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Spontaneous formation of concentric waves in a two-component reaction-diffusion system
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We carry out computer simulations of an excitable reaction-diffusion equation for an activator and an
inhibitor both in one and two dimensions to study various pattern formations such as propagating pulses, and
concentric and spiral waves. By choosing a suitable nonlinearity, a stable limit cycle solution can coexist with
an equilibrium uniform solution. In this situation, the excitability is still preserved in the sense that a propa-
gating pulse is stable. We have found that propagating pulses do not always annihilate upon collision but cause
a domain that emits outgoing wave trains. In two dimensions a concentric (t@get patternis formed
spontaneously without any pacemaker. The mechanism for these dynamical structures is qualitatively dis-
cussed[S1063-651X96)03812-3

PACS numbgs): 02.50-r, 82.20.Mj, 82.30-b

[. INTRODUCTION order. Therefore, this theory is not convenient to explore
successive bifurcations that are often observed by changing a

Pattern formation far from equilibrium has attracted muchcontrol parameter in a system. Furthermore, the excitability
interest recently1,2]. Experiments of Rayleigh-Benard con- is not easily incorporated into the theory in terms of the
vection[1-3], the electro hydrodynamic instability of liquid amplitude and the phase.
crystals[2,4], chemical reaction5—8], and crystal growth Another theoretical approach widely employed far from
[9] have put forward our understanding of formation andequilibrium is a modeling by a set of reaction-diffusion equa-
evolution of patterns significantly. Computer simulationstions[19]. The above-mentioned three properties can be in-
have also disclosed new features of spatiotemporal order§luded simultaneously in a fairly simple reaction-diffusion
One of the most intriguing findings is that two pulse@s  System. An example is the Bonhoeffer—van der FBP)
localized domainspropagating to opposite directions do not —type equation that takes the following form for the vari-
always annihilate upon collision as had been believed genebles an activaton and the inhibitor:
ally in a dissipative system but exhibit much more compli-
cated dynamical behaviof40-16. u )

There are three fundamental properties in a nonvariational T =DV f(u)—v, (1)
nonlinear open system. One is a spatially periodic order. As
is well known, this is not realized in a variational system
with a short-range interaction. A temporal order such as a 3_U_D V2
. 9= T S = v+u, (2
limit cycle oscillation is, of course, another characteristic ot v
feature far from equilibrium. The third one is an excitability.

A steady nonequilibrium state often exhibits a nonlinear reyynere 7 is the ratio of the relaxation rates afandv. The

sponse to an external disturbance such that when the diSt%'ositive constant®, andD, are the diffusion rate o and

bance is small, the deviation from the steady state quickly, respectivelyf(u) is assumed to have a cubiclike nonlin-
relaxes whereas when the magnitude of the disturbance @arity such as

beyond certain threshold, the system once goes away from
the steady state and then moves back. This kind of nonlinear
behavior can never exist in and near thermal equilibrium. An
important consequence of the excitability is the existence of
a stable propagating pulse and a stable localized domain. with a a constant.
In a theoretical approach to pattern formation, one gener- WhenD, is set to be zero, the set of E¢$) and(2) with
ally focuses on the slow degrees of freedom. The amplitudé3) is known to be excitable. In the opposite limit
equation near a bifurcation point is a typical examé]. D,<D,, Egs.(1) and(2) admit a spatially periodic solution,
The phase dynamics, which is not necessarily restricted twhich is a consequence of a Turing instabili0]. If one
the vicinity of an instability threshold, is also a powerful replacesi—a by u in (3), the system is oscillatory. Thus, the
method to describe weak deformations around spatially periset of Eqs.(1) and(2) is, despite its simplicity, expected to
odic and/or oscillatory orddrl8]. In fact, the amplitude and reveal a variety of bifurcations by changing the parameters.
the phase dynamics simplify substantially an original modeln fact, the BvP-type equation has been applied to various
equation of the system and can extract common features @henomena such as pulse propagation along nerve axons
various spatiotemporal patterns. [21], spiral waves in the Belousov-Zhabotinsky reaction
The amplitude and phase dynamics in their simplest treaf-22], biological pattern formatior{23,24], and glow dis-
ment are, however, specific to one bifurcation or a certaircharge[25].

f(uy=u(l—u)(u—a) 3)
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In our previous papeli26-28, we have shown that Egs.

