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Hidden order in the frequency noise of an electronic oscillator
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The frequency noise of an electronic oscillator is investigated by measuring and analyzing the temporal
fluctuations of its period. Two devices allow the recording of the variations of the average frequency of the
oscillator and of its instantaneous time phase. In order to see if an underlying chaotic process can account for
these fluctuations, the time series are analyzed with the help of three different methods. Two of them rely on
the reconstruction of an embedding space, whereas the third is a multifractal-type approach. All the results lead
to the same conclusion: the temporal fluctuations are consistent with the presence of a low-dimensional
attractor that may be responsible for the remote correlations detected in the dynamical behavior.
[S1063-651%96)04812-X]

PACS numbeps): 05.40:+j, 72.704+m, 05.45:+b

[. INTRODUCTION low-dimensional deterministic chaos. In order to distinguish
between stochastic and deterministic processes, the analysis
The low-frequency noise of an oscillat@quartz oscilla-  of time series generally begins by reconstructing an embed-
tor, atomic clock, etd.is currently analyzed by the use of ding phase space with the time delays method]. In the
two basic tools: Allan variance and power spectral densitypresence of deterministic chaos, the attractor of the system is
[1]. Allan variance is defined as the mean-squared valu%ﬁust lénf%?ed, solt?at i(tjs dynagé]catlhprﬁp?rties can be ex-
2 v 1 2 L _ racted. The correlation dimensi¢6], the Kol'mogorov en-
oy(1)= 2 ([AYi(7)]) of t.he deviationsAyi(7) =Yi1(7) tropy [7], the phase portraits and Poinca®ctions]8], and
—Yi(7) between successive frequency measurements, eaghle 1 yapunov exponent9] are some features that can be
sampled over a time interval. Typically, oy(7) follows @  estimated. In practice, the presence of an attractor is presup-
power law7~% (q intege) over a restricted range of with  posed and the ability to detect invariants is taken as a proof
q>0 (convergence over short timesq=0 (flicker noise of its existence. Unfortunately, it has been sho@o—12
floor) at intermediate times, angl<O (divergencg at long  that this approach can be misleading. Some stochastic pro-
times. The short-time dependence results from thermal noiseesses give rise to a seeming invariant and, conversely, the
(g=2) in quartz oscillators or masers and shot noisedetermination of the invariants of a chaotic system may be
(g=1) in cesium clocks. However, the behavior observed ahindered by the experimental noise. These drawbacks have
intermediate- and long-time scales is still unexplained. motived the emergence of new methdd8,14] that are not
The power spectral density is the second tool. It also folbased on the calculation of some dynamical properties, but
lows a power lawfP (p intege) whose exponent is simply instead rely on the topology of the points in the reconstructed
related tog by g=p+1 if —3<p=<1, andg=2 if p=1 for  phase space to check the presence of an embedded attractor.
stationary processes. In particular, shot noise in an atomic The purpose of this paper is to investigate temporal fluc-
clock leads to white frequency nois@+0), whereas the tuations of electronic oscillators with the aim to detect a
flicker floor (q=0) corresponds to a flhoise. possible low-dimensional deterministic process. The two
The ambiguity on the type of noise whep=2 is over-  kinds of experiments used to measure these fluctuations are
come by the modified Allan variance, which averages ovepriefly described in Sec. Il. The time series analyzes based
N, samples so that the effective bandwidth of the measureon the reconstruction of an embedding space are carried out
ment decreases from Afo 1Ngr. However, there is no in the succeeding section by estimating the correlation di-
physical explanation for the origin of flhoise. mension(Sec. Il A) and by investigating the topological
An alternative characterization of the stabili] is based ~Properties of the reconstructed spacgec. IllB). The
on a multifractal-type approach, which involves a three step§ultifractal-type approach is implemented in Sec. IV. The
procedure. First, local scaling exponents are computed frorfignificant results are finally summarized, and the work is
the original data. The resulting series of exponents is thefoncluded by a short discussion in relation to nonlinear dy-
transformed into a binary coding, which gives valuable in-namical systems represented by the Arnol'd map.
sights into the global stability of the system. The last step
consists in constructing a “devil’s staircase” from the cod-
ing to gain topological indications about the origin of the
noise. The stability of oscillators can be studied in time or fre-
In addition, Lorentz[3] initiated the development of a quency domains. In the present paper, two kinds of time
variety of techniques to analyze erratic time series. Indeed hdomain experiments are considered. In one ¢8se. Il A
showed that the complexity may be only apparent, that is, thene measures fluctuations of the average frequency, whereas
behavior is not necessarily stochastic but may result from she other(Sec. Il B) leads to the recording of instantaneous

