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Stability of the one-dimensional kink solution to a general Cahn-Hilliard equation
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We give an analysis of the Cahn-Hilliard equation with a general potential, which admits a one-dimensional
kink solution. We investigate the stability of this equilibrium solution to small perpendicular perturbations of
variable wave numbeét. We develop a perturbation theory for small and lakgend apply the general results
to two commonly used forms for the potential. We go on and use a Bpgeximant to describe the full
dispersion relation, and for the particular potentials it is shown that the kink solution is stable far all
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I. INTRODUCTION and so Eq(4) becomes

(duo)z_
a —ZF(UO).

Pattern formation resulting from a phase transition has
been observed in alloys, glasses, polymer solutions, and bi-
nary liquid mixtures. We consider a two-component system
where the phase transition is induced by rapidly decreasingo study perpendicular perturbations to this kink solution we
the temperaturgquenching from someTy>T, to some  \rite
T,<T.. The continuum limit model, used to describe the
dynamics of the subsequent concentration of one component,
is that proposed by Cahn and Hilliafdl], namely,

(6)

U=ug+edu(x)e kyrken,

)

Inserting this into Eq(1), we obtain the linear equatighav-

Uy =V?2 d_F_Vzu 1) ing neglected products afu), namely,
du '
2 \d dF
where the subscript denotes a partial differentiation with re- —you=| 2K || g K gl |ou. (3

spect tot, while F is some general, nonlinear free energy
expression that admits a stationary, one-dimensional kink SQuherek2= K2+ k2
lution to the equation abové kink solution simply being z
any solution that describes a flip from one component tqh
another over some finite distanc@he equation arises from
classical thermodynamic considerations for the interdiffusio
of two componentsA and B. In the above equation=u,
denotes all componen#s andu=u, denotes all components
B. For a kink solution we insist that

The plan of the paper is as follows. We use perturbation
eory to determine the stability of the kink solution to
small- and largée perturbations in Secs. Il and Ill, respec-
r][ively. This analysis is performed for both a general and
particular free energy. In Sec. IV we use a Pagproximant

to derive a full dispersion relation for both the general and
two particular cases. We draw conclusions in Sec. V.

dF

dF
F(u)=F(uy)=0, E(U1)= m(uz)=0, (2 Il. SMALL- k ANALYSIS
A. General potential

and F(u)>0 for u;<u<u,. Equation(1) has a stationary,

one-dimensional kink solutiony(x) given by the solution of We look for marginally stable modes 0), and so from

Eq. (8) obtain

dF d2u0 2 2
——(Ug)— == =0, ©) d°F Y] P
du dx duz(uo) dx2+k oSu=0. (9
with lim,_, , ,ug=u, and lim_, _,uy=u,. Also note that we . o . .
can intexgr;te OEq(.3)2 to obtain o1 Differentiating Eq.(3) with respect tax gives us
2 3
1/du 2 d<F _ d Ug dUO
E(d—x") = F(uo) +K, @ aZ =g/ ax (10

whereK is the integration constant. In the limit— + o this
equation becomes
0=F(u,)+K=K, (5
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and thus Eq(9) has a solutiorSu=dug/dx, whenk=0. We
use this to find the stability of the kink solution for small
k. Begin by expandingdu(x) and vy in terms of the small
parametek,
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7= yik+ yok?+ yak+ -,

dug

ax KUt k26U, - - -,

Su=ay (12)

wherea, is a constant coefficient.

The method used relies heavily upon obtaining the correc[ Tae + W(UO)

form of the solution ag— * . It is shown in Ref[2], for a

different equation, how knowledge of the asymptotic solu-
tion is crucial in provingsu to be bounded. Here we show

by demanding that the full solution to E() has the correct
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is proportional tau,x+ K. Clearly this is incompatible with

the asymptotic form and so we set=0. This leaves

ou;=a,(duy/dx), wherea, is some constant coefficient.
To second order itk we obtain

d? d%F

x o, dug

SUy=Cy+ Yzaoj Ug(x")dx —aod—.
0 X

(18)

Again using Eq. (12, we see that the expression

slow spatial varying, asymptotic form, that we can obtain the/ alo(x")dX’ gives the wrong asymptotic form faiu and so
value of y to at least ordek®. The asymptotic solution is We must sety,=0. We now apply the consistency condition
discussed in Appendix A, where it is shown that asto EQ.(18) to obtain

X— F o

Su—A(K)[1—K|x|+O(k?], (12

We now insert Egs(11) into Eq. (8) and equate orders of

k. To first order ink we obtain the equation

d*  d?(d°F dug
" 5d T ad gz | [dui=rao g (13
Integrating this twice gives
d®>  d%F S et JX Ny
d_xz_W(UO) Up=CoXTC1—~ ¥180 OUO(X) X
(14

Note that thecyx term will give rise to a contribution to
Suy that is proportional tox asx— *o. Terms proportional

to x" in this limit we call algebraically secular. From Eq.

