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An experimental time series from a tensile test of an Al-Mg alloy in the serrated plastic flow domain is
analyzed for signature of chaos. We employ state space reconstruction by embedding of time delay vectors.
The minimum embedding dimension is found to be 4 and the largest Lyapunov exponent is positive, thereby
providingprima facieevidence for chaos in an experimental time series of serrated plastic flow data.@S1063-
651X~96!04206-7#

PACS number~s!: 62.20.Fe, 83.50.Ws, 83.50.By

I. INTRODUCTION

Instabilities in plastic deformation of metals and alloys
often manifest themselves as serrated yield drops in tensile
tests. These yield drops have been attributed to the phenom-
enon of dynamic strain aging which results from the interac-
tion of mobile dislocations and the solute atoms. There have
been several studies, experimental@1–6# and theoretical
@7–20#, to understand the different aspects of this serrated
flow phenomenon. We shall desist from embarking on a sur-
vey of the rich and growing literature on this fascinating
subject and only refer to some recent reviews@21–28#. In-
stead, in this paper we shall focus attention on a very specific
issue—Is there a low dimensional chaotic dynamics under-
lying and responsible for the irregular oscillations in the load
signals observed as a function of time, during tensile tests
under constant displacement rate control? We present a dy-
namical analysis of time series of serrated plastic flow ob-
tained from an experiment. We describe in Sec. II a tensile
test carried out by one of us~S.V.! on a specimen of Al-Mg
alloy. In Sec. III we present a numerical analysis of the ex-
perimental time series. Our analysis is based on state space
reconstruction by the embedding of time delay vectors. We
have employed some of the recent developments in this field
to obtain the state space dimension, delay time, and the larg-
est Lyapunov exponent. The state space dimension is found
to be 4. This is indicative of the minimum number of mac-
roscopic variables essential for modeling the dynamics un-
derlying unstable plastic flow. Also, we find that the
Lyapunov exponent is positive. Section IV summarizes
briefly the principal conclusions of our study.

II. SERRATED YIELD EXPERIMENTS

The material used in the investigation is an alloy of alu-
minum with 3 wt% magnesium, obtained as 1 mm thick
sheets. Tensile test samples with a gauge length of 25 mm
were punched out from the sheets. The specimens were an-
nealed in air at 693 K for 120 min, followed by quenching in

water. The samples were stored at 263 K, till the start of the
test. Tensile tests were carried out on an Instron 1126 tensile
testing machine, fitted with a 5 kN load cell. The tests were
carried out in the monotonic and constant specimen displace-
ment rate~SDR! mode, which could be chosen in the range
0.000 1 mm/s to a maximum of 3 mm/s. A constant tem-
perature bath which enables test temperatures in the range
263–373 K with a control accuracy of60.1 K was used.
The load signal obtained as a function of time was recorded
and stored digitally using a high speed data acquisition sys-
tem. The data acquisition system consisted of an IBM
PC/AT compatible computer, a Metrabyte Iso-4 multiplexer,
Metrabyte Das-8 analog-to-digital converter board running
underLABTECH Notebook software. The data acquisition rate
was optimized for each test depending on the SDR value. A
few blank runs established that the noise level was below 2.5
mV. The zero level signal was preset to a negative value to
ensure that all the data acquisition occurred in the linear
domain of the signal processing instrument, while ensuring
maximum output signal levels. Figure 1 depicts the complete
load ~more exactly the voltage proportional to the load! as a
function of time~or strain!, corresponding to a test at 310 K
and at an SDR of 0.008 mm/s. Purely elastic response of the
system for small strain and the imminent fracture due to
triaxiality induced by necking for large strain are clearly
seen. The load oscillations characteristic of a dynamically
strain aging material is evident within the window indicated
in Fig. 1. The width of the window being finite, the total
amount of data collected gets restricted in these tensile tests.
This inherent limitation in the total number of data points
that can be generated is going to constrain the scope of time
series analysis of all such experiments.

For all the subsequent analysis we use the data corre-
sponding to the serrated flow shown in the window. We ob-
serve that there is a monotonic rise in the signal with time.
This is due to work hardening, the basis of which is well
understood, see for example@29#. Briefly stated, on an aver-
age, the obstacles to dislocation mobility becomes stronger
and more in number as the strain increases, making the ma-
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terial harder. In our analysis we eliminate the drift compo-
nent due to work hardening by fitting the data to a second
order polynomial and subtracting it from our data set. As can
be seen from Fig. 2, the fluctuations due to serrated yield are
left intact in the resultant stationary time series.

