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Meandering instability of a spiral interface in the free boundary limit
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The two-component reaction-diffusion excitable medium is treated numerically in the free boundary limit for
the fast field. We find that the spiral interface is stable for a sufficiently high diffusion constant of the slow
field. The spiral wavdinterface undergoes a core-meander instability via a forward Hopf bifurcation as the
diffusion constant decreases. A further decrease of the diffusion constant is found to result in the onset of
hypermeandering and spiral breakup. We demonstrate quantitative convergence of the dynamics of reaction-
diffusion system to its free boundary Iim[iS1063-651X96)02912-1

PACS numbds): 05.40:+j, 82.40.Fp

[. INTRODUCTION regions of “excited” and “quiescent” phases of the fast
field u coupled with the slowly varying field. The dynam-
Spiral waves arising in two-dimension&D) excitable ics of the curved interface is then given by the eikonal equa-
media currently attract a great deal of attention. These spirakon
appear in the well-known Belousov-Zhabotinsky reaction
[1], in the catalysis of CO on Pt substrafgs, in the elec- Ch=C(v;) — ek, (©)
trical activity of heart tissuels3], in the aggregation of amoe- ) _ ) )
bae colonieg4], etc. Excitable reaction-diffusion systems Wherev, is the value of field) at the interfacec(v,) is the
have been intensively studied both experimentally and andbterfacial velocity in the 1D casgfound from a solvability
lytically. Significant progress has been achieved through decondition of the corresponding one-dimensional problem
tailed numerical and analytical investigations of genericCn is the velocity normal to the interface, akds the local
reaction-diffusion model§5—7] and canonical experimental curvature of the interfacg?,8]. Moreover, fore<1, v devi-
systemg1,2]. It was established that the spirals can exhibitates only slightly from the “stall” valuevs, defined by
rich dynamic behavior ranging from periodic and quasiperi-C(vs) =0. In the limit of very smalle the equations can be
odic meandering to chaotic hypermeandering and spirafirastically simplified, bringing the system to a generic form.
breakup under certain conditions. This can be done using a scaling, suggested by [Hig:
The simplestyet nontrivia) theory of wave propagation v—vs=€e"0, x=€"%, t=e"%, and c(v|)~e"c,v),
in excitable media consists of a pair of coupled reactionwherec,=dc(v)/dv|,-,_[vs andc, are constants defined
diffusion equations for a fast field (activatoy and a slow by particular functionsf(u,v) andg(u,v) in Egs. (1) and

field v (inhibitor), respectively[7,8], (2); for instance, in the FN model,;=0 andc,= —1/\/5].
After dropping the tildes, the transformed system refdds
2., Fuv) O(e"¥)]
o= eViut ——, )
dv=9"+6Av—a e, (4)
r?tv=5eV2v+g(u,v), 2
c,=c,v,—K, 5)

wheree is a positive parameter ant=D, /D, is the ratio of
diffusion coefficients of the variablas andu. In the well- where the signst and — correspond to the excited and
known FitzHugh-NagumaFN) model [9] f=3u—u®-v quiescent regions, respectivelg==g(u*(vs),vs)=const
and andg=u—yv+A, with the parametery andA gov- and e~ =—dg*/dvs= const. For conveniencg™ may be
erning the kinetics of the medium. normalized by choosingg®—g~ =1, which, in the zeroth
The behavior of the reaction-diffusion system modeled byorder ofe'’*, leaves only two independent dynamical param-
Egs.(1) and(2) is the subject of intensive investigation. The eters in Egs(4) and(5), which areg* and é. In a true Fife
meandering instability of the spiral core was established botlimit of €°<1, the last term in Eq(4) can be dropped and
by direct numerical simulationgl0,11 and by numerical the system becomes univergalt model independenf13].
solution of the linearized problefii2]. However, the above However, even for very smal~10 #—10" 3, the last term
methods are restricted for not too small valueeofA com-  is approximatelye'®, which is of order 0.1 and therefore is
prehensive understanding of the spiral dynamics in the trueot formally small numerically As a result, significant nu-
asymptotic limit of smalle is still lacking. merical discrepancies between the behavior of the reaction-
In most practically important cases the parameterl diffusion system(1) and(2) and the simplified mode&k) and
(typically e~10"%—102). This allows an effective reduc- (5) may have originated from neglecting this term.
tion of the dynamics of a two-component medium téree The diffusionless §=0) free boundary problem is not
boundary problenfor a narrowO(e) interface separating self-consistent since the interface develops a ¢usgion of
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infinite curvature at the spiral tip. This singularity can be coincide with the grid sites. These interfacial points are
avoided by either including finite diffusion in the slow vari- moved according to Eq(5). The details of the numerical
able (5#0) or taking into account the finite value efat the  technigue are described in the Appendix.

