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Evidence for chaos in an experimental time series from serrated plastic flow
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An experimental time series from a tensile test of an Al-Mg alloy in the serrated plastic flow domain is
analyzed for signature of chaos. We employ state space reconstruction by embedding of time delay vectors.
The minimum embedding dimension is found to be 4 and the largest Lyapunov exponent is positive, thereby
providing prima facieevidence for chaos in an experimental time series of serrated plastic flow 84663
651X(96)04206-7

PACS numbdis): 62.20.Fe, 83.50.Ws, 83.50.By

I. INTRODUCTION water. The samples were stored at 263 K, till the start of the
test. Tensile tests were carried out on an Instron 1126 tensile
Instabilities in plastic deformation of metals and alloys testing machine, fitted with a 5 kN load cell. The tests were
often manifest themselves as serrated yield drops in tensilearried out in the monotonic and constant specimen displace-
tests. These yield drops have been attributed to the phenorment rate(SDR) mode, which could be chosen in the range
enon of dynamic strain aging which results from the interac9.000 1 mm/s to a maximum of 3 mm/s. A constant tem-
tion of mobile dislocations and the solute atoms. There hav@erature bath which enables test temperatures in the range
been several studies, experimenfd-6] and theoretical 553_373 K with a control accuracy of0.1 K was used.
[7-20), to understand the different aspects of this serrateépe 55 signal obtained as a function of time was recorded
flow phenom_enon. we sha_\ll de_5|st from emba_rkmg on a sufang stored digitally using a high speed data acquisition sys-
vey of the rich and growing literature on this fascmanngtem The data acquisition system consisted of an IBM

subject and only refer to some recent revig@s—24. In- PC/AT compatible computer, a Metrabyte 1so-4 multiplexer,

§tead, in this paper we shall fo.cus attention on a very Spec'f'fflletrabyte Das-8 analog-to-digital converter board running
issue—Is there a low dimensional chaotic dynamics under-

lying and responsible for the irregular oscillations in the Ioadunde”"?isrgfzc"é l;lortebOEktsotft(\;vare.n'gi?]e da;}ta;hac%lg%u\cl)nl rateA
signals observed as a function of time, during tensile test as op ed or each test depe g on the ajue.
under constant displacement rate control? We present a d ew blank runs established that the noise level was below 2.5

namical analysis of time series of serrated plastic flow ob- V. The zero level signal was preset to a negative value to

tained from an experiment. We describe in Sec. Il a tensil€"SUe that all Fhe data acqgisit_ion occurred ir) the Iin(_aar
test carried out by one of U$.V.) on a specimen of Al-Mg domgln of the S|gnal processing instrument, while ensuring
alloy. In Sec. Ill we present a numerical analysis of the ex maximum output signal levels. Figure 1 depicts the complete
perimental time series. Our analysis is based on state spa Oead (more gxactly the yoltage proporjuonal to the lpas a
unction of time(or strair), corresponding to a test at 310 K

reconstruction by the embedding of time delay vectors. W .
have employed some of the recent developments in this fieland at an SDR of 0'00.8 mm/s. Pu_rely elaSt'C response of the
ystem for small strain and the imminent fracture due to

to obtain the state space dimension, delay time, and the larg<~">". "~ . .
est Lyapunov exponent. The state space dimension is foun&'axIaIIty induced by n_ecklng for Iarge_stram are clegrly
to be 4. This is indicative of the minimum number of mac- Se€M- The load oscillations characteristic of a dynamically

roscopic variables essential for modeling the dynamics un_§tra|n aging material is evident within the window indicated

derlying unstable plastic flow. Also, we find that the in Fig. 1. The width of the windoyv be".‘g finite, the_total
Lyapunov exponent is positive Seétion IV summarize amount of data collected gets restricted in these tensile tests.

- U : SThis inherent limitation in the total number of data points
briefly the principal conclusions of our study. that can be generated is going to constrain the scope of time
series analysis of all such experiments.

Il. SERRATED YIELD EXPERIMENTS For_ all the subsequent analysis we use _the data corre-
sponding to the serrated flow shown in the window. We ob-
The material used in the investigation is an alloy of alu-serve that there is a monotonic rise in the signal with time.
minum with 3 wt% magnesium, obtained as 1 mm thickThis is due to work hardening, the basis of which is well
sheets. Tensile test samples with a gauge length of 25 mmnderstood, see for examf29]. Briefly stated, on an aver-
were punched out from the sheets. The specimens were aage, the obstacles to dislocation mobility becomes stronger
nealed in air at 693 K for 120 min, followed by quenching in and more in number as the strain increases, making the ma-
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FIG. 3. Logarithm of the power spectral dens{®SD of the
FIG. 1. Load signal versus time in a tensile test on the Al-Mg serrations shown in Fig. 2.
alloy. The box indicates the serrated plastic flow region used for the
time series analysis.

