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Fluctuations and the many-body Lyapunov exponent
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An ab initio theoretical method is derived for calculating the maximal Lyapunov exponent df-laody
system obeying Hamilton’s equations. The theory is developed in detail for a dilute gas. It shows the Lyapunov
exponent to be a function of the time integral of the correlation function for fluctuations in the second
derivative of the interparticle potentidhpproximately a powe% law). We apply the theory to a one-
component plasma and derive the dependence of the Lyapunov exponent on a plasma parameter.
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[. INTRODUCTION them as the BI-dimensional vector® and g, respectively.
We may represent these by a phase pairt(), in 6N-
dimensional phase space. For simplicity, we shall assume
The Gibbs ensemble in statistical mechanics serves astgat the particles have unit mass and a Hamiltonian of the

microscopic formulation of equilibrium thermodynamics; the form H = 1p-p+V(q). Hamilton’s equations of motion for the
fluctuation-dissipation theorem provides a microscopic congystem are

nection to the system response functions and transport coef-
ficients that characterize small departures from equilibrium. . (p)

A. Motivation

Far from equilibrium, Lyapunov expansion is a property with Y=
the potential to provide a useful microscopic description
when local definitions of quasiequilibrium quantities, such a%

-V
q)zem, (1)

here the notatiolV, means the Bl gradient in the coordi-
fAtesaV/aag.

The detailed evolution of a system of interacting particles
is, typically, very sensitive to changes in initial conditions.
roscopic properties of a system out of equilibrium. This pa_crhe L_yapunov exponent quantifies this sensitivity as fO||OWS.

o * . ° P¥ Consider a reference trajectory whose phase-space point at
per makes the latter connection in the near-eqwhbrlum[imet is Y(t). At time t=0 let another identical system be
regime. o . started that is displaced infinitesimally from the reference

Intuitively, the connection is plausible. The Lyapunov ex- trajectory byA(0). This displaced trajectory will evolve in

bonent measures #}Z rt?;ensato‘xh'czhef?c?'gﬁ::”;refotﬁ{fstz ime to Y()+A(t) (see Fig. 1 SinceA(t) is infinitesimal
it ttons. P Icl jts equation of motion is given by the derivative of Hamil-

sponse functions of the system that also measure a “forge}—on,S equation
ting.” For example, scattering erases a particle’s memory o

its original velocity and so gives rise to a finite self-diffusion

coefficient[2]. =200 yp=gvyan. @

The work reported here creates ab initio N-body mi- Y '

croscopic theory of the microscopic Lyapunov exponent.

The method is quite general and in future work we plan toin sensitive systems, the displaced trajectory diverges from
apply it to anharmonic crystals. Here we develop the theoryhe reference system exponentially, on average. The mean

for a dilute gas or unmagnetized plasma. It gives an expliciexponential divergence rate is defined[By
functional relationship to a correlation functi¢a 3 power

temperature and pressure, may no longer have meaning.
be useful, we must establish two things: a viable definition o
the Lyapunov expansion, local in phase spldeand a rig-

law), in the limit of thermal equilibrium. Thus the Lyapunov 1 |A@)
exponent is related to system fluctuations. By way of de- MY (0),A(0))= Iim T In A 3
tailed example, we applied the theory to a one-component \A(tt?)lio 40

plasma. We have compared the theoretical predictions with a

numerical simulation of the plasma, performed by Nishihara

and co-workers[2—4] using SCOPE a particle-particle

particle-mesh program, adapted to compute the Lyapunov fffﬁf&cé
exponent.

| A©)|

A(E
()|A(t)[

displaced
trajectory

40\
B. Background O\.