&gl
Cz_uz—ul’ (19

wherel,={(dug/dx)?). As x— +, Eq. (18) becomes

d2

B~ 5 Su,=Cy, (20)

which has the solutiodu,=(c,/B) (we neglect exponen-
tially decaying solutions
To third order ink we obtain

@ o X dug
—WﬁLW(Uo) duz=Cz+ Ysaofo Ug(x")dx —a gy
(21)

(12) we find that the solution has an algebraically secular

term|x|, asx— *o. Thus we must set,=0 at this and all

and again we use the consistency condition to determine

subsequent orders & The constant; can be determined Cs, Nnamely,
using the consistency condition. This is imposed by multi-

plying Eg. (14) by duy/dx and integrating over akk. Since
the operatod?/dx?— (d2F/du?)(u,) is self adjoint, we find

that
7@ dUofX e
Cl_(Uz_U1)< dx OUO(X ydx >'

where ( ) denotesf*%dx. For convenience we definkg

such that
- duofx N
1— dX OUO(X) X ’

giving ¢1=vy4a9l1/(u,—u,;) (see Appendix B Now con-
sider Eq.(14) as x— + and denote the value afu; as
X— 4o by du; ; then

(15

(16)

d2

o2 P Suy=c1— ya(UxXx+Ky),

17

where we have writterfjug(x')dx’ =Ky +uyx asx— + o,

(d2F/du?)(u,)=B, and we have neglected exponentially

c _agly—y380l4 22)
: Up—ug
Co

Since in the limitx— + %, du,=—, we can use Eq12) and

B
require that ax— + o,

Suzxl+ ax, (23
where « is a constant. Knowing this, we do not sg{=0.
As x— + Eq. (21) becomes

d? —
[—WJrﬁ SUz=C3+ y380(K1+ UyX), (29
which has the algebraic solution
—  Y38Uz  CatysagK;
oUz= X+ , 25
S 3 (25)

decaying terms. From E@12) we see that to lowest order in
k the asymptotic solution tends to a constant. In this limit,where again we have neglected exponentially decaying solu-
Eq. (17) requires the solutiodu, to have a contribution that tions. We now combine our asymptotic results to obtain
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0 k?c,  k3(C3t 730K 1) N k®ysaqU; L O(KY)
u= X
B B B
k2c K(C3+ y3a0K KysaoUaX
_ 2/1+ (Cst y3@o 1))(1+ y302)+0(k4).
B\ Cz Cz
(26)

Comparing this with Eq(A4) of Appendix A, we find

%) P
Y3=— == -
uy(uz—uy)

(27)

agl,

Clearly sincey; is negative [,>0), to orderk®, the kink
solution is stable. Note that this is identical(®14) in Ref.
[3], obtained using the variational method.

The fourth-order equation is

ouy

2 ZF
[‘W*W%)
X
=(7ysa1t ys80+ap) fo Up(x")dx’ —24u,

C, (X (x d?F o dug
+Ef0 fo W(uo)dx dx —aza—cb (28)

wherec, can be determined using the consistency condition.

As x— +o Eq. (28) becomes

d? — C,
{_W"‘ﬁ 5U4:(73al+74ao+ao)(K1+U2X)_2E
C, [ BX?
+E T+K2X+K3 —Cy, (29)

where we have written [%% (d2F/du?)(up)dx"dx’
= Bx%/2+ K,x+Kj in the limit x— +o. Equation(29) has
the algebraic solution

54: b2X2+ b1X+ bo f (30)
where
b 1(K( + +ay) C2 +02K3> (31
=— a apgtag)— ——Cs4+—/|,
0 B 1\Y3a1 T Yadg 0 B 4 B
1 KsC,
by=—| Ua(yza;+ ysap+ap) + , (32
B B
by= =2 33
2=55" (33

We now collect the algebraic terms in our asymptotic formj —2,/2(1—n2),

of du to obtain
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_ cC C3+ y3a80K b agysU
Su= 2ice| 141 ST 70KD) l)+k2ﬁ){1+k e
B Cz Cz Cz
K2 BbiX  CzagyaUsX agK17§U2X+ Bbox?

Co Cg Cg Cz
+0(k®). (34
Replacingy; by —c,/agu, leaves
— C C3X bix Kix
Su=—2K3(1+---)| 1—kx+K? LJF'B_l__l
B C2 C2 uz
b,x?
P c2 +0(K5). (35)

Using Eq.(A4), we equate the term above, proportional to
k?x, to — y3/28. This gives
FIES 13 Il
up(uz—up)?  2Bu3(Uz—up)?  Up(Uz—uy)’
(36)

Y4=—

wherel ;=K /u,—K,/B. So, finally, we write

Y= ’}/3k3+ ’)/4k4+ O(k5) .

