for m,@ao) The larger the iteration

numberN, the larger the length of the attractor at the mesh.
This quantity must grow infinitely for a SNA with some The second difference between smooth and fractal tori
power (and exponentially for a chaotic attractg4]. In our  lies in the parameter dependence of our invariant curve. For
example, this quantity increases with power 2.5-3 for a fraca fractal torus, there is sensitivity of the curve to the param-
tal region, as it is shown in Fig. 14). At the pre-fractal- etere at least for some value @. To confirm the sensitivity,
torus regime the quantity increases up td@ 3feps(which  we introduce the parameter sensitivity in the same way as

X,

a0

I'y= min max
Xg,0g0=n=<N
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FIG. 12. Graph of thé, map forF,=55 andf,=0.

I'y [4]: By differentiating the first equation afl) with re-

The third difference lies in the loss of convergence in the
spect toe, we obtain

derivative of X(6) for the fractal torus. Indeed, the Fourier
expansion ofX(#) decays faster than or equal tdifbr a
smooth torus, while for the fractal one, it decays slower than
1k, as discussed in Sec. Il in terms B{k).
This loss of convergence corresponds to the power spec-
Then we define trum of the time series ofx, since the relation
6= wn+const(modl) leads to a direct correspondence be-
tweend and time. It is shown ifi5] that the power spectrum
. of the time series is singular for SNAs. There the number of
singular points whose power is larger than a threshold de-

] . ~_ creases with some power with the threshold, while it decays
In Fig. 11(b) we have plotted this parameter sensitivity. exnonentially for a smooth torus. This characteristic is an-

Again this quantity grows with some power for the fractal 5iher manifestation of the loss of convergence in the Fourier
torus. In our model this power is identical to that fag, i.e.,  modes of the derivative.

the powe(r )2-5_3533 Fig. 1b)]. This is expected since Eq.  The question remains what causes the transition from a
(18) for 'y has the same form d3, [Eq. (19)], except that  smooth to a fractal torus. One possible route to the SNA is

the last term is smooth. The power-law increasd'{§f im-  the crisis between stable and unstable invariant cUiesn
plies that the fractal torus always has this kind of parameteour model, however, the unstable torigentinued from the
sensitivity. unstable fixed point of the logistic mapes far away from
Such parameter dependence is also reflected in theéne stable one and has nothing to do with the fractalization.
Lyapunov exponent of each attractor. The sensitivity of theHence there must be another possible mechanism for the
Lyapunov exponent to the parameteis relatively sharp in  emergence of SNAs. In the functional equation, this can be
the region of the fractal torus, while the parameter depenseen in the loss of convergence in the Fourier series. How is
dence is smooth in the region of normal torus, as we havéhe loss of smoothness expressed in terms of dynamical sys-
mentioned earlier. tems for the original two-dimensional map?

MXns1 IXn
L ()2 (). 19

9%,

&

I'$)=min max
Xg,000<n<N
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propose the following picture of a SNA viewed from the
F¢ map. In the SNA region, the, map has dense values
leading to chaotic behavior for sondlg, whose measure goes
to zero with the increase of the mesh sizg. This kind of
“partially chaotic” behavior may be related to the existence
of a positive local Lyapunov exponent discussed by Pik-
ovsky and Feuddl4].

We also note that th&, map has a strong sensitivity to

0.8 T T T T T T T T

0.75 |-

07 I

N . N ' 6, for the SNA. A change of(x;6y) with 6, becomes
_— faster ask goes to infinity. This feature of th&, map is
X o8 , , e consistent with the fractal nature of the torus.
3 o it
I LA ' V. FROM A FRACTAL TORUS TO CHAOS

What characterizes the transition from a fractal torus to
chaos? First, it is clear that the functional m@p loses its
convergence. This is interpreted as the loss of stability of the
fixed point in the functional space. The functional map

R shows chaotic dynamidpossibly having a high-dimensional
05158 01545 0155 01555 0% 01565 0157 01575 0158 01585 attr_aCtO) there, _a|th0ugh the snapshot patternXpf 6) re-
e mains fractal with the power 0.88—1. Beyond the onset of
chaos, the chaotic fluctuation d,,(6)—Xn(6)|? in-
FIG. 13. Bifurcation diagram obtained from tie, map for creases witt. It is interesting to study the transition from a

F,=987. A sequence of, generated by thg, map is plotted over fixed point to chaos in the functional space as a high-

100 steps after 2900 points are discarded. The time series is plottémensional dynamical system. As for the bifurcation to
for eache value. The initial condition for the nextvalue is chosen €haos, this transition might be referred to as intermittent

from the orbitx, for the previouse, while & is incremented by ~€haos in the functional space.