cusp. The latter approach is much more complicated since it We consider a square domain on a 2D grid, with the in-
breaks locally the interfacial approximation, and we will terface attached with both of its ends to the boundaries of the
concentrate entirely on the former case. domain. We chooseo-flux boundary conditions fov (i.e.,

In the limit of 5<1 but &>¢, the problems of spiral selec- Vv on the domain boundary is always parallel to the bound-
tion and stability can be solved fully analyticalip,14].  ary), which forces the interface to be perpendicular to the
However, analytic results for this limit always predict a boundary at both points of attachment. Interfacial points are
single unstable mode of the spiral, which is contradictory tadistributed along the interface, with their positions param-
the fact that in numerical simulations and in experiments theetrized by the arclengtb. After the spiral is formed, we call
spiral undergoes a Hopf bifurcation from steady rotation ofthe part of the interface where the excited region is convex
the core to meandering, which represents a pair of conjugatato the quiescent one tHeont and the part where it is con-

unstable modes. cave theback We choose the arclength to increase from the
The (quasistationaryfinite § free boundary problem was front end of the interface to its back end.
recently considered by Kessler and Kupfermah,16|. They We have found that there is a numerical instability of the

have solved problem of the frequency selection and the stgoints along the interface, which leads to the “leakage” of
bility of the spiral using a different numerical approdd]. the points out of the tip. This can be explained by the fact
They have also found the Hopf bifurcation at finite that the error in the calculation of curvatures and interfacial
However, important questions such as the long-time spirahormals increases with curvature. In order to suppress this
behavior and the emergence of spiral from “nonspiral” ini- instability, we redistribute the points along the interface at
tial conditions cannot be answered in the framework of quaevery time step at equal distances along the interface.
sistationary theory. In particular, it is not clear whether the The situation when an interior point of the interface
instability found in[16] really leads to supercritical bifurca- touches the domain boundary needs special consideration.
tion or destroys the spiral as happens in the compleXhen such an event occurs, we cut the part of the interface
Ginzburg-Landau equatidrd7]. For this purpose one needs beyond the new point of attachment to the boundary. For-
to solve the time-dependent free boundary probl@mand  mally we would have to keep track of the remainder there-
(5). after, but, as we know from the theory of generic reaction-
In the present paper we treat the free-boundary problemdiffusion excitable medidl) and (2), the influence of the
by direct simulations of Eqsi4) and (5) for finite 5. We  remainder decays superexponenti2g]. Moreover, due to
consider a nonclosed interface in a rectangular domain. Wthe active(or invasive character of the spiral, which emits
develop a numerical procedure to handle the reconnectiowaves outward, the influence of the cut pieces is vanishingly
and tearing off of the interface at the domain boundarysmall. Indeed, the perturbations produced by the cut piece
which is a new element in the numerical study of free boundpropagate against the direction of the group velocity and
ary problems(previous methods were restricted to closedrapidly decay. After such a cutoff is performed we have to
interfaces]18,19)). We present numerical evidence that therebuild the functiorg™(x,y) in the whole bulk. The position
finite diffusion free boundary problem is sufficient to de- of the spiral's core is tracked as a point with zero normal
scribe the formation of spiral waves in the generic reactionvelocity c, by linear (cubic) interpolation between corre-
diffusion excitable media. We have found that in a certainsponding interfacial points, nearest to the core.
region of parameterg™, generic initial conditions evolve
into a steadily rotating spiral. We also found that the spiral
wave undergoes a core-meander instability via a forward lll. MEANDERING 'N,STAB'L'TY
Hopf bifurcation asé decreases. Therefore, near the thresh- OF THE SPIRAL'S CORE

old the instability is saturated and does not destroy the spiral. \we have performed numerical simulations, using the de-
A further decrease of results in a transition to hypermean- g¢ribed algorithm. We have studied systematically the dy-
derin_g and finally to the t_)reaku_p of th_e spiral. Our reSL!It_s argyamics of spiral in a wide range of parametgts 8. In order
consistent with numerical simulations of the original ¢ generate stationary spiral solution we took generic non-
reaction-diffusion system and experiments and therefore re&spiral initial conditions for the interfacéfor example, a
$olve the existing controversy in the theory of spiral wavesstrajght ling. For sufficiently large values of (see below
in the free boundary limit. these initial conditions gradually evolved to a steadily rotat-
ing spiral. A stable spiral solution, obtained in this way, is
shown in Fig. 1.