B 2 P 13
Up(Up—Uq) us(u,—up)? 2Bus(up—uy)?
2l3
—— = __k*+0(kd. 3
Up(Uup—Uy) () 37

Note that to determine to this order ink, we do not need
the full solution Su,. Determination ofc, (which uses the
full solution Su,) is not required, and thus we only need the
asymptotic form oféu, in our analysis.

B. Particular potential

We now consider the particular case where the free en-
ergy is of the form

F(u)Z%(l—uz)z. (38

This is a common approximate form for a binary system
undergoing a phase transition, and then the Cahn-Hilliard
equation(1) becomes

u=V?ud—u—Vaul. (39
It is simple to see from Eq2) thatu;=—1 andu,=1. Also
in the limit x— + oo

F"(uo)=pB=2, (40)

and using Appendix B we perform simple definite integrals
to give

|2=&, |3=i2(3—2|n2). (41)

50 %
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FIG. 1. Particular free energy: dashed line, snkadlpproximation to the growth rate; full line, larggeapproximation to the growth rate.

We find for this potential that the stationary solution has awhich is an eigenvalue problem for,. So for largek we

growth rate to perpendicular perturbations given by

V2

11
S P F— 2 5
v 3 k 18k +0(k>). (42

To lowest order this agrees with that obtained using a varia-
tional method in Ref[3]. To next order ink the result ob-

have the following expression for the growth rate:

l Ye

=1tz (47)

B. Particular potential

For largek we have an expression for the growth rate

tained in[3] is 8% greater than here. This is due to their usegiven by Eq.(47). Since the stationary solution to E@9) is

of the same trial eigenfunction for all orders laf

Ill. LARGE- k ANALYSIS

A. General potential

up=tanh{/\/2), y. is obtained by solving

2

ou,+ °
dx2“-a

3 X
—secf—— 1—1> Su,=0. (48)

2N T2

In this section we consider the growth rate of perpendicuEigenvalue problems such as this have general solutions
lar perturbations with small wavelength. Begin by dividing (given on p. 1651 of Ref4]). We find that

the linear equatiori8) by k* to give

«y5_1c|2 125 1/1 d? 1d2F 5
=l ge ) el g L e (oo
(43
Since 1k is small we expand the variables as
Y Yo Y
F:73+T+E§+"" (44)
SUp  dug
ou=du,+ T-FF—F (45

The first two orders tell us that,= —1 andy,=0. To order
1/k? we obtain

d> 1d°F 5 _ YcdUg 46
d_xz_EW(UO) Ua=——>%—, (46)

3-V13
Vo= ( 2\/_ =—0.303 (49
and thus the growth rate of lardgeperturbations is given by
v 0.303
FO 0

To lowest order the kink solution is stablg —k?), which
is in agreement with Ref.3]. Figure 1 shows our two ap-
proximations for small and largk given by Eqs.(42) and
(50), respectively.

IV. FULL DISPERSION RELATION

A. General case

For the particular potential given by E¢38), the only
bounded solution to Eq(9) with k=0 is su=duy/dx
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FIG. 2. Particular free energip): dashed line, smak-approximation to the growth rate; dot dashed line, ldtgeeproximation to the

growth rate; full line, Padapproximation to the growth rate.

(k=0), and soy does not cross thk axis for allk>0. We

which when compared to E7) gives usaz= —a,/y;. We

assume that this applies in general, and so combine growtljo to next order in ¥ and finda,=az/a,, so that our final
rate results for small and larde This is done using a simple Padeapproximant for the growth rate is

Padeapproximant to obtain an expression for kllWe as-
sume a general form for the growth rate as

Y _ 1 + a2k+ a3k2
oA T Trak 6D
For smallk Eq. (51) becomes
Y
F = al . (52)

A comparison of this with Eq(37) gives usa; = y3. To next
order for smallkk we have

x

k3:73[1+(az_a4)k]- (53

Again, a comparison with Eq. (37) gives us
a,= y4l v3+a,. We now divide Eq(51) by k and obtain

1 a,
y F + ? +az
D] e E—— (54)
E +a4
Thus, for largek,
Y @as
K= Yag, (55

2

Y Y3
—=—+k.
k3 (14 ya)k— s

(56)

B. Particular cases

We now consider the cag@), where the free energy is
given by Eq. (39). It is found that y3=—2/3 and

v4=— 1, and thus the growth rate given by E@6) be-
comes

LA S
K 6y2+7k

(57)

This is plotted, along with approximations for small and
largek, in Fig. 2. This appears to be in good agreement with
Fig. 6 of Ref.[3].