A classical system oN particles in three dimensions has  FIG. 1. Displaced trajectory diverging from the reference trajec-
3N momenta and R position coordinates. We shall write tory.
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There is a &l-dimensional basi& } of the A(0) such that for  ries in phase space. In order that the problem should remain
any givenY(0), N takes on one of the ¥ (possibly non linear, we actually work with the outer product Aft) with
distincy values itself, [A®A](t). Taking an ensemble average of the equa-
. tion of motion gives a new equation for the evolution of

Ni(A(0))=X\i(A(0),&). (4 (A®A)(t). Asymptotically, (A®A)(t) will expand at twice
- the Lyapunov rate. The steps of our solution are as follows.
These are the L_yapunov characteristic exponents. They can (i) Form the outer product of the displacemeibA (a
be ordered by size 6N®@6N component entity

VES PEUIE (5) (i) Solve the equation of motion

Except for a set of measure zero, an arbitrAfQ) will al- a [ARA](1)=T(t)-[A®A](1), (6)
ways have a component in tlieg direction. If\;>0, then, in dt

the limit t—oo, the largest exponent will dominate and adja-
cent trajectories will diverge exponentially at a rate This  whereT=7®1+1®7 is the fourth-rank, outer-product ver-
is characteristic of a sensitive dependence on initial condision of the stability matrix appearing in Eq2). T(t) is
tions. In what follows we shall be dealing with the maximal shorthand forT'(Y(t)), thet dependence being through the
Lyapunov exponent only and we shall drop the subscdApt; reference trajectory'(t). The solution of Eq.(6) is, for-
will refer to any particular initial displacement directi¢al-  mally, a time-ordered exponential
most al) that expresses the maximal Lyapunov exponent

Other authors have sought analytic expressions for t
Lyapunov exponents of many-body systems. Evi@jshas [A®A](t)=expr( deT T(7)
derived a short-time formula to describe the mean separation
of close adjacent trajectories. The formula is based on a cor- ..
relation in time, but lacks the time translational symmetry. ('"). Average Eq.(?) over an ensemble of refergnce tra—
even in equilibrium. Chaudhuri, Gangopadhyay, and Ry jectories and then differentiate to form a new differential
found a formula for a driven nonlinear oscillat@ system equation foA®A)X(t),
with one degree of freedomlt relates the Lyapunov expo-
nent to a correlation in the second derivative of the potential.
They reduce their equivalent of E@) to a simple harmonic
oscillator with a stochastic frequency and apply the standard

results of van Kampef8]. (iv) Evaluate L()=lim,_ L(t), since for large times

Many authors have been exploring the connection bey (t) should approach a constant valie., forget the initial
tween transport coefficients and Lyapunov exponents. Somgnitions.

examples are Gaspard and NicdBg, who find a connection (v) Find the eigenvaluer of L(=) with the largest real

between the diffusion coefficient of a Lorentz gas and itspart. Since|A(t)|2=Tr{{A®A](t)}, the Lyapunov exponent
positive Lyapunov exponents and the Kolmogorov entropy;g

Evans, Cohen, and Morrig40] found a conjugate pairing
rule between maximum and minimum Lyapunov exponents
and transport in nonequilibrium thermostatted molecular-
dynamics simulations and illustrated it with a viscosity com- _ _
putation for particles interacting via an upshifted Lennard-Th€ rules for operating with outer-product operators are
Jones potential: entropy production as minus the sum of theA®Bl-[C®DI=[A-C]®[B-D] and dot products distribute
Lyapunov exponents was noted by Hoover and Pg4adh  ©Ver termsin a sum.

and discussed by Evans and Morriss in their tredtisd;

and Chernowet al. [13] proved the sum rule for Ohm'’s law B. Perturbation theory

of entropy production in a Lorentz gas. We shall apply a standard perturbation techniffL&8, 1]

Section Il of this paper presents ah initio theory for the ;
Lyapunov exponent of a many-body system obeying Hamil-to evaluatel.(«) to second ordelEqg. (10)]. In the dilute gas

ton’s equations. In Sec. lll, an explicit form for a dilute gas .e"a”?p'e(see. Sec. Il the zeroth- and f|r_st-order te_rm§ yield
. S o . - imaginary eigenvalues onlgcorresponding to oscillations
or plasma, in the equilibrium limit, makes a connection with

correlation functions and hence transport coefficiévits the The second-order terrtwhich involves correlationsis es-