II. EXPERIMENTAL ARRANGEMENTS
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phase fluctuations. Two characteristic times have been
proved[15] to have a major influence on the variations of the 1400 4 1400
measured quantityfrequency or phagey. These are the ] 5
sampling durationr, that is, the time interval during which ] 0.86 ps’/channel
y is accumulated, and the sampling peridd which repre- ]
sents the time elapsed between the beginning of two con-
secutive recordings of. The differenceAt— 7 is the so-
called dead time. Thus the outcomes are a collection of
yi(7,At), wherey; stands for thath measurement of. In

this regard, the two experiments are complementary. Indeed,
the average frequency is continuously monitored, that is to
say the dead time is equal to zero aftk 7, whereas the
phase measurement is instantaneaus (), so that the dead
time is equal to the sampling periakt.
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Period counting is the common technique of average fre-
guency measurements with a counter. The oscillator signal
being tested is mixed to a reference signal of nearly the same FIG. 1. Temporal fluctuations and structure functjas] of the
frequency to produce a low-frequency beat signal. This sigPulse positions recorded with the streak camera.
nal is introduced as a trigger to a gate in the reciprocal
counter, which opens at one of its zero crossing. The highy;=y;(0,0.04) as theith measurement, but more details
frequency counter clock signal and the beat signal are acc@bout the experimental arrangement can be fourd 6l 7.
mulated in the counter register and their periods are simulta-
neously counted. The gate closes after an integral number of lll. EMBEDDED TIME SERIES ANALYSIS
cycles of the counter oscillator, which determines the sam- .
pling duration. In this way the resolutionry/7 only de- The time delay methofk] amounts to construct a collec-
pends on the period, of the 500-MHz counter clock and on tion {Y;,i=0N,—1} of m-dimensional vectors
the sampling duratiorr. In most of the 9reported recordings
the resolution was made equal t&x20 ° by sampling dur- Vo—(v. v _ _
ing 1s. After each sampling, the number of cycles of the Vi Wi Yt Yikeat - - Yiker (m-11) @)
beat at 101 Hz of two 2.56-MHz oscillators is divided byo . . . .
yield the average frequency. The beat is continuousl);rom the scalar t|_me s_erle{sli ! =ONp—1; for given delays
sampled so that two consecutive measurements are adjacihi and embedding dimensiom. The embedding theorem
(no dead timg and one can use the shortened notatio 5 states that,_ in the case of a system whose tr_ajectory lies
yi=vi(r,7), wherer=1s unless otherwise specified. on a_d-dlmen5|onal attractor, the space underlying the d_y-

namics of the system can be unfolded by a proper choice

(K,L,M) of the parametersk(l,m).

The delaysk and| are intended to rule out dynamically

In this experiment, individual laser pulses are recorded bylose points, that is, points for whigh, ;~y; due to a small
a synchroscan streak camera associated with an optical m@ampling periodAt. Different methodg19] have been sug-
tichannel analyzer and a microcomputer. The sweep of thgested to determine the del&ybetween successive coordi-
camera is generated by frequency doubling the signal of thgates of a vector. The deldybetween the first components
electronic oscillator, which drives the mode locker of theof successive vectors was introduced by Albaal. [20]
laser. It has been showi6,17 that the barycenter of the and can be used to settle the anomaly mentioned by Theiler
streak image is directly related to the time interval betweenf21]. The embedding dimensiom must be chosen suffi-
the arrival time of the pulse and the instant of zero crossingiently large for the embedding space to unfold the geometry
of the sweep, so that the sampling duratiois equal to zero.  of the attractor. This condition is surely mg] if m>2d,
Moreover, a comparison between experimental results angyt the minimal sufficient embedding dimensibh may be
those deduced from a model eviden¢&3] that the laser gsmaller.
jitter is less than 3 ps. Therefore, the temporal behavior of The time delay procedure is the starting point of the vari-
the barycentergFig. 1) reflects the instantaneous time phaseous techniques proposed to detect a possible attractor in a
fluctuations ¢-20 ps of the mode locker oscillator. Experi- time series. Two of them are considered, one consisting in
mentally, the train of picosecond pulses is delivered by a dyghe estimation of the correlation dimension and the other

laser pumped by a Nd:YAG laséwhere YAG denotes yt- based on topological considerations.
trium aluminum garnet which is mode locked by an

acousto-optic modulator driven at 40 MHz. The deflection of
the camera is equal to 0.93ps/channel. Each recording con-
sists in 1024 measurements spaced by a sampling period The Grassberger-Procaccia algorithé amounts to cal-
At=40ms. This is all that is needed to define culating the correlation integrals

B. Instantaneous time phase measurement

A. Correlation dimension
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FIG. 2. Correlation exponents of a beat frequency recordin

(O) and experimenta{+) and simulated X) phase fluctuations.
The embedding delays ake=1=1. The straight line of slope 1 is
also shown.
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Hor=Yi=Yi) (2
for increasing embedding dimensions Here H(r) is the
Heaviside function andY;—Y|| is the Euclidian distance
between Y; and Y; (excluding Y; itself), so that
3H(r—|Y;—Y||) counts the number of vecto¥ that lie in
the m-dimensional ball of radius centered aV;. The num-
berN, of constructed vectors is related to the numlgrof
points in the original data set byN,=1+[N,—1
—(m—=2)I]/k. ThusC(m,r) is the fraction of pairs of em-
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experimental device. Also shown in this figure are the results
arising from a time series computed with the help of a model
[17], developed to interpret the pulse fluctuations recorded
with streak cameras, by assuming that the laser and elec-
tronic oscillators undergo white Gaussian fluctuations. As
can be seen on the figure, no significant difference is ob-
served between the various cases, except that the correlation
exponents resulting from the simulated data are closer to the
straight line than the others. There is no saturation of the
slope with increasingn, so thatD, cannot be determined.