(1) and(2) reveal an essentially new dynamical behavior for '(a) v
a particular choice of (u):
U= 1 u—a N a 4
(u)= 5| tanf ——| +tanh | | -u, (4)

wherea and 6 are positive constants. Note thig0)=0 and
the functionf becomes piecewise linear in the lindit->0.
One of the characteristic features of E¢B.and(2) with
f given by (4) is that when the diffusion terms are absent, a (b)
stable limit cycle coexists with the stable equilibrium solu-
tion u=v=0 for sufficiently small values of and é. In A
other words, a limit cycle oscillation appears as a subcritical
bifurcation by decreasing the parameger
A subcritical Hopf bifurcation itself is not special and

appears in various nonlinear coupled equations. Near the bi-
furcation threshold, it is described by the complex Ginzburg- /
Landau(GL) equation:
/
0

W ) s A .

— = dV2WH+ W+ p|W2W—g|W[*W, (5 51 5 -
where the complex coefficientsp, andq have positive real FIG. 1. (& Limit cycle orbit (thick line) and equilibrium solu-

parts. We emphasize, however, that E5).cannot cover the tion (black circle of Egs.(1) and(2) for §5=0.05 anda=0.15 in the
whole properties of Eq91) and (2) in the coexistence re- U-v plane. The thin line indicates the functior- f(u) whereas the
gion. The excitability still remains in Eqg1) and (2) since ~ dotted line means the separatrth) The amplitude of the limit
the oscillation is quite relaxational. In fact, as will be shown cy;:le affj‘zf_”mt'on 0. The vertical axis is the maximum value of
in Sec. I, a stable propagating pulse exists in the coexistendd” Tv7)"" in one period.

region while Eq.(5) does not admit such a solution. This i ¢ waves. The dynamics of spiral waves is also investi-
e ey o o e ot I, For xaml, s o atcspkl wavs an o con
y y ) structed starting from a suitable initial condition as in an

the excitability despite the fact that it has a limit cycle oscil- 5 inary excitable system. However, a qualitatively different

lation. . . . . . dynamic behavior appears in the core region. That is, the two
Our main concern in the present paper is to investigate, g touch each other repeatedly at the core. This is due to

what kinds of dynamical order emerge in the syst@mand e ogcillatory character of the system. A brief summary of

(2). The parameter®, anda play the central role of the  resylts and a discussion of the relationship with other
various types of spatiotemporal structures. Qualitatively, th‘?ecent simulations are given in Sec. V.