0.0001 between 0.154 and 0.1585. To verify this idea we have again considered Eyemap,

the composite one-dimensional map, given in Fig. 12. From
the graph a kind of intermittent transition is seen at about
£~0.1561. Indeed there is a tangent bifurcation from the
. X Lo e fixed point, by which the attractor of tHe, map changes to
tions from any point %o, do), the orbit will be periodic in chaF(;tic oney. This dependence@do@not Ehangegquali-

6 with period Fy.  [0p,= 00+ Fw=0+Fi-1 tatively with k, if k is large enough. Then the intermittent
= 6p(mod1)] Thus a composition one-dimensional map ischaracter of the transition from a fractal torus to chaos in the
constructed as thé&-times iterations of the original two- functional map is inferred by taking the limit— .
dimensional map. Let us call this composition map Fn As k is increased, the sensitivity enwill be sharper, not
map. TheF, map is a function ok if we fix the initial 6o.  only for a fractal torus but also for a chaotic attractor. The
The shape of the graph of tig map depends on the initial sensitivity of the shape of the graph leads to sensitivity of the
6o, €, andk. Figure 12 gives a sequence of examples of the yapunov exponent. This gives an explanation of the sensi-

F« map. The map converges to the functional majg @ees  tive dependence of the Lyapunov exponentsomreviously
to infinity. We can infer the behavior of the functional map mentioned.

from theF,, map.
In Fig. 13 we have plotted the bifurcation diagram of the
F¢ map by taking,=987.(This rather small value d¥, is

chosen so that the characteristic feature of the one- \we have verified the existence of the SNA in our quasi-
dimensional map is visible.Since the onset of the fractal periodically forced logistic map by measuring the Lyapunov
torus and chaos can slightly differ betweeR=F,_;/Fx  exponent and the length and the number of extrema of the
andw=(1/5—1)/2, we have to take into account the possibleattractor and power spectra. We have found that the SNA
shift of the bifurcation parameter to compare the result of theexists in a finite interval in the parameter space and con-
Fy map with that of the functional map. cluded that the SNA is no other than the fractalization of the
Let us look at the SNA regiof0.1542<g=< 0.1573 in  torus in[2]. It should be noted that Anishchenla al. [8]
Fig. 13. First, we can see a sensitive dependenceg @as we  have also recently discussed the fractalization of a torus to
have discussed earlier. Second, we can see some poirdlaos as a SNA by using a forced circle map.
where the map does not approach a fixed point and instead To understand the mechanism of fractalization and transi-
shows chaotic behavior. By the definition of a SNA, fag  tion to chaos, we have introducedfianctional map (func-
map must have a fixed point whéngoes to infinity. When tional equation) The attractor of the two-dimensional map is
w is approximated by a rationakay, by F,_,/F, with represented as a fixed point of the functional map in the
F=987), this does not have to be true. It seems that therfunctional space. From this viewpoint, fractalization of the
always exists at least one chaotic point for some infijpht  torus is expressed as the change of the fixed point solution of
every value ofe in the SNA region. From this result we the functional map, from a smooth to a nonsmooth one. The

To study this problem, we have introduced the following
Fy map. If we approximateo by F,_,;/F, and start itera-

VI. SUMMARY AND DISCUSSION
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transition to chaos might be regarded as an intermittent chad®n can be viewed as a coupled map with a long-range cou-
in the functional space. pling, by which each lattice point is coupled with the point at

We have also introduced tltg map, a composition of the a distance of,_; sites.
map over, steps. ThidF, map is a kind of cross section of It may be interesting to note an analogy between our func-
the functional map. With this map, the origin of the fractal- tional equation and the so-called Weierstrass function. The
ization of the torus is related to the sensitive dependence owWeierstrass function is defined as
the initial phased,, while the transition to chaos is associ-
ated with the intermittency from the fixed point in thig
map.

There has been a general interest in the search for a dif-
ferent type of dynamics in a forced systddil], as it has The topological dimension of the Weierstrass function is
been pioneered by Mos¢t2]. There the instability arising one, but its fractal dimension is believed to be more than
from the off-diagonal elemenfL3] in the Jacobi matrix may one. The Fourier coefficient ofW(6) decreases as
lead to a different dynamical behavior. Such instability isk—1+mh@inb ith the wave numbek. As Yamaguchi and
also seen in the convective instability in the open flow prob-Hata [16] have demonstrated, the fractal nature of Weier-
lem [14], where the instability due to the off-diagonal ele- strassand Takagi functions are derived from the functional
ment leads to a rich variety of dynamif$5]. The strange equation. Unfortunately, their analysis is not applicable to
nonchaotic attractor in our model is also due to the instabilityours since their functional equation is linear in contrast to
by the off-diagonal element, as it is characterized by theyurs. Still some analytical studies on the functional equation
phase sensitivity of the amplitude. It is interesting to exploreas well as the renormalization-group analygld] for the

dynamical systems with such a type of instability in generalperturbation serie$10) should be of importance in the fu-
where the present functional map method may be useful. tyre.

The study of the functional equation itself is an interesting

[

w<9)=n§=‘,o a"cod"7H (ab=1, O<a<1). (20

topic. In particular, the attractor of the functional map is ACKNOWLEDGMENTS
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