; L . . - sential to reveal the Lyapunov expansion behavior.
fluctuation-dissipation theorefd4]). The dilute gas exhibits o o .
a 3 power rule. Section IV applies the theory, in detail, to a Let 7(t) =T+ 7y(t), where T, is time independent and

i 7,(t) varies in time through a reference trajectory drawn
one-component plasma. from an ensemble. Evaluating E¢B) formally to second
order in7; gives an asymptotic evolution equatiftb,1]

[A®AJ(0). ()

d
5 (A08)(O=L(1)- (A A)(1). (®)

A=3imax Rév). (9)

Il. CALCULATING THE LYAPUNOV EXPONENT
AB INITIO d A®A

J— ® t) =

gt (Ao ().

— 00

To+(Ta(D) + f:df<<’ﬂ“1<t>-effo.1r1

A. Exact method

We shall develop an equation of motion for the square -
infinitesimal distancéA(t)|* between two adjacent trajecto- X(t—17)- e‘”%)}-(A@A)(t), (10)
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where ((AB))=(A—(A)][B—(B)]) is the correlation ofA T =T,@1+187,, Ti(t)=T;(t)®@1+1RT;(t). (12)
and B. The three terms in the square brackets are, respec-

tively, the zeroth-, first-, and second-order terms in the perThe first-order term in Eq(10) is simply

turbation expansion of(«). We considefl';(t) to be small

when the Kubo numbenr, is small, wherea is the rms (T1(1)) =1 (T (1)) +{T1(1))® L. (13
magnitude ofT';(t) and 7, is the characteristic autocorrela-
tion decay time scale. We evaluate the exponential factor of the second-order term

The form ofL(x) in Eq. (10) allows us to state the general by
rule that the Lyapunov exponent is a function of time inte-

To— a™7¢ T
grals of correlation functions of the dynamical variables. The ero=emo@er. (14)
next section develops the theory in detail for the case of a - . :
dilute gas. For ballistic motion, using Eq11), we have
- (10
Ill. APPLICATION TO A DILUTE GAS eTo= 1/ (15
OR UNMAGNETIZED PLASMA T
A. Perturbation from free particles In order to understand better the explicit form of the in-

We consider a dilute gas or unmagnetized plasma with fegrand in the second-order term of &80), it is helpful to
9 9 P %latten” the 6N® 6N phase-space outer product into a four-

Hamiltonian of the formH=3p-p+V(q), where we have .
taken the particles to have unit mass. We partition the Stab”gomponent column of N® 3N outer products showing the

ity matrix, 7 of Eq. (2) into a constant parf, due to free- momenta and positions explicitly:

particle ballistic motion and a time-dependent perturbation A ®A
7,(t) due to particle interactions, where PP
ARA= 08 (16)
I = 00 T (1) = 0 —Vgat) 11 | Ag®A,
0o=|1 o] T=|g o |- @D A A,
The corresponding outer product operators are In this representation the integrand in Efj0) becomes
((Ty(t)-e™o-Ty(t—7)-e~""0))
=~ (Vo VAVEVD) (Vo Vo Vo VD) n((VEVI=VEV)) (Vo VIHVE-V,))
0 SOV OGN (VYA Ve VD)
= , 1
0 SEVeV) (Ve V) (Vo VT Ve V) &
0 0 0 0

whereV =1&V44(q(t—17), and its transpose PsIEqu(q(t to other statistical quantities. We shall use the following con-
—7))®1. The elements of the matrix in E§17) have the ventions: unsubscripte¢p and g will represent the BlI-
structure of 1,7, or 7, times a correlation function. The dimensional vectors of momenta and positions of all the par-
correlation functions are of two types: ticles. When we use subscripts, these will label the
coordinates of a particular particle. For examgie,is the
(Vo V) =10 ((Vo(d(t) - Ve(a(t—7)))),  (18)  three-momentum vector for particie
A dilute monatomic gas in equilibrium is, on average,
where the correlation itself has rank 2, and rank-4 terms oboth isotropic and time-translational invariant. The time-
the form translational invariance allows us to replade by O
in Egs. (13) and (17). The rotational isotropy applies to
VOV =((Ve@(t)®Veqat—7))). (19  the 3x3 submatrices(abeled by pairs of particles and
j) and 3x3®3%x3 fourth-rank tensors of the form
It is important to note thati(t—7) is just an earlier point of <tiqj(0)®vqkq|(_ 7)). We shall assume that(q) can be
the trajectory specified bg(t). The trace back in time must expressed as a function of th§N— 1)/2 pair differences in
be done before averaging over the ensemble of th@article coordinatesq —g;). With this conditionVq is a
{p(t),q(t)} that define the reference trajectories. symmetric matrix even wheitj.