picted in Fig. 3; it is broad, like that of noise. The next task
terial harder. In our analysis we eliminate the drift compo-is to distinguish whether the broad power spectrum is of
nent due to work hardening by fitting the data to a secon@tochastic or deterministitchaotio origin. Making such a
order polynomial and subtracting it from our data set. As cartlistinction is possible because chaos adrsitert timepre-
be seen from Fig. 2, the fluctuations due to serrated yield ardictability and defies onlyjong time forecasting. The long

left intact in the resultant stationary time series. time unpredictability is a direct consequence of the dynamics
beingextremely sensitive to initial conditionsa hallmark of
. ANALYSIS OF EXPERIMENTAL TIME SERIES all chaotic systems. On the other hand there is no predict-

ability, short time or otherwise for stochastic systems. The

The analysis of the experimental time series, depicted ifharameter that captures the time scale beyond which the cha-
Flg 2 is described in this section. As a first step, we CalCUlat%tiC dynamics loses pred|ctab|||ty is the Lyapunov exponent
the power spectrum, which would tell us whether the timey . Simply stated, the Lyapunov exponent characterizes the
series represents a periodic or a nonperiodic state. For a pgme evolution of the distance between two dynamical trajec-
riodic state the power spectrum would contain sharp fundagories, starting from neighboring points in the phase space.
mental frequency components and their harmonics. A nongqr g dynamics occurring in am-dimensional phase space,
periodic state, however, would Iead_ toa brofa\dened.spe.ctrur(A,e can define, in fact, a spectrummfLyapunov exponents,
The power spectrum of the experimental time series is degharacterizing the evolution of distance between two dy-

namical trajectories along orthoganal directions. For a dy-
0.05 ‘ ' namics to be chaotic, there must exist at least one positive
Lyapunov exponent. Therefore to distinguish chaos from
noise it is sufficient if we estimate the value of the largest
Lyapunov exponent and see if it is positive, and to this task
we turn our attention below.

Let{x;= x(jAt):j=1,N} denote the time series, depicted
in Fig. 2, consisting of a load measured at regular intervals.
For the time series under analysisl=2310, and,
At=0.303 s. The first step towards the calculation of the
largest Lyapunov exponent is the construction of the state
space by the embedding of time delay vectors. This tech-
nique was first discovered by Ruelle in the early eighties and
] is described i130]. There have since been numerous devel-
opments, see for example, the recent revi¢8k-35. The
‘ ‘ . . method essentially consists of constructimgdimensional,

0 500 1000 1500 2000 L-delay vectors, defined byXi= (X, Xi+L, XitoL,s - -
i (time in arb. units) Xi+(m-1L)}- The time ordered sequence of vectors,
{X;:i=1,2, .. .N—(m—1)L}, defines a trajectory in the
FIG. 2. Serrated yield time series after elimination of drift. m-dimensional phase space, induced by a dynamics

-0.05}

Load Signal (arb. units)
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FIG. 4. Local exponential divergence plots for typical values nofand L. The abscissa is [d;;(0)] and the ordinate is
In[d;;(K)1/In[d; ;(0)], see text. Also, all the figures have the same scale.

Xi+1=F(X))=F'(X,). The dynamics" retains the charac- dynamically. Letd; ;(0)= |X;—X;|| be the Euclidean dis-
teristics (like the Lyapunov exponenbf the actual but un-  tance between the vectod and X;. This distance gets
known dynamics, if the embedding dimensionand less  mapped tad; (k)= ||)Zi+k_)zj+k|| by k iterations of the dy-
importantly the delay timeL, are choserproperly. This  namicsF. We calculate Ifd;(k)/d;(0)] and plot it against
equivalence ofF to the unknown dynamics is assured by In[d;(0)] for all possible pairs of vectors. This constitutes the
embedding theoren{86]. The question arises then as to the local exponential divergence plot for a given valuerand
criterion we must adopt to ensurepeoper choice ofm and L, with k being fixed at a chosen value.nf is much smaller

L. Intuitively, two vectors which are actually very far apart, thanm,, the large number of false neighbors would generate
may look close to each other when represented in a lowegxcessively large positive values in the local exponential di-
dimension. Thus in the passage from a dimensionto  vergence plot. Whem is increased, the exponential diver-
(m+1), one can detect false neighbors from true onesgence plots would become more and more compact. When
Whenm is greater than or equal to tterrect embedding m increases fronm, to m,+ 1, there would not be any sig-
dimension, sayn,, the number of false neighbors would be nificant or easily discernible change in the local exponential
zero. Based on this notion, several methods have been develivergence plot. The same observations hold goodi falso.
oped[37-39 and we employ in this paper a recent techniqueMore quantitatively we definey=(In[d;(k)/d;;(0)]) where
proposed by Gao and Zhefd0O] that implements this idea the angular brackets denote an average over all possible pairs
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FIG. 5. y versusL for typical
x 107 values ofm andL. Note y shows
R a minimum atm=4 andL=9.

