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We carry out computer simulations of an excitable reaction-diffusion equation for an activator and an
inhibitor both in one and two dimensions to study various pattern formations such as propagating pulses, and
concentric and spiral waves. By choosing a suitable nonlinearity, a stable limit cycle solution can coexist with
an equilibrium uniform solution. In this situation, the excitability is still preserved in the sense that a propa-
gating pulse is stable. We have found that propagating pulses do not always annihilate upon collision but cause
a domain that emits outgoing wave trains. In two dimensions a concentric wave~target pattern! is formed
spontaneously without any pacemaker. The mechanism for these dynamical structures is qualitatively dis-
cussed.@S1063-651X~96!03812-3#

PACS number~s!: 02.50.2r, 82.20.Mj, 82.30.2b

I. INTRODUCTION

Pattern formation far from equilibrium has attracted much
interest recently@1,2#. Experiments of Rayleigh-Benard con-
vection@1–3#, the electro hydrodynamic instability of liquid
crystals@2,4#, chemical reactions@5–8#, and crystal growth
@9# have put forward our understanding of formation and
evolution of patterns significantly. Computer simulations
have also disclosed new features of spatiotemporal orders.
One of the most intriguing findings is that two pulses~or
localized domains! propagating to opposite directions do not
always annihilate upon collision as had been believed gener-
ally in a dissipative system but exhibit much more compli-
cated dynamical behaviors@10–16#.

There are three fundamental properties in a nonvariational
nonlinear open system. One is a spatially periodic order. As
is well known, this is not realized in a variational system
with a short-range interaction. A temporal order such as a
limit cycle oscillation is, of course, another characteristic
feature far from equilibrium. The third one is an excitability.
A steady nonequilibrium state often exhibits a nonlinear re-
sponse to an external disturbance such that when the distur-
bance is small, the deviation from the steady state quickly
relaxes whereas when the magnitude of the disturbance is
beyond certain threshold, the system once goes away from
the steady state and then moves back. This kind of nonlinear
behavior can never exist in and near thermal equilibrium. An
important consequence of the excitability is the existence of
a stable propagating pulse and a stable localized domain.

In a theoretical approach to pattern formation, one gener-
ally focuses on the slow degrees of freedom. The amplitude
equation near a bifurcation point is a typical example@17#.
The phase dynamics, which is not necessarily restricted to
the vicinity of an instability threshold, is also a powerful
method to describe weak deformations around spatially peri-
odic and/or oscillatory order@18#. In fact, the amplitude and
the phase dynamics simplify substantially an original model
equation of the system and can extract common features of
various spatiotemporal patterns.

The amplitude and phase dynamics in their simplest treat-
ment are, however, specific to one bifurcation or a certain

order. Therefore, this theory is not convenient to explore
successive bifurcations that are often observed by changing a
control parameter in a system. Furthermore, the excitability
is not easily incorporated into the theory in terms of the
amplitude and the phase.

Another theoretical approach widely employed far from
equilibrium is a modeling by a set of reaction-diffusion equa-
tions @19#. The above-mentioned three properties can be in-
cluded simultaneously in a fairly simple reaction-diffusion
system. An example is the Bonhoeffer–van der Pol~BvP!
–type equation that takes the following form for the vari-
ables an activatoru and the inhibitorv:

t
]u

]t
5Du“

2u1 f ~u!2v, ~1!

]v
]t

5Dv“
2v1u, ~2!

wheret is the ratio of the relaxation rates ofu andv. The
positive constantsDu andDv are the diffusion rate ofu and
v. respectively.f (u) is assumed to have a cubiclike nonlin-
earity such as

f ~u!5u~12u!~u2a! ~3!