In Eq. (13) the rotational isotropy simplifies each subma-
B. Equilibrium ensemble averaging trix to

The next step is to average over an ensemble of reference

1 =2
trajectories—equilibrium here—in order to show the relation <tiqj(0)>_ 3<Tr[vqiqj(0)]>1_ wjj 1. (20)
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Similarly, each submatrix in Eq18) averages to

<<qu(q(0)) : qu(Q( - T))>>ij

N
=32, (Vg (A(0) Vagq(@(=m)I)1

Rotationally averaging the fourth-rank subtengsee Ap-
pendix A of Eq. (19) gives
(VB )i = ikt () 14 Dy (7)), (22

where the X3X3X3 tensors ard ,z,s= 9,,9551 6,505, and
[=1®1, and the coefficients, labeled by particles andre
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Cii (7) = 2[ &jjii (7) +4by;;i (7)]. (28
With these simplifications, the differential equatitk0) de-
couples by a particle.

D. Eigenvalues of separation evolution

The problem has been reduced to finding the eigenvalues
of a single-particle block that can be thought of as & 36
matrix. The problem further diagonalizes into ning4tsub-
matrices according to the eigendirections of the operator
The only eigendirection that can contribute(fd|?) has ei-
genvalue[1l] J=4 (see Appendix B Therefore, the fourth-
rank coefficients will appear only in the combination
aiii (7) +4byi;i (1) = 3¢;; (9.

Adopting the notation

- =1 _ %
aljk|(T) 15{2<<Tr[vqiqj(q(o))]Tr[quql(q( T))]>> CmEJ dT TmCii(T), m:O, 1' or 2’ (29)
0
~((TH Vg ((0))- Vgq (@~ DD} (23
the resulting matrix whose eigenvalues we seek is
and
. 0 000 0 —w2? —-wi: O
bijk|(7):E{_<<Tr[tiqj(Q(O))]Tr[vqkql(Q(—T))]>> 10 0 0O . 0 o0 0 -
2
+3((TH V4 (a(0)- Vaq @ =)} (24 1 000 0 0 0 -o
! 0 1 10 0 0 0 0
C. Pairwise additive potential
To make further progress with the second-order term we -2c, 20 ¢ G
shall assume that the potential energy is patrticle pairwise 0 —C -—1ic, 3¢t
additive and the pair interaction has finite range. Examples + 0 ~lc, —c 3¢, (30
of such forces are Lennard-Jones and screened Coulomb. 0 8 02 20

The finite range allows us to neglect contributions to the
correlation averages from neighbors outside a small interacl—_
tion volumes. Since we are dealing with structureless par-
ticles, the potential energy between the paiandb has the
form ¢(|g,—qy|). The total potential energy is then

he eigenvalues of matrix (30) are discussed in Appendix

C. The Lyapunov exponent is given by=3 max Rév).
Typically, each gas particle finds itself in a cage formed by
all the others. On average it experiences a potential well
whose bottom is at the center of the cage. Hence the second
derivative sign implies»2=0, which, by itself, would make
vimaginary.(For the Coulomb force(pﬁ=0.) In addition, if

the autocorrelation time is short, they dominates terms

N N
V=32 > #(|da— ) (25)