In their paper[6], Grassberger and Procaccia suggested
that their method allows one to distinguish between a chaotic
and a stochastic process for in the latter case the correlation
integrals are expected to scale lik&. However, Fig. 2
shows that, as they present no clear saturation, the correla-
tion exponentsD,(m) do not follow the straight line
D,(m)=m.

The results obtained from the above analysis are quite
elusive, for neither of the expected behaviors are observed.
Even the correlation exponents of the simulated time series,
which is known to depict a white noise, do not follow the
gstra|ght line as they should. Nevertheless, they are greater
than theD,(m) of the experimental data, and the difference
increases withn so that the experimental and simulated time
series cannot be considered as behaving alike. Several ways
of improving the algorithm have been propogé&@,20—-22,
but it has been verifiefi23] that the correlation exponents
presented in Fig. 2 are not sensitive to these modifications
nor to the variation of the delaysand|. This robustness is
not surprising because the problem with the integral correla-
tion method is that short-time correlations can greatly affect
the outcomes. However, this drawback is not effective in the
present work since the recording of the instantaneous phase
(mean frequengyis performed with a sampling perigdam-
pling duration that is long compared to typical time scales
of their fluctuations.

The failure of the method has to be sought in the experi-
mental limitations. Indeed, neither of the limits involved in

bedded vectors closer than In the presence of a strange gq. (33 can be reached. On the one hand, an increase in

attractor, it has been shov@] that at small the correlation
integral displays a scaling region

lim C(m,r)=rPam

N,—,r—0

(3a)

whose exponenD,(m) becomes constant at sufficiently

largem. The resulting correlation dimension

D2: ||m Dz(m)

m—M

(3b)

is a lower bound of the fractal dimensip@].

N, increases the recording and computing times. On the
other hand, the limit —0 is prevented because of the pre-
cision of the measurements and the experimental noise. The
latter is at least equal to the error introduced by rounding off
the data and leads to an overestimatiomdg{m). Moreover,

the incertitudes increase with since the density of points in
the embedding space lowers, whereas the contribution of the
noise grows. In this regard, there have been a number of
attempts[24—26 to connect the maximum correlation di-
mension attainable to the length, of the time series. These
relations yield a lowe(pessimisti¢ bound of about 2 and an
upper(optimistic) bound of the order of 5 for the lengths of

The correlation integrals have been computed accordingne considered data. Thus, the correlation exponents reported

to Eq. (2) for several time series obtained from the experi-in Fig. 2 can result from a stochastic process or from a cha-
ments described in Sec. IIl. The data were successively engtic system, of dimension greater than 2, blurred by the ex-
bedded in dimensions 1-10 using the same value for botAerimental noise. It is therefore of importance to dispose of
delays:k=1=1. The length scale has been normalized suct@nother method that works for short-time series and is less
that the diameter of the embedding space is equal to one. BgNSitive to the noise.

all cases, double logarithmic plots d&(m,r) versusr
showed a scaling behavior in the range of snralfrom
which D,(m) is determined. The exponents are represented As an introduction, it is worth recalling that the method
versusm in Fig. 2 for one time series recorded with eachpresented in the preceding subsection amounts to computing

B. False neighbor methods
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some invariant of the attractor, namely, its correlation di-the geometric mean from=1 to n=w. The wavering prod-
mension. Nevertheless, when applied to actual data, thect is arithmetically averaged over several reference points
method is in fact used to check the existence of the attractol, in order to restitute the behavior of all the embedding

if a finite value Osz can be fOUnd, it is inferred that the space. Small deviatiorEfrom one are en|arged by consider-

attractor does exist. The false-neighbor methods are tho;hg the logarithm. ThusV approaches 0 when the number of
oughly different, for, rather than presupposing the attractor's,|se neighbors diminishes.

existence, they make use of topological arguments to see if |,

. e averaged wavering product depends not onlyrpn
the attractor really exists. g g produc: dep yo

but also on the lagk andl. WhenW is plotted as a function
of | for variousm, the appropriate lad. and embedding
) i dimensionM are determined as those for whigt is mini-