with a a constant.
WhenDv is set to be zero, the set of Eqs.~1! and~2! with

~3! is known to be excitable. In the opposite limit
Du!Dv , Eqs.~1! and~2! admit a spatially periodic solution,
which is a consequence of a Turing instability@20#. If one
replacesu2a by u in ~3!, the system is oscillatory. Thus, the
set of Eqs.~1! and ~2! is, despite its simplicity, expected to
reveal a variety of bifurcations by changing the parameters.
In fact, the BvP-type equation has been applied to various
phenomena such as pulse propagation along nerve axons
@21#, spiral waves in the Belousov-Zhabotinsky reaction
@22#, biological pattern formation@23,24#, and glow dis-
charge@25#.
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In our previous papers@26–28#, we have shown that Eqs.
~1! and~2! reveal an essentially new dynamical behavior for
a particular choice off (u):

f ~u!5
1

2F tanhS u2a

d D1tanhS ad D G2u, ~4!

wherea andd are positive constants. Note thatf (0)50 and
the functionf becomes piecewise linear in the limitd→0.

One of the characteristic features of Eqs.~1! and~2! with
f given by~4! is that when the diffusion terms are absent, a
stable limit cycle coexists with the stable equilibrium solu-
tion u5v50 for sufficiently small values ofa and d. In
other words, a limit cycle oscillation appears as a subcritical
bifurcation by decreasing the parametera.

A subcritical Hopf bifurcation itself is not special and
appears in various nonlinear coupled equations. Near the bi-
furcation threshold, it is described by the complex Ginzburg-
Landau~GL! equation:

]W

]t
5d“2W1W1puWu2W2quWu4W, ~5!

where the complex coefficientsd,p, andq have positive real
parts. We emphasize, however, that Eq.~5! cannot cover the
whole properties of Eqs.~1! and ~2! in the coexistence re-
gion. The excitability still remains in Eqs.~1! and ~2! since
the oscillation is quite relaxational. In fact, as will be shown
in Sec. II, a stable propagating pulse exists in the coexistence
region while Eq.~5! does not admit such a solution. This is
an essential difference of Eqs.~1! and~2! from Eq.~5! and is
the reason why we say that the set of Eqs.~1! and~2! contain
the excitability despite the fact that it has a limit cycle oscil-
lation.

Our main concern in the present paper is to investigate
what kinds of dynamical order emerge in the system~1! and
~2!. The parametersDv and a play the central role of the
various types of spatiotemporal structures. Qualitatively, the
oscillatory character is strengthened by decreasing the value
of a. Since the diffusion ofv tends to suppress the growth of
the activatoru, a propagating pulse becomes unstable for
large values ofDv . By further increasingDv , a localized
domain either disappears or becomes motionless depending
on the values ofa.

The structure of this paper is as follows. An analytical
study of Eqs.~1! and ~2! is given in Sec. II. We derive the
amplitude equation near the Hopf bifurcation and show that
the bifurcation is indeed subcritical for small values of the
parameterd in ~4!. Equations~1! and ~2! are solved in the
limit d→0 under the spatially uniform condition. It is shown
that a limit cycle solution exists for small values ofa. In Sec.
III, simulations of a head-on collision of two pulses carry out
in one dimension. A localized domain is constituted after the
collision, which, in turn, emits pulses propagating outward.
We call this oscillatory domain a pulse generator. A pulse
generator is also formed starting from a nonuniform initial
condition. We investigate the spatiotemporal pattern in detail
by changing the parametersa and Dv and obtain a phase
diagram of the patterns.

Section IV contains our simulations in two dimensions. A
pulse generator in two dimensions causes persistent concen-

tric waves. The dynamics of spiral waves is also investi-
gated. For example, a two-armed spiral wave can be con-
structed starting from a suitable initial condition as in an
ordinary excitable system. However, a qualitatively different
dynamic behavior appears in the core region. That is, the two
arms touch each other repeatedly at the core. This is due to
the oscillatory character of the system. A brief summary of
our results and a discussion of the relationship with other
recent simulations are given in Sec. V.

II. LIMIT CYCLE OSCILLATION

In this section, we derive the amplitude equation of Eqs.
~1! and~2! near the Hopf bifurcation threshold to obtain the
condition where the bifurcation is subcritical forf (u) given
by ~4!. A limit cycle solution is also obtained in the limit
d→0 in ~4!.