a=1 b=1

and with ¢, or ¢, in the secular equation. If we take this to be so,
N then there is indeed a solution with positive(Re namely,
_ 2 ¥ 7 2¢,]¥2. Hence the Lyapunov exponent for a dilute gas
Voo = 5”1)# 9P b(10—p|) — (1~ &) o o(la—ql)- unmagnetized plasman equilibrium is given by
(26) cal¥3 [1 (= 1/3
—| %15 [ a0V (- 1)
Under the dilute gas assumption we may neglect intrinsic 4 6 Jo T 4% Y%
three- and four-body correlations, that is, we may neglect (31)

correlations where the two particle pairs are not identical.
For example, we shall take

e

E. Lyapunov exponent and fluctuations
(?2

I8

Equation(31) shows the equilibrium Lyapunov exponent
to be proportional to the cube root of the integral of an au-
tocorrelation function of the fluctuations of a dynamical vari-

#(/6i(0)—q;(0)])- ¢(|qk(—7)—q|(—7)|)>>

=0, {i.j}#{k1}.

Each particle pair contribute3(sr/N) to the average, where
n is the mean particle density. Discarding ter@$1/N)
leaves jusw?, ¢;;(7), a;;;; (7, andby;;; (7). The same assump-
tions also give

(27)

able. The fluctuation-dissipation theorefi4,16§ relates
linear-response functions to corresponding correlation inte-
grals. The correlation in E¢31) is for a single-particle prop-
erty. The intensities and correlation time scales of different
single-particle properties may be expected to vary in the
same way with changes in system parameters such as tem-
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100 S an effective Debye-screened potential
| =t 2
; | ] B(1) = ekor 34
: /o/@/ e r

g 10-1 | /6?:100 / | and using an uncorrelated ensemble. For convenience, we

B Or=1 50 ] shall use units withm,=1 and then restore mass units at the
r ] end.
- ] The potential energy of the ion system is given by

10'2 Lo [ A Ll [T 1 N N

103 102 10- 100 101 V=32 > b(lga—a). (35)
D/[mpaiZ] a=1b=1

FIG. 2. Lyapunov exponent versus diffusion coefficient for _Slnce the plasma is supposed to be dilute we shall treat the

plasma parametdr values between 1 and 150. The data were Com_lnteractlon between two ions as ballistic,
puted for a one-component plasma by Nishihara and co-workers

[2-4]. The line isn=aD'?, the law suggested by the theory. (=7 =q(0)—p. (36)

perature and pressure. In particular, the self-diffusion coeffi¥Vith this approximation it is most convenient to use a Fou-
cient is proportional to the time integral of a particle’s ve- Ner representation of the second derivative of the potential

locity autocorrelation energy,
D=3 f dr((v(0)-v(7)). (2 Vgo(-n=-2 f 0k Kk p(kye'* 16~ le ik P,
0 i
(37)

(Note that this quantity is distinct from the spatial diffusion ) )
coefficient, which becomes large in the collisionless limitWhere the Fourier transform a(r) is
while self-diffusion does not.This leads us to suggests that 5
the Lyapunov exponent to the cube root of the diffusion k) = 4mQg
coefficient b(k)= [27]° K2+K3 (38)

Y D 1/3 )

A (33) and we have writterg, =q;(0).

wp wpai2 ’ In averaging the cross correlation c;i(7)

= %{(Tr[vqiqi(O)-tiqi(—r)])}, we shall use an ensemble

wherew,, is a characteristic interaction frequency agds a  distribution uniform in space and Maxwellian in momentum.
characteristic inter-particle distance. We shall neglect the correlation distributiéibeyond our ef-

In numerical simulations, Nishihara and co-worki?s4]  fective potential because the residual effects of this are of a
measured both the Lyapunov exponent and the self-diffusioRigher order than the term itself. The multiparticle distribu-

coefficient for the ions in a one-component plasma. The retion function thus factors into a product of one-particle dis-
sults, plotted in Fig. 2, clearly showigpower dependence of tributions

the Lyapunov exponent on the diffusion coefficient over
nearly three decades of diffusion data. Thisower relation- n 2
ship with a transport coefficient is a consequence of the di- f1(q,p)= Wp [277Tp]‘3’2 ex;{ - ﬁ) (39
lute gas Lyapunov exponent theory. P