_ The false-neighbor method#3,14 use geometrical con- 5| a5 4 function of and does not significantly decrease
siderations to compare the vectors constructedninand  fyriher if the dimension increases. The variation of the third
(m+1)-dimensional spaces. This enables one to identifyy, 9 meterk likewise enables one to settle its proper value
false neighbors, that is, points that appear to be neighboig 1 must be pointed out that it is not the behavior of

because the embedding dimension is too small. To illustratg, ; : )
this, consider a system for which the appropriate embeddin@létﬁﬁ:sggssﬁsié?‘z]’t:;a;:izzzilgrzfeds’sb;:j;?]em—zizav

dimension isM =2 and the attractor is a circle, for example. Id ke th It d q h . |
If embedded in a one-dimensional space, all the points of thkAt would make the result dependent on the experimenta
me scale, which is not necessarily related to the character-

attractor lie on a straight line, but points that are close on thi§I S i . )
line may come from opposite quarters of the circle. HencdStic time scale of the_\ exammed process. In particular, in-
they are false neighbors. Conversely, foe2, the circle creasingAt would arbitrarily decrease the averaged waver-

' i ' ing product. This agrees with the comments of Kennel,

remains unaltered and all the neighbors are true neighbors.
ns u 'd . 'g §rown, and Abarbane]14] and of Liebert, Pawelzik, and

1. Description

Thus the preservation of neighborhood relations can be tak
. P Vel 9 ! chuster{13], who noted that greatdr “only seem to be

as a criterion for the determination of the minimal acceptable®™~"" . ; .
embedding dimension. similarly appropriate, due to our rescaling of the wavering
oduct.”

. i~ . . pr
Given a reference point; of the m-dimensional embed- Another way to study the topological properties of the

ding space, leY; ) be itsnth nearest neighbor. In going phase space is to compute the false-nearest-neighbors per-
from dimensionm to m+1, Y, gets a (n+1)th coordinate, centage [14]. It amounts to comparing them- and

namely, \?ik+m,, and its nth nearest neighbor now is (m+ 1)-dimensional distances betwe?énand its first neigh-
?i,n(mﬂ). In the Euclidian metric, the squared distances bebor \?i,l(m) in m-dimensional space. For a given tolerated

tweenY,; and itsn™" nearest neighbor are relative increase of the distan&,, if
D,.(i,n(m))= Y. —VY.|2 4 Dm+1(i,2(m))—Dp(i,1(m)) 2
m( ( )) | i,n(m) || ( a) Dm(i,l(m)) >RtoI (68)
and R
R R is verified, thenY; ;,; is considered as a false neighbor. As
D 1(i,n(M+ 1))=Y, yms 1= Yil? (4b)  noted by Kennel, Brown, and Abarbanel, this criterion is not
sufficient for actual data because of their limited length. In-
in m andm+ 1 dimensions, respectively. deed, even for white noises, the number of false neighbors
The averaged wavering prodydt3] is defined by identified by (68 may decrease whem increases, for
w , _ T Y; .1 May be the first neighbor of; even it is not close to
V7=In< 1 Drp(' ,n(m)) Dm+'1(|,n(m)) > it. This results in an already large value Bf,(i,1(m)), so
a=1 | Dm(@i,n(m+1)) Dy q(i,n(m+1)) that the relative increase may be small. To prevent this, a

(5)  second criterion has been introdudéd: if

- - H 2
Both ratios compare the distance betw&gm@ndY; .y, with D+ 10, 2(m))>Froio™(y). (6b)

the distance betweeM; andY; ym+1), Yet they are com- whereF,, is some tolerance factor and(y) is the variance
puted inm and m+1 dimensions for the first and second of the data, the neighbor is declared as false. The false-
ratios, respectively. If thath nearest neighbor im dimen-  nearest-neighbor percentage is computed by applying both
sions remains thath nearest neighbor im+1 dimensions, criteria: for a given reference point, its first neighbor is de-
the two quotients are equal to one. So, if the topologicaklared as false if either Eq6a) or (6b) is satisfied. All the
properties of the supposititious attractor are retrievednin  embedded vectors are tested to count the number of false
dimensions W should be equal to zero. In fact, because ofneighbors. This number is finally divided by, to get a

the addition of a new coordinate in going framto m+1, quantity, namely, the percentage, independent of the length
the order of the neighbors may slightly vary even if the rep-of the time series.

artition of the points is unchanged on the whole, that is, even In this method, a too small embedding dimension results
if an attractor is embedded in tme-dimensional space. The in a high value of the false-nearest-neighbor percentage be-
effect of this ordering variation, which is to unjustly keep off cause many neighbors are removed in passing frerto

the two ratios appearing in E@5) from 1, is prevented by m+ 1. Conversely, whem is sufficiently large to unfold the
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attractor, the number of false neighbors drops to zero. The 1004
alterations of the false-nearest-neighbor percentage induced
by the variation ofk and| allow one to fix their proper
valuesK and L. Thus both of the false-neighbor methods
provide a way to check the presence of an attractor and to
assess the embedding dimension and lags. Moreover, com-
pared to the methods fated to the estimation of attractor in-
variants, their requirements in terms of time series length,
experimental noise, and computing time are less stringent.
2. Application 40+