III. ANALYSIS OF EXPERIMENTAL TIME SERIES

The analysis of the experimental time series, depicted in
Fig. 2 is described in this section. As a first step, we calculate
the power spectrum, which would tell us whether the time
series represents a periodic or a nonperiodic state. For a pe-
riodic state the power spectrum would contain sharp funda-
mental frequency components and their harmonics. A non-
periodic state, however, would lead to a broadened spectrum.
The power spectrum of the experimental time series is de-

picted in Fig. 3; it is broad, like that of noise. The next task
is to distinguish whether the broad power spectrum is of
stochastic or deterministic~chaotic! origin. Making such a
distinction is possible because chaos admitsshort timepre-
dictability and defies onlylong time forecasting. The long
time unpredictability is a direct consequence of the dynamics
beingextremely sensitive to initial conditions—a hallmark of
all chaotic systems. On the other hand there is no predict-
ability, short time or otherwise for stochastic systems. The
parameter that captures the time scale beyond which the cha-
otic dynamics loses predictability is the Lyapunov exponent
l. Simply stated, the Lyapunov exponent characterizes the
time evolution of the distance between two dynamical trajec-
tories, starting from neighboring points in the phase space.
For a dynamics occurring in anm-dimensional phase space,
we can define, in fact, a spectrum ofm Lyapunov exponents,
characterizing the evolution of distance between two dy-
namical trajectories alongm orthoganal directions. For a dy-
namics to be chaotic, there must exist at least one positive
Lyapunov exponent. Therefore to distinguish chaos from
noise it is sufficient if we estimate the value of the largest
Lyapunov exponent and see if it is positive, and to this task
we turn our attention below.

Let $xj[ x( jDt): j51,N% denote the time series, depicted
in Fig. 2, consisting of a load measured at regular intervals.
For the time series under analysisN52310, and,
Dt50.303 s. The first step towards the calculation of the
largest Lyapunov exponent is the construction of the state
space by the embedding of time delay vectors. This tech-
nique was first discovered by Ruelle in the early eighties and
is described in@30#. There have since been numerous devel-
opments, see for example, the recent reviews@31–35#. The
method essentially consists of constructingm dimensional,
L-delay vectors, defined by$XW i5 (xi , xi1L , xi12L , . . .
xi1(m21)L)%. The time ordered sequence of vectors,

$XW i : i51,2, . . .N2(m21)L%, defines a trajectory in the
m-dimensional phase space, induced by a dynamics

FIG. 1. Load signal versus time in a tensile test on the Al-Mg
alloy. The box indicates the serrated plastic flow region used for the
time series analysis.

FIG. 2. Serrated yield time series after elimination of drift.

FIG. 3. Logarithm of the power spectral density~PSD! of the
serrations shown in Fig. 2.
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XW i115F(XW i)[Fi(XW 1). The dynamicsF retains the charac-
teristics~like the Lyapunov exponent! of the actual but un-
known dynamics, if the embedding dimensionm and less
importantly the delay timeL, are chosenproperly. This
equivalence ofF to the unknown dynamics is assured by
embedding theorems@36#. The question arises then as to the
criterion we must adopt to ensure aproper choice ofm and
L. Intuitively, two vectors which are actually very far apart,
may look close to each other when represented in a lower
dimension. Thus in the passage from a dimensionm to
(m11), one can detect false neighbors from true ones.
Whenm is greater than or equal to thecorrect embedding
dimension, saymo , the number of false neighbors would be
zero. Based on this notion, several methods have been devel-
oped@37–39# and we employ in this paper a recent technique
proposed by Gao and Zheng@40# that implements this idea

dynamically. Letdi , j (0)5 iXW i2XW j i be the Euclidean dis-
tance between the vectorsXW i and XW j . This distance gets
mapped todi , j (k)5 iXW i1k2XW j1ki by k iterations of the dy-
namicsF. We calculate ln@dij(k)/dij(0)# and plot it against
ln@dij(0)# for all possible pairs of vectors. This constitutes the
local exponential divergence plot for a given value ofm and
L, with k being fixed at a chosen value. Ifm is much smaller
thanmo , the large number of false neighbors would generate
excessively large positive values in the local exponential di-
vergence plot. Whenm is increased, the exponential diver-
gence plots would become more and more compact. When
m increases frommo to mo11, there would not be any sig-
nificant or easily discernible change in the local exponential
divergence plot. The same observations hold good forL also.
More quantitatively we defineg[^ ln@dij(k)/dij(0)#& where
the angular brackets denote an average over all possible pairs

FIG. 4. Local exponential divergence plots for typical values ofm and L. The abscissa is ln@di,j(0)# and the ordinate is
ln@di,j(k)#/ln@di,j(0)#, see text. Also, all the figures have the same scale.
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of vectors. Asm increases,g will decrease and beyond
m5mo , the decrease will not be significant. For the selected
m5mo , the quantitiesg plotted againstL, would exhibit
minima at sayL5Lo , which defines the optimal delay time.