wheren, is the ion density and, is the ion temperature in
IV. ONE-COMPONENT PLASMA EXAMPLE energy units. The cross correlation contains a double sum
We now apply the theory to a one-component plasma®Ver ions different from arisir!g from the_double applicatio_n
The plasma will comprise protons of mass and chargej, pf Eq. (37). When the two ions are different, the spatlal_
in a uniform neutralizing background. The interaction is vialntegral of the ensemble average on the complex exponential
the Coulomb potential(r)=q2/r. The rotational average of factor yields
the seccz)nd derivative of this potential is identically zero be- 1
causeV<(1/r)=0. The Coulomb force gives rise to long- 3y aik-gy_
range correlations among the ions, leading to Debye screen- [27]° J e’ b= 0%(k). (40
ing. With care, one can evaluate E§1) using the Coulomb
potential and an ensemble with a radial distribution functionThe 6%k) is multiplied by k so that result is zero. This is
g(rij)=np—[k2D/4w]exp(— Kprij)/rij. (nyisthe ion num-  consistent with the assumption, used in the dilute gas theory,
ber density ankp is the inverse Debye screening lengith. that disjoint pairs of particles are uncorrelated. Hence only
However, in the exposition that follows, we shall get thethe N—1 diagonal terms in the double sum contribute to the
same answer by absorbing the pair correlation function intaorrelationc;; (7). They evaluate identically to give
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[47]%d;

Cii(1)= [N 1] 27

2

) 241,172 @,

2492
xexp(— P pb) f d3qd3q, f a3k, f d3k,
2T,

[kO 7']2
[k5+k51[k*+k3]

gllkotKk-1-[6—dplg =ik [P —Ppl7,

(41)

Changing the order of integration to perform the real space

(g and q,) integrals first yields two factors o%(k,+k,).

Taking into account the finite real volume we should inter-

pret the space integrals as

8%(ko+k,).

f d3q d3q e'[k0+k] [ai— QD]—[ZW]B
" (42)

Performing thek, triple integral then setk=k = —kg,. Using
these results in Eq41), and neglecting 1 compared t
gives

3[4m1%qdn, Jd3 " Xp(_pf+p§
22T, | @ POPe 2T,

Ci(7)=

4
X d3k K e—ik'[Pi_pb]’f (43)
[K%+ kzD]2 '

Next we perform the momentum integrals

2 [47])? qenpf g K k4

CII(T) 3 [2 ]3 [k2+k2

7 exp(— T k?7?)
(44)
and the angular part of tHeintegral to get

k6
m exp( - TpszZ).
(45)

16 ,
Cii(T)que”pj dk

The cross correlation in Eq31) is the time integral of
c;;(7). Performing this integral yields

6 71.l/2rnl/2

P
0 3 qe J’dk[k2+k ]2 Tl/2k ’

(46)

where we have also restored mass units by wriflngm,
everywherer, occurred. This last integral divergeslas»o.

6089

w5=4mn,q3/m,=k3(T,/m,), and the dimensionless
plasma parametd? [(477/3)np] Y(q3IT,)=q3/aT,. The
result is

5

(47)

2 Xmax X

2,3 3/2
Co=MLw r dx .
0=Mpwp 312172 fo Dt 1]2

Evaluating the integral and substituting into E§1) gives
the Lyapunov exponent

FRETE > 13
A= 0 1"3/2
4m2p p| 312172
1 X v
X|=—5—>=+ X —In(1+x .
|: 2 1+ max maX ( maX)

(48)

The choice ok, (and hencex,,,,) must be determined
by physical considerations. Variations in the plasma with a
half wavelength smaller than the order of the interion spac-
ing a; are not meaningful. We therefore suggest a cutoff
Kma= 7 , that is,

kmax
Xmax_ kD

3—1/%/2 : (49)

We shall now consider some limiting plasma cases.