Each false-neighbor method has been implemented on
several time series. Although it has been suggegt&dito
perform the geometrical average in E§) over ten neigh-
bors (if N,=10000) and the arithmetic mean over about
10% of the data, the influence of bothand the number of
reference points considered has, nevertheless, been exam
ined. It is found thatWV slightly changes whew is varied,
but the general trends of the dependenc&\obn k, |, and
m are unaffected. The number of reference points considered
influences both the value &V and its dependence on the
embedding parameters. This is probably due to the shortness
of the time series Nl,=1024, 2500, or 5000 so the arith-
metic mean was performed over all tNe embedded points.
Whatever the considered time series, the averaged wavering
product computed according to E&) is quite indifferent to
the values of the lagk andl. The same behavior was ob-
served for the correlation exponents and is likewise ex-
plained (see Sec. Il A. Concerning the effect af, it ap-
pears thatW diminishes by a factor of 10 when the
embedding dimension increases fram=1 to m=10. Un-
fortunately, the determination of a proper embedding dimen-
sion is intricate because no convergenca\bis observed:
whenm is incremented/V decreases, though less and less,
without reaching zero. This may be d[i4] to the inherent T T T T
experimental noise. However, the estimation Mf would EMBEDDING DIMENSION m
require one to have an idea of the valueWfthat can be
considered as negligible or is reached when all the neighbors FIG. 3. False-nearest-neighbor percentagdapfexperimental
are false neighbors. and (b) simulated phase fluctuations, befdempty symbols and

For the calculation of false-nearest-neighbor percentagesfter (filled symbolg noise reduction. The embedding delays are
the tolerance factor was fixed B, =4.0[14]. The allowed k=I=1.
relative distance increasg,, was kept as a parameter in
order to appreciate its influence. The effect of varying theare longer averaged and the convergence is improved. For
lags was investigated, but, as previously, no significansampling durations greater than 1s, the increase of the
modification was detected, so it can safely be inferred thaturves beyond their minimum is almost invisible.
K=L=1. The results of jointly applying the criteria given  As far as the recognition of an underlying attractor is
by Egs.(6) for variousR, are shown for an experimental concerned, the embedding dimension for which the false-
[Fig. 3@] and a simulatediFig. 3(b)] time series of instan- nearest-neighbor percentage is minimal has to be deter-
taneous time phase. In both cases, the false-nearest-neighlined. This involves the estimation of the profeg,. It
percentage sharply decreases when the embedding dimestiould not be chosen too small, because the embedding pro-
sion is incremented froom=1 to m=3-5, depending on cedure always leads to an increase of the distances, but it
Ri- Considering the experimental time series, for exampleshould neither be chosen too high, so that none of the false
6.8%, 5.4%, and 4.8% of the false neighbors are left fomeighbors is missed. It has been suggedted] to take
Ri=5, 10, and 15, respectively. Other features are commoR,~ 10— 15. As can be seen from Fig. 3, the decrease of the
to both drawings: whem is further incremented the percent- false-nearest-neighbor percentage is specially manifest for
age of false neighbors increases and the sensitiveness tw values ofm andRy, increasing to 15 20. However, in
R, Vanishes whem=6. A similar behavior is observed for some cases the minimum of the false-nearest-neighbor per-
the beat measurements. Figure 4 shows the resultRfpr centage goes to a lower value of when Ry, is further
fixed but different sampling durations. It is seen that theincreased. The independence Ry, observed for larger em-
false-nearest-neighbor percentage diminishes when the bedisdding dimensions results from the limited number of data.

FALSE NEAREST NEIGHBORS (%)

1
(@]

FALSE NEAREST NEIGHBORS (%)
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100 4 deed, the residual percentage amounts to 6.6 % and 1.2% for
1 a sampling duration of 10 and 100 ms, respectively, and
] Sampling duration : drops almost to 0 when the beats are longer averaged. This
80+ \‘ ’; 180”"; s decrease of the residue can be understood as an effect of the
1 ' o1 s smoothing of the noise during a longer time interval.
¢ 10 s The presence of an underlying attractor has been further