However, we have observed a core instability leading to

We perform simulations of the systefd) and (5) for  meandering a®$ decreases. A typical trajectory of the un-
€=0, using a mixed technique, which solves the diffusionstable(meanderingspiral core is given in Fig.(@). We have
equation(4) for the field v, determined at the sites of a verified by systematic control of the amplitude of the core
square grid, and the nonlinear interfacial equatidn) sepa- meander that the instability occurs via a forward Hopf-like
rating excited and quiescent regions. The source term in Edpifurcation, as it is observed in direct numerical simulations
(4) takes the valueg™*(g~) in the excited(quiescentre-  of the Eqs(1) and(2) and experiments. The stability limit of
gion, respectively. The curved interface is determined bythe core meander in th&g™ plane is shown in Fig. 3. Near
points distributed along the interface, which is general do nothe threshold this instability is saturated at some finite radius

II. NUMERICAL METHODS
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FIG. 1. Gray-coded snapshotofield (black corresponds to the b
maximum value and white to the minimum vajwend the interface - <’
in free boundary simulations. The parameters of the simulations are 11} " | O a
: . el . SR
the square domain, 2020; number of grid points, 129129; ','A')ﬁ."
6=0.3;97=0.63;c,=— 1/\/5; and the interface presented contains "i'.'-'—(;;\“::gr“"
155 interfacial points. ?‘:‘vll‘l\‘gb""
> 10 .,"‘*vg,!.'*:,;‘»—.z«t‘
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of the core meandering and does not destroy the spiral. A =7/ L
oy S _A
further decrease of leads to a transition to hypermeander- gl '-ﬁp‘
ing [Fig. 2(b)], when many core modes are excited simulta- “"
neously. In this case the spiral’s core performs a very com-
plicated (nonperiodi¢ motion. Finally, for a very small
diffusion the radius of the meandering becomes very large 8
and the spiral annihilates at the boundary. It is plausible to 8 9 10 11 12
assume that the radius of meander diverges at some finite X
value of §, which could be a fingerprint of the stationary _ S _
instability of the spiral core found in the smaflfimit [5]. FIG. 2. Trajectory of spiral tip ifa) meandering an¢b) hyper-

meandering regimes. For both caggs=0.7.5 is (a) 0.48 and(b)
0.4, respectively. Other parameters are the same as in Fig. 1.

IV. COMPARISON WITH THE DYNAMICS
OF THE REACTION-DIFFUSION SYSTEM

We have verified our results by the direct simulations of 0.9
the original model(1) and (2) for finite e. We applied the
EZ-spiral code of Barkley[11] for the model given by PR =D
the functions f(u,v)=u(u—1)[u—uy(v)] and g(u,v) 0.8 g
=u—v, where ug(v)=(v+b)/a. In this model PRt
g"=1-a/2+b,g"=g*—1, andc,= —\2/a. We can see e
very slow convergence of the bifurcation lines obtained from +m 0.7 1
the Egs.(1) and(2) to that of the free boundary problem as
€ decreasessee Fig. 3. It is technically difficult to obtain
quantitative agreement fot=0 because it would require
very small e(~10"°), which makes Barkley’s code drasti-
cally time consuming. . . . _

In order to reduce the discrepancy between the reaction- 0‘50_0 0.2 04 0.6 0.8 1.0
diffusion system and the free boundary problem due to finite S
€' we took into account the leading correctienn™ e
[the last te_rm in Eq(4)]. The constants:~ aﬂe determined FIG. 3. Lines of core-meander bifurcation in tideg™ plane.
by the particular model. In Barkley's model"=a=1 and  gig jine corresponds to free boundary simulations with the same
the value ofc, equals—+/2/a, which is different from that ¢, , domain size, and number of grid points as in Fig. 1. Dashed and
for the FN model, given bg,=—1/y2. In the zeroth-order  dot-dashed lines correspond to EZ simulations of the original model
problem(4) and (5) ¢, may be scaled out, so that only one (1) and(2) with eé=0.002 ande=0.008, respectively.