First, we show the numerical results of Eqs.~1! and ~2!
without the diffusion terms. Figure 1~a! displays the trajec-
tory of the limit cycle in theu2v plane computed for
a50.15 andd50.05. It is found that whend50.05, a limit
cycle oscillation exists fora,aH50.179. Thus a subcritical
Hopf bifurcation occurs ata5aH by decreasing the value of
a. The frequency of oscillation decreases when one de-
creases the value ofa. As far asf 8(0) is negative, the equi-
librium solutionu5v50 is linearly stable. It turns out that
f 8(0).0 for a,aL50.091. This value is readily obtained
from Eq. ~4! for d50.05. Thus the limit cycle and the equi-
librium solution coexist stably foraL,a,aH . The limit
cycle is still stable fora,aL but the equilibrium solution
becomes unstable. The amplitude of oscillation is shown as a
function ofa in Fig. 1~b!.

FIG. 1. ~a! Limit cycle orbit ~thick line! and equilibrium solu-
tion ~black circle! of Eqs.~1! and~2! for d50.05 anda50.15 in the
u–v plane. The thin line indicates the functionv5 f (u) whereas the
dotted line means the separatrix.~b! The amplitude of the limit
cycle as a function ofa. The vertical axis is the maximum value of
(u21v2)1/2 in one period.
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Next we confirm the subcritical bifurcation obtained
above by a reductive perturbation analysis. Since the treat-
ment choosinga as a control parameter is not easy, we here
take an alternative approach. Let us write Eqs.~1! and~2! as

]u

]t
5Du“

2u1 f ~u!2v, ~6!

]v
]t

5Dv“
2v1u2b, ~7!

where we have putt51 and introduced a constantb in Eq.
~7! for convenience. The form off (u) is not specified but
assumed to have three zeros with the smallest one given by
u50 andd f /du,0 there.

The equilibrium uniform solutionu0 andv0 is given by

u05b, ~8!

v05 f ~b!. ~9!

The linear stability of the uniform solution is readily ob-
tained. PutsW5(u2u0 ,v2v0);exp(lt). When the devia-
tionssW are uniform in space, the solution becomes unstable if
f 8(b) is positive where a prime indicates the derivative with
respect to the argument. Thus the stability thresholdbc is
given through the conditionf 8(bc)50, at which the eigen-
value is given byl56 i .

We introduce the smallness parameter

e25b2bc , ~10!

and expandsW in powers ofe: sW5esW11e2sW21•••. At post-
threshold, one may put

sW15W~rW,t !UW eit1c.c., ~11!

where c.c. implies complex conjugate. The eigenvectorUW

satisfies the relationL0UW 5 iUW where the 232 matrixL0 has
the elementsL005L2250 andL1252L21521. The com-
plex variableW expresses the slower time dependence of
sW1.

By the standard method of reductive perturbation@18#, the
equation for the amplitudeW is calculated up to cubic order
as

]W

]t
5d“2W1bcW2guWu2W, ~12!

where

d5 1
2 ~Du1Dv!, ~13!

g52 1
8 f 98~bc!1 i

~ f 9!2

12
. ~14!

If the real part ofg is negative, the bifurcation is subcritical.
It is readily verified that whenf (u) is given by Eq.~4!, this
indeed occurs ford, 1

3.
In the original set of Eqs.~1! and ~2!, the constantb is

identically zero, which means that the system is below the

threshold. However, since the bifurcation is subcritical, one
may expect a stable limit cycle solution as far as the bifur-
cation pointbc is not much distant from zero. In the nonlin-
ear function~4!, this means that the parametera must be
sufficiently small sincebc is close toa. In order to estimate
the critical value ofa, one needs to evaluate the quartic term
in the GL equation. To derive the condition for the existence
of a uniform limit cycle solution, we consider the limit
d→0 so thatf (u) becomes a piecewise linear form

f ~u!52u ~15!

for u,a and

f ~u!52u11 ~16!

for u.a.
Here we make a remark. Equations~1! and ~2! with

Dv50 and with the piecewise linear dynamics were studied
by Rinzel and Keller many years ago@21#. They obtained a
propagating pulse solution and a wave train with infinite
length and discussed their stability. However, the possibility
of a limit cycle solution was not investigated.