checked by implementing two additional tests. The first con-
sists of taking advantage of the false-nearest-neighbor per-
centage to determine a starting embedding dimengign
applying a method of noise reductiof27] in the
my-dimensional embedding space, and computing the false-
nearest-neighbor percentage of the cleaner time series. This
test was applied fomy=6 to data recorded with the streak
camera and to simulated time series. The outcomes are
shown in Fig. 3, forR,;=30, together with the results ob-
- tained from the original time series. The false-nearest-
5 10 neighbor percentage is minimal fon=4 for both experi-
EMBEDDING DIMENSION m mental and computed data. However, in the latter case the
effect of the noise reduction is weak, whereas the residue
FIG. 4. False-nearest-neighbor percentage of beat frequenayrops to 1.7% for the experimental data. The difference be-
data measured with various sampling duratiendhe embedding tween the two time series also reflects on the behavior for
delays are&k=1=1. Ry, =30. m=5: for the simulated fluctuationgig. 3(b)] the curves
corresponding to the original and cleaned data are nearly
Indeed, the density of points in the phase space lowers, sgarallel, whereas the false-nearest-neighbor percentage of the
that the distance betwesf and its nearest neighbor is large cléaned experimental time serigisig. 3(@)] presents a pla-
and \?i,l(m) is considered as a false neighbor owing to theteau.' Thus thg noise reQuctlon supports the prgcedmg con-
clusions: the simulated time series has a behavior character-

second criterior(6b). This interpretation is corroborated by . tic of a stochastic br wher the experi tal i
considering that the false-nearest-neighbor percentage pi'C Of & Stochaslic process, whereas the expenmenta’ ime
phase fluctuations of the oscillator are consistent with an

comes independent &, for m=6 (Fig. 3), 7, and 8 when underlying attractor
Np=1024, 2500, and 5000, respectively. On the whole, it The second test follows from an objecti¢p@8] to the

seems thaR,;;=10— 30 is suited for the analysis of the de- ability of the false-nearest-neiahb i o distinauish
pendence of the false-nearest-neighbor percentage and b Hy ; neighbor percentage to distinguish
. I etween stochastic and deterministic processes. The idea is
consequently for the estimation of the minimal acceptable[hat neighbors considered as true neighbors according to the
embedding dimension. atneig ' 9 9
criteria of Egs.(6) may be neighbors in space only because
they are neighbors in time and not, as they should, because
they are in a region that has been visited several times during
Taking into account that actual time series always arghe recording of the data. This shortcoming is the same as
noisy, it remains to ascertain if the residual false neighborghat mentioned in Sec. Ill A, and indeed the proposed rem-
can be viewed as an effect of the noise, in which case thedies[28] are similar. However, for all the time series con-
presence of an attractor can be inferred, or if this residue isidered, the mean time separation between the reference
the manifestation of a stochastic process. In this regard points and their nearest neighbor is always greater than 300
must be noted that the false-nearest-neighbor percentage (is sampling unit and exceeds 1300 for some of the time
more informative than the averaged wavering product beseries handled in Fig. 4. Since these values are large com-
cause it is bounded between 0 and 100, so that the percemtared to the number of available data and, most important,
ages of different time series can easily be compared. In panrearly independent of the embedding dimension, the same
ticular, the residual false-nearest-neighbor percentage of thgrior conclusion intrudes: the analysis is not warped by
simulated time serigld=ig. 3(b)] is three to four times greater short-time correlations of the time series studied.
than that of the experimental recordindsg. 3(@]. Such a Thus these verifications do not weaken the conclusions
difference is not observed for the averaged wavering proddrawn from the naive application of the false-nearest-
uct. Remembering that the simulated data have been conmeighbor percentage method. The time series obtained by
puted for white noise$17], the results shown in Figs. 3 recording either the instantaneous time phase or the beats of
suggest that the experimental time series might be the supean oscillator are in agreement with a dynamical process in
position of a deterministic process and a noise. Since thehich a noise is superimposed to a deterministic system with
measurements performed with the streak camera contafiew degrees of freedom. The underlying attractor might be
both the instantaneous time phase fluctuations of the eleenfolded in an embedding phase space of dimension as small
tronic oscillator and the smaller laser jittgt7], the ~5% as M =4-6. The independence of the results on the lags
residual false-nearest-neighbor percentage may itself arigavolved in the reconstruction procedure is due to the large
from the superposition of the true experimental noise and aampling period or duration, but might no more be accurate
stochastic process. The implication of the noise is still mordf the instantaneous time phase is recorded at a higher rep-
obvious for the mean frequency measureméhtg. 4). In-  etition rate or if the beats are averaged over a shorter time.

FALSE NEAREST NEIGHBORS (%)

3. Effect of experimental noise
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IV. MULTIFRACTAL-TYPE APPROACH 2€-9-

(@) r1.5
A. Local convergence analysis 3
An alternative characterization of the frequency noise of ‘f
an oscillator has been developgd] in the spirit of conver- = e
gence analysis of series. From the original time series £ > g
{yi,i=0,...N,—1} several sets of deviations 16-9 Fo o)
. <
{AMJy;i=0,1,... N,—Ng—1}, where 5 £
[+ Q
i+2Ng—1 i+Ng—1 § ;
ANy =1 > yj— 2y, (7) 8
Ng| j=TFN, =i
OE+0 T ; —l { . T T 0.5
] 0 500 . 1000
are constructed by averaging oW samples. Measurement number i

From Eq.(7) it is seen that if no average is performed
(Ng=1), A®y; is merely one of the terms involved in the
Allan variance. FoiNg# 1, Ay, can be viewed as the de-
viation that would result if the sampling duration were
N.7. However, ANy, and AMNs)y, . ; only differ because of
the two extreme and the two middle terms, so tNgt can
be considered as a sliding window, whereas for a sampling
duration of Ng7 the next accessible deviation aftafNsy;
would beAMNsy; .