oscillatory character is strengthened by decreasing the value
of a. Sipce the diffusion ob _tends to suppress the growth of Il LIMIT CYCLE OSCILLATION
the activatoru, a propagating pulse becomes unstable for
large values oD, . By further increasind,, a localized In this section, we derive the amplitude equation of Eqgs.
domain either disappears or becomes motionless depending) and(2) near the Hopf bifurcation threshold to obtain the
on the values o&. condition where the bifurcation is subcritical fb¢u) given
The structure of this paper is as follows. An analyticalby (4). A limit cycle solution is also obtained in the limit
study of Egs.(1) and (2) is given in Sec. Il. We derive the J6—0 in (4).
amplitude equation near the Hopf bifurcation and show that First, we show the numerical results of E¢$) and (2)
the bifurcation is indeed subcritical for small values of thewithout the diffusion terms. Figure(d) displays the trajec-
parameters in (4). Equations(1) and (2) are solved in the tory of the limit cycle in theu—v plane computed for
limit 5— 0 under the spatially uniform condition. It is shown a=0.15 andé=0.05. It is found that whe@=0.05, a limit
that a limit cycle solution exists for small valuesafln Sec.  cycle oscillation exists foa<<ay=0.179. Thus a subcritical
11, simulations of a head-on collision of two pulses carry out Hopf bifurcation occurs a&=ay by decreasing the value of
in one dimension. A localized domain is constituted after thea. The frequency of oscillation decreases when one de-
collision, which, in turn, emits pulses propagating outward.creases the value @f. As far asf’(0) is negative, the equi-
We call this oscillatory domain a pulse generator. A pulsdibrium solutionu=v =0 is linearly stable. It turns out that
generator is also formed starting from a nonuniform initialf'(0)>0 for a<a =0.091. This value is readily obtained
condition. We investigate the spatiotemporal pattern in detaifrom Eq. (4) for 6=0.05. Thus the limit cycle and the equi-
by changing the parametessand D, and obtain a phase librium solution coexist stably fom, <a<ay. The limit
diagram of the patterns. cycle is still stable fora<a, but the equilibrium solution
Section IV contains our simulations in two dimensions. Abecomes unstable. The amplitude of oscillation is shown as a
pulse generator in two dimensions causes persistent concefunction ofa in Fig. 1(b).
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Next we confirm the subcritical bifurcation obtained threshold. However, since the bifurcation is subcritical, one
above by a reductive perturbation analysis. Since the treatnay expect a stable limit cycle solution as far as the bifur-
ment choosin@ as a control parameter is not easy, we herecation pointg; is hot much distant from zero. In the nonlin-

take an alternative approach. Let us write Ed$.and(2) as

_—D VZU‘l‘f u v 6
(?t u ( ) 1 ( )
J =D v21)+l,| “ /

?t v ’ ( )

where we have put=1 and introduced a constagtin Eq.
(7) for convenience. The form of(u) is not specified but

assumed to have three zeros with the smallest one given by

u=0 anddf/du<0 there.
The equilibrium uniform solutiomny andv is given by

UOIIB7 (8)
vo="F(B). C)

The linear stability of the uniform solution is readily ob-

tained. Puts=(u—ug,v—vo)~exp(\t). When the devia-

ear function(4), this means that the parametrmust be
sufficiently small sinceB, is close toa. In order to estimate
the critical value ofa, one needs to evaluate the quartic term
in the GL equation. To derive the condition for the existence
of a uniform limit cycle solution, we consider the limit
6—0 so thatf(u) becomes a piecewise linear form

f(uy=—u (15

for u<a and

f(uy=—-u+1 (16)

for u>a.

Here we make a remark. Equatiof$) and (2) with
D,=0 and with the piecewise linear dynamics were studied
by Rinzel and Keller many years aj21]. They obtained a
propagating pulse solution and a wave train with infinite
length and discussed their stability. However, the possibility
of a limit cycle solution was not investigated.

Hereafter, for simplicity, we omit the diffusion terms in

tionss are uniform in space, the solution becomes unstable iEqgs. (1) and (2):

f’(B) is positive where a prime indicates the derivative with

respect to the argument. Thus the stability thresh@ldis
given through the conditiofi’ (8.) =0, at which the eigen-
value is given byn = =i

We introduce the smallness parameter

€= B—Bc, (10
and expand; in powers ofe: s= esl+ € 32 . At post-
threshold, one may put

s;=W(r,t)Ue'+c.c., (11)

where c.c. implies complex conjugate. The eigenvedﬁor

satisfies the reIatiohOU =iU where the X 2 matrix L, has
the elementd jo=L,,=0 andL;,=—L,;=—1. The com-

plex variableW expresses the slower time dependence of

S

By the standard method of reductive perturbafib8l, the
equation for the amplitude/ is calculated up to cubic order
as

oW
— =dV2W+ B, W—g|W|?W,

5 (12

where
d= 3 (Dy+D,), 13
9=—73 f’”(ﬁc)+l( H)Z (19

If the real part ofg is negative, the bifurcation is subcritical.