Hereafter, for simplicity, we omit the diffusion terms in
Eqs.~1! and ~2!:

du

dt
5 f ~u!2v, ~17!

dv
dt

5u. ~18!

An asymptotic periodic solution of Eqs.~17! and~18! can be
obtained by the Fourier transform. The variablesu andv are
expanded as

u5 (
n52`

`

CnexpS 2pni

T
t D , ~19!

v5 (
n52`

`

DnexpS 2pni

T
t D , ~20!

whereT is the period of oscillation and is to be determined.
Substituting Eqs.~19! and ~20! into Eqs.~17! and ~18!, the
Fourier coefficients are readily obtained as

Cn5
12exp~22pnit1 /T!

~2pn!2/T2T22pni
, ~21!

Dn5
T

2pni
Cn , ~22!

wheret1 is the time interval in one period of oscillation such
that u is smaller thana and hence defined through the con-
ditions

u~0!5a,u~ t1!5a. ~23!

The unknown variablesT andt1 can be determined from Eq.
~23! as a function ofa. Figure 2 shows the result where the
full line indicatesT whereas the dotted line ist1. Note that
T andt1 are multivalued but the lower branch corresponds to
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the stable limit cycle solution. The periodT of a stable limit
cycle increases slightly asa is increased. The stable and the
unstable limit cycles merge with each other at about
a50.107 and hence beyond this, a limit cycle solution does
not exist.

These are consistent with the numerical results shown at
the beginning of this section. A slight discrepancy of the
threshold value fora is due to the finiteness of the valued in
simulations.

III. PULSE PROPAGATION IN ONE DIMENSION

In Sec. II, we have shown that a stable limit cycle can
coexist with a uniform equilibrium state in Eqs.~1! and ~2!
without the diffusion terms. In this and the next sections, we
study the dynamics of Eqs.~1! and~2! when the diffusion is
present.

Computer simulations shown below have been carried out
for Du51, and d50.05 unless stated otherwise and by
changing other parametersDv anda. These parameters alter
the dynamical property of the system as follows. Since the
amplitude of the limit cycle decreases and the separatrix in-
creases by increasinga as shown in Sec. II, the oscillatory
property is weakened for large values ofa. As will be shown
below, on the other hand, a stable propagating pulse exists
for Dv→0. It should be noted that this occurs even when a
uniform limit cycle solution is also stable. Thus the propa-
gating pulses are expected to have a different property from
those in the purely excitable FitzHugh-Nagumo limit of Eqs.
~1! and~2! whereDv50 and f (u) is given, e.g., by Eq.~3!.
The propagating pulses become less stable if one increases
the ratioDv /Du . Actually whenDv is sufficiently large, the
system undergoes a subcritical Turing instability so that only
a motionless pulse or a motionless periodic structure can
exist.

It should be noted that the parametert is of ordinary
magnitude. This is quite in contrast to the previous studies
where it is assumed to be extremely small, especially for
modeling of the Belousov-Zhabotinsky~BZ! reaction@29#.
Smallness of the parametersa andd in Eq. ~4! is also essen-
tial in the present problem since the coexistence of the uni-
form stationary state and a limit cycle oscillation emerges
under these conditions.

First, we show numerically that a wave train with arbi-
trary length is stable forDv50 in the coexistence region.

Figure 3 displays the wave trains fora50.15 with various
lengths traveling to the right. We have confirmed that the
form of these wave trains does not change appreciably in
time. For smaller values ofa where the oscillatory character
is stronger, a wave train with a finite length cannot exist but
only an infinitely long wave train appears as a phase wave in
an ordinary oscillatory system. When the length of a wave
train is finite as in Fig. 3, its propagating velocity is found to
be almost independent of the length and is the same as that
of a single pulse in Fig. 3~a!. This implies that the top train
control the velocity.