By comparingAMNsy, to the general term of a Riemann
seriesS,_o”7 # and bearing in mind that absolute conver-
gence implies convergence, a local scaling exponent

Local scaling exponent ﬂ;("')

0.0

T e T T T T e
(N |n|A(Ns)yi| Measurement number i
[l —

o )
I In(Ns7) FIG. 5. (a) Deviations and local scaling exponents of experi-

mental time phase data averaged oMgr 25. (b) Local scaling

. ) . ) ...exponents of crudgupper curvg and averaged oveNg=250
is defined. It can be noted that this terminology agrees With o \ver curvg beat frequency variations. For the sake of clarity, the
the intuitive approach of oscillators stability: small fluctua- |gwer curve has been decreased by 0.3.

tions of the experimental data lead to low values of
AWMy, whence a high scaling exponent, and indeed the (Ng
Riemann series converges if and onlygif-1. sN9 1 @ (9a)

The deviationsA My, and scaling exponens™ have ' N’

[ i i
been computed from Eq§7) and(8) for several time series
of instantaneous phase and average frequency. The resWisich, according to Eq(8), are connected to adjacent devia-
obtained withNs=25 for instantaneous phase fluctuationstions by the relation
are shown in Fig. &). As expected, the highest exponents
arise from the lowest phase deviations. If the data are not ANy
averaged ll;=1), the local scaling exponents are sprayed W
I

over a wide range of valud&ig. 5b)], but,Bi(Ns)>1 for the
whole times series, which corresponds to the general term of i N

i i idi ; inThe resulting set of real numbe{§.( S)} can be converted
a convergent Riemann series. When the sliding window in- g [

creases the scaling exponents are smoothed, most of tfi@o a sequence of 0 and 1 by labeling small real numbers

B9 decrease, and the remaining high exponents appeé?5i(NS)|<1073) as 0 and the others as 1. The study of the

more and more as burstfig. 5. The smooth part of the initial time series is thus turned into that of a binary coding.
curve thus becomes characteristic of a divergent seriesfom Eg.(99) it can be inferred that the terms coded as 0

(Bi(Ns)gl) and only the bursts indicate a convergence. arise from nearly equal adjacent scaling exponents. This ob-

Being a matter of convergence or divergence, the eXperigervation is to be compared with the features of the sets

. : . . Lo . (Ng) ;
mental time series are too irregular to yield a limiting scalingl8i ) (Fig- 5. As noted before, the smooth parts of the
exponent in the classical meaning of limits. The sets ofcurves correspond to low scaling exponents, which are them-
5i(NS) therefore cannot be compared directly to the genera?elves characteristic of an unstable behavior of the time se-

) . : N i i i 9
term of a Riemann series. However, local discontinuities of €S- The zones of the binary coding whesf'?=0 can
the scaling exponents can be detected by performing a binatjerefore be comadered as an unstable set, whereas local sta-
coding of the series. This is done by computing the quantitiesility leads to 5i( J—1.

Ng) s(N9

—(Ngr)Bi °3 (9b)
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FIG. 7. Devil's staircase of experimental time phase fluctuations
FIG. 6. Binary coding of beat frequency fluctuations averagedaveraged oveNs=1,25, and 250 from left to right, respectively.
over different values oNs. For the sake of clarityégfs) has been decreasédcreasefiby 0.3
for Ng=1 (250).
The sequences resulting from the binary coding of beat
frequency fluctuations are reported in Fig. 6 for several slidally unstability (or ergodicity. The slippery devil’'s staircase
ing windows. As expected from the corresponding sets 0f29], which represent§$5) as a function ofx‘if:"\:s) is @ mono-

local scaling exponents, the unstable clusters enlarge and bgnically increasing curve whose steps correspond to rational
. o N N
come more numerous & is increased. This is to be related | 5| es of 5ii5) and 52 is) The global convergence can be

: (N9 o sl _ : . ;

to the smoothing of the curvelgs; =’} for growing sliding  stydied from the properties of this graph. For an uncorrelated
windows. However, the binary coding enables a fine examipinary sequence there are gaps at the steps locd@bre-
nation of the local stability. It is indeed observed that thecause the bits 0 and 1 are randomly distributed. On the con-
unstable set, which reflects large fluctuations in the measurqelary, a structurally stable sequence presents long ranges of
. . . N

time series, is never empty, even Whﬂﬁ 9>1 for the identical bits, so that«SiNiS) and 5£Nis) are close to rational
whole seriegfor example, ifNg=1). Thus the binary cod- numbers and the staircase steps fill.