It is readily verified that wheri(u) is given by Eq.(4), this
indeed occurs fos<13.
In the original set of Eqs(1) and (2), the constan is

u_
a—f(u)—v, (17)
dv _
a—u. (18)

An asymptotic periodic solution of Eq&l7) and(18) can be
obtained by the Fourier transform. The variableandv are
expanded as

(19

u= 2 C ex;{zwm )

n=-—ow

v= E D exr{zwm )

(20

n=-—ow

whereT is the period of oscillation and is to be determined.
Substituting Egs(19) and (20) into Egs.(17) and (18), the
Fourier coefficients are readily obtained as

1—exp(—2mnit,/T)

o= I T—T— 201" (@)
T
"~ 2mi O @2

wheret, is the time interval in one period of oscillation such
thatu is smaller thara and hence defined through the con-
ditions

u(0)=a,u(t;)=a. (23
The unknown variable$ andt; can be determined from Eg.
(23) as a function ofa. Figure 2 shows the result where the
full line indicatesT whereas the dotted line t5. Note that

identically zero, which means that the system is below thél andt, are multivalued but the lower branch corresponds to
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FIG. 2. The periodr (full line) and the intervat, (dotted ling
as a function ofa. @ 0
the stable limit cycle solution. The periddof a stable limit 5 T 500

cycle increases slightly asis increased. The stable and the
unstable limit cycles merge with each other at about
a=0.107 and hence beyond this, a limit cycle solution does F|G. 3. (a) Pulse and wave trains with the length 2, (c) 3, and
not exist. (d) 8 for D,=0 anda=0.15.

These are consistent with the numerical results shown at
the beginning of this section. A slight discrepancy of theFigure 3 displays the wave trains far=0.15 with various
threshold value foa is due to the finiteness of the valddn  lengths traveling to the right. We have confirmed that the

simulations. form of these wave trains does not change appreciably in
time. For smaller values af where the oscillatory character
IIl. PULSE PROPAGATION IN ONE DIMENSION is Stronger, a wave train with a finite Iength cannot exist but

only an infinitely long wave train appears as a phase wave in

In Sec. Il, we have shown that a stable limit cycle canan ordinary oscillatory system. When the length of a wave
coexist with a uniform equilibrium state in Eq4) and(2)  train is finite as in Fig. 3, its propagating velocity is found to
without the diffusion terms. In this and the next sections, wepe almost independent of the length and is the same as that
study the dynamics of Eqsl) and(2) when the diffusion is  of a single pulse in Fig. @). This implies that the top train
present. control the velocity.

Computer simulations shown below have been carried out Now we carry out simulations of a head-on collision of
for D,=1, and 6=0.05 unless stated otherwise and bytwo pulses in one dimension. It is well known that pulses in
changing other parametels, anda. These parameters alter a dissipative open system generally annihilate upon collision.
the dynamical property of the system as follows. Since theThis is indeed the case in Eqdl) and (2) for sufficiently
amplitude of the limit cycle decreases and the separatrix intarge values ofa. We will show, however, that a qualita-
creases by increasirg as shown in Sec. Il, the oscillatory tively different behavior occurs in the coexistence region.
property is weakened for large valuesafAs will be shown  Two single pulses decay upon collision as shown in Fig) 4
below, on the other hand, a stable propagating pulse existshereD,=0 anda=0.15. This should be compared with a
for D,—0. It should be noted that this occurs even when &collision of two-wave trains in Fig. @) for the same values
uniform limit cycle solution is also stable. Thus the propa-of the parameters. In this process, the front trains annihilate
gating pulses are expected to have a different property froms usual but a localized oscillatory domain forms after the
those in the purely excitable FitzHugh-Nagumo limit of Egs. collision of the second trains and furthermore this domain
(1) and(2) whereD,=0 andf(u) is given, e.g., by Eq(3). produces sustained pulses propagating outward. We call the
The propagating pulses become less stable if one increasksalized domain a self-organized pulse generator. It is noted
the ratioD, /D,,. Actually whenD, is sufficiently large, the here that the oscillating amplitude ofandv and the period
system undergoes a subcritical Turing instability so that onlyat the center of the domain are almost the same as those of
a motionless pulse or a motionless periodic structure cathe limit cycle without diffusion.
exist. The formation of a pulse generator can be understood as