Now we carry out simulations of a head-on collision of
two pulses in one dimension. It is well known that pulses in
a dissipative open system generally annihilate upon collision.
This is indeed the case in Eqs.~1! and ~2! for sufficiently
large values ofa. We will show, however, that a qualita-
tively different behavior occurs in the coexistence region.
Two single pulses decay upon collision as shown in Fig. 4~a!
whereDv50 anda50.15. This should be compared with a
collision of two-wave trains in Fig. 4~b! for the same values
of the parameters. In this process, the front trains annihilate
as usual but a localized oscillatory domain forms after the
collision of the second trains and furthermore this domain
produces sustained pulses propagating outward. We call the
localized domain a self-organized pulse generator. It is noted
here that the oscillating amplitude ofu andv and the period
at the center of the domain are almost the same as those of
the limit cycle without diffusion.

The formation of a pulse generator can be understood as
follows. The initial wave trains act as a trigger wave in the
excitable medium. Collision of wave trains produces a large
amplitude deviation from the equilibrium solutionu5v50
so that the colliding region enters into the oscillatory state.
Thus this phenomenon can be interpreted as a nucleation and
growth of the oscillatory state in a uniform state. In fact, one
can see from Fig. 4~b! that the region of the pulse generator
is gradually expanding with time as if the oscillating domain
invades the surrounding quiescent state while emitting the
outgoing waves. We have verified for a longer run that the

FIG. 2. The periodT ~full line! and the intervalt1 ~dotted line!
as a function ofa.

FIG. 3. ~a! Pulse and wave trains with the length~b! 2, ~c! 3, and
~d! 8 for Dv50 anda50.15.
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speed and the spatial period of the wave train near the oscil-
lating domain gradually increase with time. We believe that
this slow change of wave trains is attributed to a phase dif-
fusion since the system is in an oscillatory regime.

It is remarked here that the behavior shown in Fig. 4 is
specific to the vicinity ofa50.15 where the oscillatory char-
acter is not so strong. For smaller values ofa, a pulse gen-
erator appears even in a collision of two single trains.

A pulse generator can be constructed in an alternative
way. That is, a spatially localized domain undergoes sponta-
neous oscillation and it emits sustained outgoing pulses. We
start with the initial conditionu(x,0)5exp(2x2/ l 2) and
v(x,0)50 for 2L,x,L with the system sizeL5100.
Simulations are performed for two different widthsl51 and
10 to see the dependence of the initial condition. The Neu-
mann boundary condition is imposed at the system bound-
aries.

Evolution of the pulse generator and the emitted waves
has been studied by changing the parametersDv anda. Fig-
ure 5 summarizes the results for the smaller initial width
l51. WhenDv is small, typically six different spatiotempo-
ral patterns appear as is indicated, respectively, by I–VI.

Region I is a region where a propagating pulse is stable
and the system is strongly oscillatory. An initial localized
domain causes a pulse generator that produces stable wave
trains as in Fig. 4~b! after collision. Figure 6~a! displays the
spatiotemporal pattern observed in region I, where the con-
tour u50.001 is plotted.

In region II whereDv is increased slightly, the initial
localized domain still becomes a pulse generator. However,
emitted pulse trains do not survive forever. The top train
annihilates after a certain lifetime, then the next one disap-
pears, and so forth. Since the speed of a wave train is larger
than the decay rate of a front pulse, the front moves slowly
outward. Figure 6~b! indicates the behavior forDv50.7 and
a50.15. It is also noted that decay of a pulse does not nec-
essarily occur only at the front of a wave train but also in the
middle of a wave train as shown in Fig. 6~c! for Dv50.9. As

mentioned above, the pulse generator is expanding but the
velocity of a pulse is almost constant in time so that the
distance between two adjacent pulses becomes smaller.
When the distance is too small, such a configuration is un-
stable and one of the pulses disappears. For larger values of

FIG. 4. ~a! Collision and annihilation of two single pulses for
Dv50 anda50.15. The full ~dotted! line indicates the profile of
u (v). The time steps aret50, 10, 15, and 20 from top to bottom.
~b! Collision of pulse trains and formation of a pulse generator for
Dv50 anda50.15. The time steps aret50, 20, 30, and 60 from
top to bottom.