We can calculate another Padg@proximation for the
growth rate in this particular case. Here, instead of using the
fourth-order result for smak, we use the (1?)-order result
for largek given in Eq.(50). This gives

L. 4 4K (59)
k3—6\/§+ 8k |
J13-3

which is at most 8.5% different from E¢57).
We now look at a particular cage) where the free en-
ergy is given by
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FIG. 3. Particular free energ§p): percentage error in growth rate given by the Pagproximant.

numbers decaying quickest, akd=0 (infinite wavelength
(1-w? u>0 perturbations being marginally stable¥=0). For the case
(59) of the double Gaussian potential, our approximation is within
1.3% of the exact result. This leads us to believe that Eq.
(56) is a good approximation to the growth rate of perturba-
tions for all wavelengths, foany potential admitting a sta-
which is the so-called double Gaussian potential. It is a comtionary kink solution.
monly used approximation because an exact growth rate re-

F(u)=

NIF N R

(1+u)?, u<o,

(216) of [5]] USing this potential we flnﬂ”zF/d U2=1 for TO THE LINEAR CAHN-HILLIARD EQUATION

all x, u,=1, u;=-1, and using Appendix B we calculate _ . .

the values of the definite integrals, namely, As x— + oo, the linear equatioi(8) can be written as
l1=1,=15=1. (60) d )2 dz B

This givesy;=—3 andy,= — 3, which are substituted into
Eq. (56) to give a Padapproximant form for the growth rate where terms such as™ % have been neglected. This has
as solutions of the formsuce* . Combining this with Eq(A1)
gives
0% 2

— L= +k. (61) 4y 2
K3~ 4+3k g /1_?
k]

When compared to the exact growth rate relation, given by A=—
Eq. (2.16 of Ref. [5], this approximation has a maximum

error of 1.3%, as shown in Fig. 3. Since we are only interested in the slow behavtbe alge-
braic terms discussed in Sec), e need only consider

(A2)

V. CONCLUSIONS

. 4 1/2
We have found expressions for the growth rate of perpen- B—B\/1- 77
dicular perturbations to the kink solution of a general Cahn- A= — B +K2

2

Hilliard equation, at small and large values of the wave num-

ber k. This is done using ordinary perturbation analysis

combined with knowledge of the asymptotic form of the lin- If y=y3k®+ y,k*+ - - - andk is small, then we can expand
ear equation. We derive a Padpproximant to the growth our solutione** to obtain
rate for allk. We apply our results to the Cahn-Hilliard equa-

tion for two particular potentials. In both cases, it is found 5u=A{1—kx+ kz(x ¥3X

that the kink solution is stable for ak, with large wave 2 ﬁ

(A3)

2

+ O(k3)} (A4)
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whereA is a function ofk. Note how this expansion contains and using Eq(6) leaves
algebraically secular terms that appear to be unbounded as

Xx— +o, but are in fact simply parts of a slowly decaying
exponential term. Also we have not included or y, in our
expansion ofy. Including such terms makes equating asymp-

| IUZ Ug d J'Ul Up d
=u ———=dup—u ————=du
V%o 2F(ug) Mo \2F(ug)

totic results here to those obtained using perturbative tech- Y-
nigues impossible. — —Oduo. (B3)
Uq A\ 2F(UO)
APPENDIX B: UNKNOWN INTEGRALS o
Similarly,
We have determined the growth rate of smalperturba-
tions to fourth order irk. The exact values are dependent dug) 2 +2 [ dug)?
upon three unknown integrals,l,,l;. Here we redefine Io= ax :J_m dax dx
them from integrals over akt to integrals over all.
From the definition given by Eq16), udu u
~ Zd—odu(,:f * J2F (ug)dug (B4)
dUO X +°°dU0 X up X Uy
1= —f Uo(X")dx’ Ef —f Upg(X")dx'dx,
dx 0 —e dXx 0 and
(B1)
which on integrating by parts becomes |3_ﬁ_ Kz _ im JX Yo ld—ZFZ(uo) dx
§ e e U B 4 .ixJolUz pBdu
— ’ ’ _ 2
Il_ Uofo Uo(X )dX J',oo UOdX 1 fuz IB dZF( ) dUO
—o =— Ug—u Ug) |—
. . e uzB8Jo 0 T2gy? O Uox
=u Uo(X)dx—u f u xdx—J ud(x)dx, ,
Zfo o(X) tlo oX) —o o) 1 f“z[BUO_UZF (UO)]du (B5)
= 0.
(B2) J2u,BJo VF(up)
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