A. Dilute plasma limit

In the limit of a hot or sparse plasma whose plasma pa-
rameterl’<1, we havex,,=1 and the term in the last set of
square brackets in Eq48) goes asymptotically as?_./2,
giving us a plasma parameter dependence of

A
— o' for I'<1.
@p

(50

B. Liquid plasma limit

In the cold dense liquid plasma limit, whéixz1, we have
Xmax<1 and the term in the last set of square brackets in Eq.
(48) goes asymptotically asf,./6, giving us a plasma pa-
rameter dependence of

A
—OCF71/2
@p

for I'>1. (51

V. COMPARISON WITH NUMERICAL SIMULATIONS

Nishiharaet al.[3,4] have used thecoprEeparticle-particle

The ions almost never have encounters at very short digparticle-mesh program to simulate a one-component plasma
tances, howevetand when they do, the ballistic encounter in equilibrium for a range of values of the plasma parameter
approximation fails severelyWe shall therefore truncate the I'. The program was adapted to calculate the Lyapunov ex-
integral at an upper limit ok, It is also convenient to ponent by following the evolution of two initial conditions
write the integral in a dimensionless form using a scaledliffering slightly from one another. For 1Z01°'=1 their re-
variablex=k/kg and to rewrite the dimensioned coefficients sults are consistent with thE 2 law derived above. For

in terms of the plasma frequency, given by I'=1 they find the Lyapunov exponent to be nearly constant.
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V1. DISCUSSION AND CONCLUSIONS (Tr(A)Tr(B))=9a+3b+3c, « with 8 y with &

We have shown that the Lyapunov exponent of a dilute (A2)
gas in equilibrium is proportional to the cube root of a fluc- (TH(AT-B))=3a+9b+3c, a with v 8 with &

tuation correlation function. One of the surprises of Fig. 2 is (A3)
that this cube root law holds even for fairly dense plasmas.

When estimating the eigenvalues of the matB8g), we as- (Tr(A-B))=3a+3b+9c;a with & 8 with 7.
sumed that we could neglect terms withandc, compared (A4)

to cy. In the dense regime, these terms bear a simple relation

to one another. As a result, the secular equation in Appendi$olving for the coefficients gives

C may be written simply in terms of,. The eigenvalue L T

remains proportional t@}’®, but with a different constant a= [ Tr(A)Tr(B)) —(Tr(A"- B)) —(Tr(A- B))],
numerical coefficient. ; (A5

Other workers have foungl power rules between a diffu-
sion coefficient and an exponential path separation in differ- P~ [ 4(Tr(AT- B) —(Tr(A-B)) ~(Tr(A)Tr(B))],
ent contexts. Seki, Kitahara, and Nicdis7] used a Lange- (AB)
vin equation to explore diffusion in turbulent media. For _ 1 _ T _
intermediate times, they found that adjacent fluid elements © 3ol HTH(A- B) =(Tr(A™- B)) = (T (A TH(B))].
separate exponentially at a rate proportional to 3tower
of the long-term diffusion constant. In Dupre¢’s8] theory |f either A or B is symmetric, then the solution further sim-
of plasma turbulence, a mode’s exponential growth rate iglifies to
proportional to the} power of the velocity space diffusion
constant, which is proportional to the turbulent fluctuations. (A@ B)=al+b], (A8)

The theory developed in this paper might find application
in other many-body systems, such as the cosmological scafthere
tering of photons by gravitational lensing, where Fukushige J S St 5.5
et al. [19] have noted an exponential path divergence for apyd™ Cay®po T Cad®By»
adjacent light rays undergoing multiple scattering. This 1
theory might also be applied to study the diffusion of trace a=1s[ATr(A)Tr(B)) = (Tr(A-B))], (A10)
elements due to environmental fluctuations.

This paper developed thab initio Lyapunov exponent
theory for the example of a dilute gas near equilibrium. In a b=4[—(Tr(A)Tr(B))+3(Tr(A-B))].  (All)
future paper we plan to develop an example for lattice vibra-
tions of an anharmonic crystal.