06 |
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1.0 APPENDIX A
We solve the diffusion equatiof) using a pseudospec-
0.9 | ] tral approach, which consists of the following procedure.
The fieldv on the grid is transformed into inverse Fourier
08 | o ] space, so that the partial differential equatiof) for
+ ' T v(X,y) is replaced by a set of ordinary differential equations
o for its harmonicw, | :
0.7 1 x Ty
0.6 | ﬁtv_kx,ky:ax,ky_ 5kzv_kx,kyv (A1)
where I2=(kx,ky) is the corresponding wave vector and
0.5 ; ; ; ; gx k. are the harmonics ofy=(x,y). One immediately
0.00 0.02 004 006 0.08 0.10 X"y ; .
13 writes down the general solution of EGAL) on the interval
oe (t;t+AL):
FIG. 4.g" at the bifurcation point at various values®@é® and _ s a —
for §=0.4. Other parameters are the same as in Fig. 1. Solid and ka,ky(t+At):e Xy ka,ky(t)

dashed lines result from the free boundary simulations and EZ
simulations, respectively.

+ft+Atdt,— 1\ ad(K2+K2) (' —1)

t i, &, (1)E7HT :
model-dependent parametgi is left. Therefore, we can

changev, X, t, andc, in such a way that in rescaled vari- (A2)
ables Barkley’s model will have,=—1/2, but the con- By virtue of the small value oAt this turns into the implicit
stanta will be rescaled. Straightforward calculations result difference schemén the trapezoid approximation

in a=(a/2)?s.

In Fig. 4 we compare the results of the simulations of the
modified (including the — e term) model (4) and (5)
with the results of the EZ simulations of the original model

s - At
(1) and(2) for various values ofr. One can see a significant + =0 (t+AD). (A3)
improvement with respect to the prior results fo=0. N

J— 2,2
vk, k (T AD =7 2ty

— At__
Uk, k(D F 50k, k(D)

In order to findv(t+At), one has to calculate(t), the
Fourier representation af(t), then calculate (t+At) ac-
cording to(A3), and then return to real space. This proce-

We have presented the numerical evidence that the finitdure, however, remains unclosed without co+nsistent updating
diffusion free boundary problem is sufficient and consistenff the interface to determine the functiagr(x,y). This
for the description of spiral waves in generic reaction—prObIem requires careful cor.13|derat|on.“
diffusion excitable media. We have found by direct numeri- . Weiproce(_ed in the followmg way. In't'?"y the 2D func-
cal simulations a transition to steady meandering of the spira{[for],g (x,y) IS formgd by Sett',f]g It to bg aft the mte:r-

: " . : nal” (excited and g~ at the “external” (quiescent grid

core via a supercritical Hopf bifurcation. We have observed a__. . f i
transition to hypermeandering and final breakup of the spiraﬁ),OIntS and. Its Four@r represe-ntatlog@‘ky are calculated
wave when the diffusion of the slow variable decreases. Thu@iven the fixed position of the interface. A
we resolve the existing controversy in the theory of spiral The outer normah'=(n,,n}) and curvaturek' of the
waves in the smalb limit, predicting always a stationary interface are calculated at théh interfacial point as func-
instability of the spiral’s core. We have also shown that thetions of arclengths' through the derivatives of the coordi-
higher-order correction to the free boundary problem due tdatesx andy at the interface with respect & using cubic
finite € is necessary to achieve quantitative agreement witigpline interpolation:
the results for the reaction-diffusion systéi and(2). Our

V. CONCLUSION

i i [ i+1

results, implemented for a two-component reaction-diffusion n :y|+1_y| _ y_SS+ yi) (s+1-¢)

system, can be straightforwardly generalized for higher num- X siti-d 3 6 '

bers of slow fields. This could be useful to study such phe- ) ) : 1

nomena as transversal front instability, transition from lamel- i XX [Xgs  Xe i1

lar to labyrinthine patternf21], and spiral competitiofi22]. n=-grigt 3 e (s77=s),
K'=n{yse MXss.- (A4)
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conditiong. Then values ofv at the interfacial points are distance c,At. We do not need to perform the time-
found using bilineakor bicubig interpolation between near- consuming procedure of “filling up” the lattice witg™’s at

est grid points. At this stage one has all the informationeach time step. Instead, we change the values of the function
needed to calculate the new position of the interface accordy™(x,y) from g*tog~, and vice versa, at the grid points
ing to Eq.(5). This is done by calculating the shift of each within the narrow band between the old and the new posi-
interfacial point in the direction of the outer normal by the tions of the interface.
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