It should be noted that the parameteris of ordinary  follows. The initial wave trains act as a trigger wave in the
magnitude. This is quite in contrast to the previous studiegxcitable medium. Collision of wave trains produces a large
where it is assumed to be extremely small, especially foamplitude deviation from the equilibrium solutian=v =0
modeling of the Belousov-Zhabotinsk8Z) reaction[29].  so that the colliding region enters into the oscillatory state.
Smallness of the parameteaasand § in Eq. (4) is also essen- Thus this phenomenon can be interpreted as a nucleation and
tial in the present problem since the coexistence of the unigrowth of the oscillatory state in a uniform state. In fact, one
form stationary state and a limit cycle oscillation emergescan see from Fig. 4) that the region of the pulse generator
under these conditions. is gradually expanding with time as if the oscillating domain

First, we show numerically that a wave train with arbi- invades the surrounding quiescent state while emitting the
trary length is stable foD,=0 in the coexistence region. outgoing waves. We have verified for a longer run that the
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FIG. 4. (a) Collision and annihilation of two single pulses for
D,=0 anda=0.15. The full(dotted line indicates the profile of
u (v). The time steps are=0, 10, 15, and 20 from top to bottom.
(b) Collision of pulse trains and formation of a pulse generator for
D,=0 anda=0.15. The time steps ate=0, 20, 30, and 60 from
top to bottom.

speed and the spatial period of the wave train near the oscil-
lating domain gradually increase with time. We believe that

this slow change of wave trains is attributed to a phase d'f'mentioned above, the pulse generator is expanding but the

fusllto_n since tl?e ds%/sterr:hlstlrt]hanboshmIIz_atoryhreglm_e. i 4 i velocity of a pulse is almost constant in time so that the
IS rémarked here that the behavior Snown In Fg. = 1Syistance between two adjacent pulses becomes smaller.
specific to the vicinity ofa=0.15 where the oscillatory char-

. When the distance is too small, such a configuration is un-
acter is not so strong_. For S’T“".‘”er valuega_ofa pu"c‘? 9€N-  stable and one of the pulses disappears. For larger values of
erator appears even in a collision of two single trains.

A pulse generator can be constructed in an alternative
way. That is, a spatially localized domain undergoes sponta-
neous oscillation and it emits sustained outgoing pulses. We
start with the initial conditionu(x,0)=exp(—x?/1?) and
v(x,0)=0 for —L<x<L with the system sizd_=100.
Simulations are performed for two different widths 1 and
10 to see the dependence of the initial condition. The Neu-
mann boundary condition is imposed at the system bound-
aries.

Evolution of the pulse generator and the emitted waves 10.0—pwmmmzz:
has been studied by changing the paramdieranda. Fig-
ure 5 summarizes the results for the smaller initial width
I=1. WhenD, is small, typically six different spatiotempo-
ral patterns appear as is indicated, respectively, by I-VI.

Region | is a region where a propagating pulse is stable
and the system is strongly oscillatory. An initial localized
domain causes a pulse generator that produces stable wave 5.0
trains as in Fig. &) after collision. Figure @) displays the
spatiotemporal pattern observed in region |, where the con-
tour u=0.001 is plotted.

In region Il yvhereDU is increased slightly, the initial //////////////////////////////////////WWW
localized domain still becomes a pulse generator. However, L
emitted pulse trains do not survive forever. The top train 0.0 | | [
annihilates after a certain lifetime, then the next one disap- o.‘1 I ! ‘ !
pears, and so forth. Since the speed of a wave train is larger
than the decay rate of a front pulse, the front moves slowly g 6. spatiotemporal patterns of the pulse generator and the
outward. Figure @) indicates the behavior fdd,=0.7 and  enitted pulses fofa) D, =0, (b) 0.7,(c) 0.9, (d) 1.1, (e) 1.6, and(f)
a=0.15. It is also noted that decay of a pulse does not ne.0. The parametea is fixed asa=0.15. The lines indicate the
essarily occur only at the front of a wave train but also in thecontour lines ofu=0.001. The abscissa is the space axis whereas
middle of a wave train as shown in Figighfor D,=0.9. As  the ordinate is the time axis.