Our theory establishes firmly the connection between the
many-body Lyapunov exponent and fluctuations. We believe
that the Lyapunov expansion rate should be regarded as a
system parameter. Since it is readily definable almost any- The isotropic fourth-rank tensdr defined in Appendix A,
where in phase space, it can provide a link between states
close to and far from equilibrium. Jayps=90ap0,51 84505, (B1)

=181, (A9)

APPENDIX B: EIGENVALUES
OF NON-OUTER-PRODUCT
RANK-4 OPERATOR

does not have an outer-product form with respect to opera-

tions on a second-rank tensat,;. We wish to find its eigen-
We wish to thank Professor K. Nishihara and Y. UeshimavalueJ and eigentensak’ solutions of the equation

of Osaka University for their discussions and access to the
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pair.
By inspection we can identify the eigentensor with eigen-

APPENDIX A: ROTATIONAL AVERAGING

valueJ=4,
OF RANK FOUR TENSORS

This appendix considers the rotational averaging of a Xys=0ys
fgurth-rank tensor with outer product forr®B. In Carte- =[%8 +J0y+207] 5, (B3)
sian components, the rotationally averaged outer-product
tensor must have the form of an isotropic fourth-rank tensoherex, y, andz are the Cartesian unit vectors. In the coor-
dinate system wherg,=8,,, ¥,= &, and,z,=&;,, we can
(A®B) pys=a0,50,51D04y0p51C0505,. (Al)  express the five eigentensors with eigenvaleel as

To evaluate the coefficients, b, andc, we can perform [X@Y+yeX], [Y®z+ZRY], [Z®X+X®Z],
tracing (contracting over pairs of indices, since the trace o o (B4)
operation commutes with a rotational average: [X@X—y®Yy], [Y®Yy—2z®1Z].
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There are three eigentensors with eigenvalee-1, The secular equation for the eigenvalueg30) is
XRYy—yox], [Y®z-z®y], [z8X—Xx®Z]. (B5
[x®y-y®x], [y vl L ]. (BY) —v—2c, i—w? bc—w?  Co
Only the J=4 eigentensor iB3) has a nonzero trace that det 1 —v—0Cy —-ic, %Cl—wﬁ 0
L 2 =Yy,
can contribute to the mean-square lengt). 1 ~lc, —v-c, c1—?
0 1 1 —v
APPENDIX C: EIGENVALUES OF DILUTE GAS (C2)

LYAPUNOV MATRIX

The 4x4 matrix in (30) is the asymptotic operator that Which expands to
gives the Lyapunov expansion. The expansion will be domi-
nated by the eigenvaluewith the largest real part. Since the [v+ sc {3+ %cgv2+[3c§—4(cl— wﬁ)]v— 6c,Co—2Cq}
operator is part of the evolution equation for the square of
the phase-space separation, the Lyapunov exponent is half =0. (€3

this eigenvalue o ) ) ]
It is instructive to analyze the solutions of equati@B)

A=1imax Rév). (C1) for various ranges of the parameters
|
0, [2co]"® or [2¢0]"%e™ ™ for c,=ci=w2=0 (C4a
y=10, ,or =2[c;— wj]*? for c,=co=0 (C4b)
0, —ic,, —%c,, or —2c, for co=c;=wi=0. (C40

In (C40), v<0, so it cannot produce a Lyapunov expansion.shall set it to 1 at the end. In EC3) we shall rewritec, as
Case(C4b) can have a positive if c;>w? (otherwise the %, andc, asc,. We shall also take» 3 =O(8). Equating
nonzero eigenvalues are imaginar@ase(C4a has one un- coefficients of powers oB gives

equivocally positive solution, namely=[2c,]">.

To consider the relative magnitudes of the parameters we V8—200=0. (C7)
introduce the correlation time, which we wish to treat as
a small parameter in the same sense that the Kubo number 3v3v,—4[c— wi]ve=0, (C8
at, was a small parameter in Sec. |l B and Réf5]. Then
we may expect etc., which give us
C1=7Co, Cp=372Co. (CH 3 4 )
vo=[2Co]™", V1731 2¢,] [c1—wii]. (C9
Suppose that 0
v=1vo+ By + BRryt -, (Ce)  To leading order, then,
where B is used to keep track of perturbation order and we A=3[2co]*3
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