of vectors. Asm increases,y will decrease and beyond smaller values. We are not able to demonstrate this and the
m=m,, the decrease will not be significant. For the selectedeasons for this are as follows. The data set we have is small;
m=m,, the quantitiesy plotted againsiL, would exhibit ~whend;;(0) is taken as small, the number of delay vectors
minima at sayL =L, , which defines the optimal delay time. that become available for estimatingis small and conse-
Figure 4 depicts a set of local exponential divergencélue“ﬂy the statistical fluctuatior(errorg are large. Instead,
plots, for representative values of and L. The value of We calculate y versus k for d;;(0)<a, where
m=4 yields a compact plot, fot =9. Figure 5 depictsy ~ @= 750, 650, 600, and 55Q« is expressed in units of the
versusL, for various values ofn. We find m=4 is the re§o_lut|on of t_hg att(actor, in other words, in units of the
minimal acceptable dimension. We also see from Fig. 5 thaf !NMum E“CI'd'ar.] d|stang:e between two delay vectors con-
y exhibits a minimum atL=9 for m=4. Thus we take structed from the time series. These are shown in Fig. 7. The

m=m,=4 as the acceptable minimum embedding dimen.curves are linear and coincide foup to 120 or so. Itis true

sion andL=L.=9. as the prooer choice of delay time Thenthat a stochastic process, represented in a finite precision,
_ETS prop , y ' might lead to exponential divergence of neighboring phase
we proceed to calculate as a function ok. To reduce the

effect of tangential flow, we consider only those vectf(rs

0.06

and)?i with |j —i|>w, where we takev=(m—1)L as rec- 4t
ommended by Gao and Zhafp]. In Fig. 6, we depicty as 0.05 Y +T

a function ofk for the case whem=4 andL=9 and for _|.+ 1
k from 1 to 200, withd;;(0)<750, measured in units of the 0.04 - ++

minimum distance between two delay vectors. A linear least ++

square fit for y(k) versus k yields a positive slope, 0.03 ¢ +

S=2.5x10"* and nearly zero intercept. The average value ++

of the largest Lyapunov exponenth is given by 0.02 ¢ ++
A=S/[AtIn(2)]=1.1x10 2% bits per secondThe linear 0.01 | Lt

. . . L . 4+

increase ofy with k, the zero intercept and the positivity of N=s

the Lyapunov exponent, indicate that there is indepdma ol ++++ P
facie evidence for a four dimensional chaotic dynamics as ‘ ‘ ‘ ‘ .
being responsible for the instabilities in the plastic flow as 0 50 100 150 200

manifest in the serrated yielding phenomenon.
It is indeed desirable to demonstrate the constancy of the FIG. 6. y versusk (time) for the experimental time series at
Lyapunov exponent asd;(0) is decreased to smaller and m=4 andL=9, for d;;(0)<750.
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FIG. 8. vy versusk for the Gaussian white noise with the same
FIG. 7. vy versusk time series atm=4 and L=9, for mean and variance as that of the experimental time series, with
a=750+), 6500), 600 A), and 55000). m=4,L=9, for «a=750(), and 550+).
space trajectories. The probability for this to occur increases IV. CONCLUSIONS
asd;j(0) is decreased. However, for a stochastic process one In this paper we have reported a detailed numerical analy-
would not get any systematic variation g¢fwith k, as we sis of an experimental serrated flow time series. We have
show below. employed state space reconstruction by an embedding of
We construct a time series from Gaussian white noisdime delay vectors. We find that the minimal embedding di-
with the same mean and variance as that of the experimentlension is 4 and optimal delay time is nine units. The largest
time series. Figure 8 depictg versusk for «=750, and Lyapounov exponent is found positive, indicative of chaos.
550, that correspond to the two extreme values considerelnus we have shown that there ispama faciereason to
for the experimental time series. The embedding dimensiof§XPect & low dimensional chaotic dynamics underlying the
is four and the delay time is nine, and these are the samefrrated flow phenomenon. The immediate task is to investi-
ones used for analysis of the experimental time series. Tha2(€ the nature of the strangenaotig attractor. The experi-
negative value ofy for a=750 is due to the fact that all Mental data we have at present is infrequettis large and
possible delay vectors have been used for the analysis. Hovmadequate N is small, f(_)r such an analysis. A dedpated
ever fora=550 we find thaty is positive for values ok up experiment on Se'fra.ted yield phenomenon tuned specially for
to 120. The important point is that does not bear any sys- dynamical analysis is underway.
tematic, linear or otherW|se_, relatlon ko in cqntrast to what ACKNOWLEDGMENTS
we observe for the experimental time series. Thus we can
reasonably conclude that the experimental time series is not The experimental work was carried out by one of us

stochastic. (S.V.) at the University of Western Australia, Perth.
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