FIG. 5. Phase diagram inDv-a plane.

FIG. 6. Spatiotemporal patterns of the pulse generator and the
emitted pulses for~a! Dv50, ~b! 0.7,~c! 0.9,~d! 1.1,~e! 1.6, and~f!
6.0. The parametera is fixed asa50.15. The lines indicate the
contour lines ofu50.001. The abscissa is the space axis whereas
the ordinate is the time axis.
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Dv where expansion of the pulse generator is negligible, only
the front pulse decays.

Some years ago, Ito and Ohta@30# studied analytically the
condition for the existence of both motionless and propagat-
ing pulses in Eqs.~1! and ~2! in the piecewise linear limit
d→0. Comparing with the results obtained there, we note
that the boundary between regions I and II shown in Fig. 5 is
almost the same~within the numerical uncertainty! as the
marginal line in Ref.@30#, above which a propagating pulse
does not exist. This is clear evidence that the origin of the
difference between regions I and II is the stability of a propa-
gating single pulse.

Propagation of the emitted pulses becomes weaker in re-
gion III. Figure 6~d! shows an example forDv51.1 and
a50.15. It is interesting to see that the size of the oscillating
domain is oscillating. This oscillation of the width should not
be confused with another type of oscillation of a domain in
the BvP equations~1! and ~2!. It has been reported@31–33#
that a stable localized motionless domain, which is a solution
of Eqs. ~1! and ~2! for small values ofDu /Dv , begins to
oscillate when one decreasest. This oscillation, called a
breathing motion, originates from the time-delayed interac-
tion between the domain boundaries mediated by the diffu-
sion ofv. Therefore, if one puts two localized domains, these
undergo an in-phase oscillation. We have examined the in-
teraction of two pulse generators in region III. It seems that
the interaction is quite short ranged compared to that of
breathing domains.

In the boundary region between regions II and III, com-
plicated spatiotemporal patterns are observed. For instance,
the pattern forDv52.0 anda50.13 initially looks like that
in Fig. 6~c!, but after a long transient it changes to that in
Fig. 6~d!.

In region IV the localized domain does not emit pulses
and the domain width is constant in time. This is because the
inhibitor v generated by the reaction in Eq.~1! rapidly dif-
fuses to the surrounding region so that formation of pulses is
inhibited. However, the inside of the domain is still oscillat-
ing. An example forDv51.6 anda50.15 is shown in Fig.
6~e!. By a detailed numerical analysis, we have confirmed
that the change from Figs. 6~e! to 6~d! is a supercritical Hopf
bifurcation. The domain oscillation in Fig. 6~e! is apparently
similar to the breather solution in the nonlinear Schro¨dinger
equation although the present system~1! and ~2! is purely
dissipative. Probably it is related to the results obtained by
Thual and Fauve@34#. They found an oscillation of a local-
ized domain by numerical simulations of the complex GL
equation~5! for a subcritical Hopf bifurcation in one and two
dimensions. The excitability is nonexistent in region IV since
any propagating pulse does not exist there. Thus the system
is simply bistable in a sense that a limit cycle and a uniform
state coexist. This is the situation expressed by the GL equa-
tion.

In region V, the uniform state becomes more stable.
When l51 the domain shrinks and eventually disappears.
But if one starts with the larger widthl510, a different
pattern is evolved, which will be described shortly below.

WhenDv is greater than 10, the initial localized domain
does not disappear but tends to form a stable motionless
pulse. The boundary between regions V and VI is almost
independent ofa.

The larger initial widthl510 changes the phase diagram
in Fig. 5 substantially except for the boundary between re-
gions I and II and other boundaries neara50.17. The former
boundary is not much altered because, as mentioned above, it
is the marginal line beyond which a propagating pulse is
unstable. Thus, it is intrinsic and insensitive to the initial
conditions. Regions II, III, and IV move upward so that the
boundary lines between these regions become steeper. For
instance, a domain oscillation similar to that in Fig. 6~e! can
be observed fora50.14 andDv57. When one starts with
the smaller initial width l51, the domain disappears for
these parameters. This fact implies that there is a kind of
critical width of the oscillating domain.