FIG. 5. Phase diagram iD,-a plane.

15.0+

VI

015 | q
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D, where expansion of the pulse generator is negligible, only 200
the front pulse decays.

Some years ago, Ito and OH&0] studied analytically the
condition for the existence of both motionless and propagat-
ing pulses in Eqgs(1) and (2) in the piecewise linear limit
6—0. Comparing with the results obtained there, we note §1oo
that the boundary between regions | and Il shown in Fig. 5 is =
almost the saméwithin the numerical uncertaintyas the
marginal line in Ref[30], above which a propagating pulse
does not exist. This is clear evidence that the origin of the
difference between regions | and Il is the stability of a propa- 0
gating single pulse.

Propagation of the emitted pulses becomes weaker in re-
gion lIl. Figure @d) shows an example fob,=1.1 and FIG. 7. Spatiotemporal patterns for,=23 anda=0.11.
a=0.15. It is interesting to see that the size of the oscillating
domain is oscillating. This oscillation of the width should not  The larger initial widthl =10 changes the phase diagram
be confused with another type of oscillation of a domain injn Fig. 5 substantially except for the boundary between re-
the BvP equationsl) and(2). It has been reporte1-33  gjons | and Il and other boundaries near 0.17. The former
that a stable localized motionless domain, which is a SO'UtiOfboundary is not much altered because, as mentioned above, it
of Egs. (1) and (2) for small values ofD,/D,, begins to s the marginal line beyond which a propagating pulse is
oscillate when one decreases This oscillation, called a unstable. Thus, it is intrinsic and insensitive to the initial
breathing motion, originates from the time-delayed interacconditions. Regions I, I, and IV move upward so that the
tion between the domain boundaries mediated by the diffupoundary lines between these regions become steeper. For
sion ofv. Therefore, if one puts two localized domains, theseinstance, a domain oscillation similar to that in Fige)écan
undergo an in-phase oscillation. We have examined the inpe observed foe=0.14 andD,=7. When one starts with
teraction of two pulse generators in region lll. It seems thathe smaller initial widthl=1, the domain disappears for
the interaction is quite short ranged compared to that ofhese parameters. This fact implies that there is a kind of
breathing domains. critical width of the oscillating domain.

In the boundary region between regions Il and Ill, com- A qualitatively different behavior is observed for larger
plicated spatiotemporal patterns are observed. For instancgajues of D,. Figure 7 shows the time evolution for
the pattern foD,=2.0 anda=0.13 initially looks like that a=0.11 andD,=23 starting with the initial widtH =10. In
in Fig. 6(c), but after a long transient it changes to that inthjs case, the initial oscillating domain breaks up so that a
Fig. 6(d). motionless domain is formed at the tip of the domain while

In region IV the localized domain does not emit pulsesthe central part of the original domain is still oscillating.
and the domain width is constant in time. This is because thghus this is a mixed state of regions IV and VI in Fig. 5.