ing, to which four consecutivg; contribute, emphasizes lo-  The devil’s staircase built according to Eq4.0) for a

cal instabilities that are hidden in the scaling exponent analytime series of instantaneous time phase measurements is re-

sis where only two consecutive data are involved. ported in Fig. 7 for various sliding windows. From a practi-
cal point of view, it was found that the infinite summations
B. Global convergence analysis of Egs.(10) are well approximated with only 50 bits. If the

The last step in the multifractal-type approach is the stud;’jata are not averagedN(= 1)_’ the Sta'rfﬁje IS .almost re-
of the global convergence. Here the binary sequence is ang4ced to the step correspondmgaﬁ' =J.;° =1, in agree-

lyzed as a whole. To this end, two additional real numbergnent with the binary coding. Indeed, nearly all the bits be-
are defined: long to the stable set, so that E¢LOg appears as a

geometrical progression whose limit is 1 when enough terms
are involved, while Eq(10b) is to be calculated fon,;=1
and a high value of,; leading toﬁgfisul for almost every
i. The occurrence of some bits 0 in the coding results in the

5(Ns):n0i+1/{n1i+1/[n2i+1/(n3i+"-)]}, (10b) filing of a few other steps, especially those attached to

C.l (N)_137 . _
95" = 2,48 In particular, Eqs(10) show that the filling of

whereng, =0 Vi and the other integers mean that the part ofthe stepﬁg\:s)z 5‘(:“:5): 1/2 comes from the pieces of sequence

the binary coding that starts ai"¥ is a sequence of whose first bit is5"9=0. In the same way that the increase
n;;—1 consecutive 0, followed by, consecutive 1n3  of the sliding window transfers more and more bits to the
consecutive 0, and so on. From their definition, the numbergnstable set of the coding, it leads to the filling of steps
calculated using Eqgs(10) lie in the interval[0,1]. For a  pelonging to the lower part of the staircase and of steep parts
structurally stablgor globally convergentsequence, where of the curve located between steps.

there is a majority of bits of the same ki@ or 1), the The results of the multifractal-type approach can now be
occurrence of a bit of alternative tygé or 0 only weakly  summarized. Applying Eq(8) to a time series with small
affects&i"\i's) and 5(::5). In this case they rapidly converge to fluctuations results in high¥1) scaling exponents, indicat-
rational numbers: foﬁ;(c"“is) it follows from the big integers ing & local stability. However, for small deviations the expo-

: itive to Ny, :
entering into Eq(10b), while for 52\:5) it is due to the pres- ne?,}s)'s _Ve?]/_ Elenst';_'ve taA Ty, so that bthe_ collscnon
ence(absencgof only few terms in Eq(10g. Contrarily, a {B; °} is highly discontinuous. Remembering that any

. . . . . . . N 3. . N
sequence with a discontinuous distribution of 0 and 1 is6"¥=10% is coded as 1, such collectiofig!"} neverthe-
strongly sensitive to this distribution and indicates a structuriess lead to a binary sequence mostly constituted of bits

[}

1 .

(Ns) _ (Ng) 5 —

O =52 8,527, (108
j=0
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equal to 1 that form a locally stable set, whereas the unstableompatible wih the existence of a hidden attractor of low
set is sparse. Besides, the presence of long strings of bits dfmension. On the other hand, the multifractal-type approach
the same typé1l in this casg points out the global stability in Sec. IV demonstrates remote correlations in the time se-
of the time series. This stability is at last highlighted by thequence.

devil's staircase in which it is reflected by the filling of steps  Nonlinear dynamics provides a variety of approaches that
attached to rationaﬁg\i‘s) and 5£’\i's) whereas the intermediary may be useful in the context of such experiments. Recently,
steep parts of the curve are unoccupied. This outline is actjie study of synchronized states in driven differential equa-
ally observed for the experimental time series when the datHOnS led to typical mappings of the circle on itsetirnol’d-

are not averagedN,=1). As the sliding window is in- type mappings which could exp!am p_hyS|caI effects such as
creased, the series look locally unstable because more afie Josephson effect, modulations in a phase locked loop,
more bits are transferred from the stable to the unstable set §1d cardiac pacemakefi30]. _ _
the binary coding, as a result of the low and smoothly vary- A Similar approach was used to account for the interaction
ing scaling exponents. However, the steps of the devirOf a high-frequency driving signal and a delay line oscillator

staircase remain filled, indicating that the series are globallyndergoing a modulational instability. Steps on a frequency-
convergent. amplitude characteristic are observed at rational ratios be-

tween carrier and envelope frequencies in agreement with the
deterministic mapping. A stability range of eight orders of
magnitude is obtained thanks to that methi@&l]. This

Two methods of detecting correlations and possible detereaves us confident that a deterministic approach using qua-
minism in the time series of an electronic oscillator weresiperiodic states may help to understand the low-frequency
considered. The embedded time series analysis in Sec. Il igoise of an electronic oscillator.

V. CONCLUSION
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