A qualitatively different behavior is observed for larger
values of Dv . Figure 7 shows the time evolution for
a50.11 andDv523 starting with the initial widthl510. In
this case, the initial oscillating domain breaks up so that a
motionless domain is formed at the tip of the domain while
the central part of the original domain is still oscillating.
Thus this is a mixed state of regions IV and VI in Fig. 5.

IV. CONCENTRIC AND SPIRAL WAVES

Target pattern and spiral waves have been studied exten-
sively in both excitable and oscillatory systems. In the
present system Eqs.~1! and ~2!, these dynamical behaviors
also appear in two dimensions. In this section, we shall show
our two-dimensional simulations emphasizing the features
different from those of the previous studies.

The persistent outgoing wave train emitted from the pulse
generator in one dimension corresponds to a concentric wave
~target pattern! in higher dimensions. We have indeed veri-
fied numerically that a target pattern emerges from a self-
organized pulse generator localized in two dimensions as
shown in Fig. 8 whereDv50 anda50.15. It is emphasized
that the target pattern appears without any heterogeneous
pacemaker nor any periodic external stimuli at the center.
What is necessary is only an initial concentration deviation.

This property is an essential difference from a target pat-
tern observed in BZ reaction. It is believed that a target pat-
tern in the BZ reaction is caused by some heterogeniety. As
mentioned in Sec. III the parametersDu and t in Eqs. ~1!
and~2! with f (u) given by Eq.~3! must be sufficiently small
as a model of the BZ reaction@29#.

A target pattern can also be constructed from a collision
of wave trains in two dimensions as in Fig. 4 in one dimen-

FIG. 7. Spatiotemporal patterns forDv523 anda50.11.

54 6079SPONTANEOUS FORMATION OF CONCENTRIC WAVES . . .



FIG. 8. Time evolution of a target pattern forDv50 anda50.15. The spatial variation ofu is shown at every four time steps from the
top left to the bottom right. The system size is 1003100.

FIG. 9. Oscillating localized domain forDu51,Dv51.2, anda50.15 at every two time steps. The system size is 50350. Other details
are the same as those in Fig. 8.
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sion. A two-dimensional version of a head-on collision is
realized by an inward circular wave train. Although not
shown in the figure, an inward wave train with one and two
rings does not produce a pulse generator but a circular wave
train with three rings triggers a pulse generator so that a
target pattern is formed. This phenomenon is observed only
neara50.15 as in one dimension. Nevertheless, it is remark-
able that excitation of outgoing pulses depends on the num-
ber of the inward waves, i.e., the number of stimuli.

It is also interesting to see what happens in two dimen-
sions by changing the ratioDv /Du . When one increases
Dv , the target pattern becomes localized within a certain
finite area. Figure 9 depicts a localized target pattern for
Du51, Dv51.2, anda50.15 starting from the initial con-
ditions u(x,y)5exp@2(x21y2)/25# and v50. This corre-
sponds to Fig. 6~e! in one dimension. WhenDu is extremely
smaller thanDv , one has an entirely different pattern. In this
case, the above initial conditions produce a motionless target
pattern as is shown in Fig. 10 forDu50.25, Dv520, and
a50.16.

A spiral wave also exists in the present system. Since it
contains both oscillatory and excitable characters, two kinds
of spiral waves are possible for the same parameters. One is
constructed starting with a planar propagating pulse termi-
nated at one end as in an ordinary excitable system. This is
shown in Fig. 11~a!. However, if one starts from an initial
pulse configuration such that the wavelength of the spiral is
short, the system enters into the oscillatory state where the
spiral is not a trigger wave but a phase wave. This is evident
from the fact that a phase diffusion is observed in this case
such that the wavelength increases gradually.

Double-armed or multiarmed spirals can be constructed

FIG. 10. Formation of a motionless localized target pattern forDu50.25,Dv520.0, anda50.16 at every four time steps.