inhibitor v generated by the reaction in E@.) rapidly dif-
fuses to the surrounding region so that formation of pulses is
inhibited. However, the inside of the domain is still oscillat-
ing. An example foD,=1.6 anda=0.15 is shown in Fig. Target pattern and spiral waves have been studied exten-
6(e). By a detailed numerical analysis, we have confirmedsively in both excitable and oscillatory systems. In the
that the change from Figs(é to 6(d) is a supercritical Hopf present system Eq¢l) and (2), these dynamical behaviors
bifurcation. The domain oscillation in Fig(& is apparently  also appear in two dimensions. In this section, we shall show
similar to the breather solution in the nonlinear Sclinger  our two-dimensional simulations emphasizing the features
equation although the present syst€in and (2) is purely  different from those of the previous studies.
dissipative. Probably it is related to the results obtained by The persistent outgoing wave train emitted from the pulse
Thual and Fauvé34]. They found an oscillation of a local- generator in one dimension corresponds to a concentric wave
ized domain by numerical simulations of the complex GL (target patterhin higher dimensions. We have indeed veri-
equation(5) for a subcritical Hopf bifurcation in one and two fied numerically that a target pattern emerges from a self-
dimensions. The excitability is nonexistent in region IV sinceorganized pulse generator localized in two dimensions as
any propagating pulse does not exist there. Thus the systesthown in Fig. 8 wher® ,=0 anda=0.15. It is emphasized
is simply bistable in a sense that a limit cycle and a uniformthat the target pattern appears without any heterogeneous
state coexist. This is the situation expressed by the GL equgacemaker nor any periodic external stimuli at the center.
tion. What is necessary is only an initial concentration deviation.
In region V, the uniform state becomes more stable. This property is an essential difference from a target pat-
When =1 the domain shrinks and eventually disappearstern observed in BZ reaction. It is believed that a target pat-
But if one starts with the larger width=10, a different tern in the BZ reaction is caused by some heterogeniety. As
pattern is evolved, which will be described shortly below. mentioned in Sec. Ill the parametelg, and 7 in Egs. (1)
WhenD, is greater than 10, the initial localized domain and(2) with f(u) given by Eq.(3) must be sufficiently small
does not disappear but tends to form a stable motionlesas a model of the BZ reactidi29].
pulse. The boundary between regions V and VI is almost A target pattern can also be constructed from a collision
independent o&. of wave trains in two dimensions as in Fig. 4 in one dimen-

200

IV. CONCENTRIC AND SPIRAL WAVES
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FIG. 8. Time evolution of a target pattern fbr,=0 anda=0.15. The spatial variation af is shown at every four time steps from the

top left to the bottom right. The system size is *0000.

FIG. 9. Oscillating localized domain f@,=1, D,=1.2, anda=0.15 at every two time steps.

are the same as those in Fig. 8.

The system size ig 50. Other details
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FIG. 10. Formation of a motionless localized target patterrDige0.25,D,=20.0, anda=0.16 at every four time steps.

sion. A two-dimensional version of a head-on collision is
realized by an inward circular wave train. Although not
shown in the figure, an inward wave train with one and two
rings does not produce a pulse generator but a circular wave
train with three rings triggers a pulse generator so that a
target pattern is formed. This phenomenon is observed only (a)
neara=0.15 as in one dimension. Nevertheless, it is remark-
able that excitation of outgoing pulses depends on the num-
ber of the inward waves, i.e., the number of stimuli.

It is also interesting to see what happens in two dimen-
sions by changing the rati®,/D,. When one increases
D,, the target pattern becomes localized within a certain (b)
finite area. Figure 9 depicts a localized target pattern for
D,=1, D,=1.2, anda=0.15 starting from the initial con-
ditions u(x,y) =exf — (x*+y?)/25] andv=0. This corre-
sponds to Fig. @) in one dimension. Wheb , is extremely
smaller tharD,,, one has an entirely different pattern. In this
case, the above initial conditions produce a motionless target
pattern as is shown in Fig. 10 f&,=0.25, D,=20, and
a=0.16.

A spiral wave also exists in the present system. Since it
contains both oscillatory and excitable characters, two kinds
of spiral waves are possible for the same parameters. One is (d)
constructed starting with a planar propagating pulse termi-
nated at one end as in an ordinary excitable system. This is
shown in Fig. 11a). However, if one starts from an initial
pulse configuration such that the wavelength of the spiral is
short, the system enters into the oscillatory state where the 5 14 (a) Formation of a single armed spiral. Time passes
spiral is not a trigger wave but a phase wave. This is evidentom the Ieft to the right. The system size is 20000. (b) Forma-
from the fact that a phase diffusion is observed in this cas@on of a double-armed spirak) Three-armedieft) and four-armed
such that the wavelength increases gradually. (right) spirals.(d) Defect in a spiral pattern. Note that the location