Figure 4 depicts a set of local exponential divergence
plots, for representative values ofm and L. The value of
m54 yields a compact plot, forL59. Figure 5 depictsg
versusL, for various values ofm. We find m54 is the
minimal acceptable dimension. We also see from Fig. 5 that
g exhibits a minimum atL59 for m54. Thus we take
m[mo54 as the acceptable minimum embedding dimen-
sion andL5LE59, as the proper choice of delay time. Then
we proceed to calculateg as a function ofk. To reduce the

effect of tangential flow, we consider only those vectorsXi
W

andXj
W with u j2 i u.v, where we takev5(m21)L as rec-

ommended by Gao and Zhang@40#. In Fig. 6, we depictg as
a function ofk for the case whenm54 andL59 and for
k from 1 to 200, withdi j (0)<750,measured in units of the
minimum distance between two delay vectors. A linear least
square fit for g(k) versus k yields a positive slope,
S52.531024 and nearly zero intercept. The average value
of the largest Lyapunov exponent,l is given by
l5S/@Dt ln(2)#51.131023 bits per second. The linear
increase ofg with k, the zero intercept and the positivity of
the Lyapunov exponent, indicate that there is indeed aprima
facie evidence for a four dimensional chaotic dynamics as
being responsible for the instabilities in the plastic flow as
manifest in the serrated yielding phenomenon.

It is indeed desirable to demonstrate the constancy of the
Lyapunov exponent asdi j (0) is decreased to smaller and

smaller values. We are not able to demonstrate this and the
reasons for this are as follows. The data set we have is small;
whendi j (0) is taken as small, the number of delay vectors
that become available for estimatingg is small and conse-
quently the statistical fluctuations~errors! are large. Instead,
we calculate g versus k for di j (0)<a, where
a5750, 650, 600, and 550.a is expressed in units of the
resolution of the attractor, in other words, in units of the
minimum Euclidian distance between two delay vectors con-
structed from the time series. These are shown in Fig. 7. The
curves are linear and coincide fork up to 120 or so. It is true
that a stochastic process, represented in a finite precision,
might lead to exponential divergence of neighboring phase

FIG. 5. g versusL for typical
values ofm andL. Noteg shows
a minimum atm54 andL59.

FIG. 6. g versusk ~time! for the experimental time series at
m54 andL59, for di j (0)<750.
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space trajectories. The probability for this to occur increases
asdi j (0) is decreased. However, for a stochastic process one
would not get any systematic variation ofg with k, as we
show below.

We construct a time series from Gaussian white noise
with the same mean and variance as that of the experimental
time series. Figure 8 depictsg versusk for a5750, and
550, that correspond to the two extreme values considered
for the experimental time series. The embedding dimension
is four and the delay time is nine, and these are the same
ones used for analysis of the experimental time series. The
negative value ofg for a5750 is due to the fact that all
possible delay vectors have been used for the analysis. How-
ever fora5550 we find thatg is positive for values ofk up
to 120. The important point is thatg does not bear any sys-
tematic, linear or otherwise, relation tok, in contrast to what
we observe for the experimental time series. Thus we can
reasonably conclude that the experimental time series is not
stochastic.

IV. CONCLUSIONS

In this paper we have reported a detailed numerical analy-
sis of an experimental serrated flow time series. We have
employed state space reconstruction by an embedding of
time delay vectors. We find that the minimal embedding di-
mension is 4 and optimal delay time is nine units. The largest
Lyapounov exponent is found positive, indicative of chaos.
Thus we have shown that there is aprima facie reason to
expect a low dimensional chaotic dynamics underlying the
serrated flow phenomenon. The immediate task is to investi-
gate the nature of the strange~chaotic! attractor. The experi-
mental data we have at present is infrequent (Dt is large! and
inadequate (N is small!, for such an analysis. A dedicated
experiment on serrated yield phenomenon tuned specially for
dynamical analysis is underway.
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