FIG. 11. ~a! Formation of a single armed spiral. Time passes
from the left to the right. The system size is 1003100. ~b! Forma-
tion of a double-armed spiral.~c! Three-armed~left! and four-armed
~right! spirals.~d! Defect in a spiral pattern. Note that the location
of the defect does not change in time from the left to the right.
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for Du51 andDv50 in a similar way as shown in Figs.
11~b! and 11~c! for three- and four-armed spirals, respec-
tively. The oscillatory property of the system induces an in-
teresting synchronous motion in the central region. That is,
the tips of all the arms stick to and separate from each other
periodically. Although the present model is not directly re-
lated to the BZ reaction as mentioned above, this motion
itself has been observed in the experiments of the BZ reac-
tion @35#.

If one starts from an initial condition with lower symme-
try, a defect is often formed in a spiral wave as in Fig. 11~d!.
A wave propagating outward from the core collides with the
defect and then a reconnection occurs there. Thus this defect
stays at almost the same position and is quite stable.

V. DISCUSSIONS

We have investigated the pattern dynamics of Eqs.~1! and
~2! in the parameter regime where a stable limit cycle solu-
tion coexists with the uniform equilibrium solution. Propa-
gating pulses are also stable when the diffusion of the inhibi-
tor is small. This implies that the system preserves, to some
extent, an excitability. This is one of the most important
properties of the system, which is not expressed by a simple
complex GL equation for a subcritical Hopf bifurcation.

A pulse generator is self-organized by a collision of
pulses or by a local concentration inhomogeneity. In two
dimensions, this results in a target pattern both nonlocalized
and localized in space depending on the magnitudeDv . The
nonlocalized target pattern is different from that observed in
the BZ reaction since the latter is believed due to a hetero-
geneous pacemaker. Actually the frequency of oscillation at
the center in the BZ reaction is higher than that in the bulk
while, in the present case, it is almost the same as that of a
uniform oscillation.

Present simulations show that an extended target pattern
can exist in a two-component reaction diffusion system. This
is a result that, to our knowledge, has not been seen previ-
ously. Computer simulations of a BvP-type model equation
for glow discharge@36# have shown automatically excited
pulse trains similar to that in Fig. 5~a!. However, the time-
evolution equation contains a long-range nonlocal interac-
tion. In order to make this interaction short ranged like a

diffusion term, one needs to introduce an extra variable so
that the model in Ref.@36# is essentially three variable. An-
other three-variable model is also proposed for a nonlocal-
ized target pattern@37#.

A global phase diagram is obtained in theDv–a plane.
When one increases the valueDv , the target pattern tends to
be localized and finally the localized domain becomes either
motionless or nonexistent depending on the parametera and
the initial condition.

A target pattern localized in space has been observed ex-
perimentally in an electrohydrodynamic instability in liquid
crystals @4#. However, this mechanism is interpreted by a
coupling of the oscillating mode and a phase of an underly-
ing spatial periodicity@38#. Thus, this localized target pattern
is different from that obtained here. As mentioned in Sec. III,
a localized oscillatory domain in region IV is closely related
to that found numerically in a complex GL equation@34#.

At present, only a part of the phase diagram is understood
quantitatively. The boundary between regions I and II is
given by the stability limit of a single propagating pulse@30#.
The motionless domains in the limitDu /Dv!1 are due to a
subcritical Turing instability@32,39#. We believe that the es-
sence of the dynamic behaviors in the phase diagram is a
nucleation of an oscillatory domain in a quiescent matrix.
However, some key factors such as a lifetime of the top pulse
in a wave train in region II and a domain size in region IV
are not easy to evaluate theoretically. The dependence on the
initial conditions as mentioned in Sec. III indicates that there
is a critical radius of domain, below which an oscillatory
domain does not exist. Our understanding of the critical ra-
dius is only semiquantitative@34#. Nevertheless, the present
simulations have revealed that the BvP-type Eqs.~1! and~2!,
which were studied mainly in the singular limit, contain
much more fascinating dynamical patterns for the parameters
with an ordinary magnitude.
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