Double-armed or multiarmed spirals can be constructedf the defect does not change in time from the left to the right.
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for D,=1 andD,=0 in a similar way as shown in Figs. diffusion term, one needs to introduce an extra variable so
11(b) and 11c) for three- and four-armed spirals, respec-that the model in Ref.36] is essentially three variable. An-
tively. The oscillatory property of the system induces an in-other three-variable model is also proposed for a nonlocal-
teresting synchronous motion in the central region. That isized target patterf37].

the tips of all the arms stick to and separate from each other A global phase diagram is obtained in tBg—a plane.
periodically. Although the present model is not directly re-When one increases the valDg , the target pattern tends to
lated to the BZ reaction as mentioned above, this motiorbe localized and finally the localized domain becomes either
itself has been observed in the experiments of the BZ reaanotionless or nonexistent depending on the paranzeterd

tion [35]. the initial condition.

If one starts from an initial condition with lower symme- A target pattern localized in space has been observed ex-
try, a defect is often formed in a spiral wave as in Figldl1  perimentally in an electrohydrodynamic instability in liquid
A wave propagating outward from the core collides with thecrystals[4]. However, this mechanism is interpreted by a
defect and then a reconnection occurs there. Thus this defecbupling of the oscillating mode and a phase of an underly-

stays at almost the same position and is quite stable. ing spatial periodicity38]. Thus, this localized target pattern
is different from that obtained here. As mentioned in Sec. lll,
V. DISCUSSIONS a localized oscillatory domain in region IV is closely related
i _ ) to that found numerically in a complex GL equatif8¥].
We have investigated the pattern dynamics of Etjsand At present, only a part of the phase diagram is understood

(2) in the parameter regime where a stable limit cycle SO'“'quantitativer. The boundary between regions | and Il is
tion coexists with the uniform equilibrium solution. Propa- given by the stability limit of a single propagating pu[&8).
gating pulses are also stable when the diffusion of the inhibiThe motionless domains in the linfit,/D,<1 are due to a
tor is small. This implies that the system preserves, to SOMghcritical Turing instabilitf32,39. We believe that the es-
extent, an excitability. This is one of the most importantsence of the dynamic behaviors in the phase diagram is a
properties of the system, which is not expressed by a simplgycjeation of an oscillatory domain in a quiescent matrix.
complex GL equation for a subcritical Hopf bifurcation.  powever, some key factors such as a lifetime of the top pulse
A pulse generator is self-organized by a collision ofj, 5 wave train in region Il and a domain size in region IV
p_ulses or by a local concentration inhomogeneity. In WOgre not easy to evaluate theoretically. The dependence on the
dimensions, this results in a target pattern both nonlocalizegjtig| conditions as mentioned in Sec. Il indicates that there
and localized in space depending on the magnidde The s 5 critical radius of domain, below which an oscillatory
nonlocalized target pattern is different from that observed ijomain does not exist. Our understanding of the critical ra-
the BZ reaction since the latter is believed due to a h_eterodius is only semiquantitativi34]. Nevertheless, the present
geneous pacemaker. Actually the frequency of oscillation agjnulations have revealed that the BvP-type Etjsand(2),
the. cepter in the BZ reactio_n_is higher than that in the bulkyhich were studied mainly in the singular limit, contain
while, in the present case, it is almost the same as that of &,ch more fascinating dynamical patterns for the parameters

uniform oscillation. with an ordinary magnitude.
Present simulations show that an extended target pattern

can exist in a two-component reaction diffusion system. This
is a result that, to our knowledge, has not been seen previ-
ously. Computer simulations of a BvP-type model equation We are grateful to Masayasu Mimura for a number of
for glow discharge[36] have shown automatically excited valuable discussions and comments. Thanks are also due to
pulse trains similar to that in Fig.(8. However, the time- Daisin Ueyama for his help of visualization of the numerical
evolution equation contains a long-range nonlocal interacresults. This work was supported by the Grant-in-Aid of
tion. In order to make this interaction short ranged like aMinistry of Education, Science and Culture of Japan.
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